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A B S T R A C T   

Understanding the role of the mitogen-activated protein kinases (MAPKs) signalling pathway is 
essential in advancing treatments for neurodegenerative disorders like Alzheimer’s. In this study, 
we investigate in-silico techniques involving computer-based methods to extract the MAPK1 
sequence. Our applied methods enable us to analyze the protein’s structure, evaluate its prop-
erties, establish its evolutionary relationships, and assess its prevalence in populations. We also 
predict epitopes, assess their ability to trigger immune responses, and check for allergenicity 
using advanced computational tools to understand their immunological properties comprehen-
sively. We apply virtual screening, docking, and structure modelling to identify promising drug 
candidates, analyze their interactions, and enhance drug design processes. We identified a total of 
30 cell-targeting molecules against the MAPK1 protein, where we selected top 10 CTL epitopes 
(PAGGGPNPG, GGGPNPGSG, SAPAGGGPN, AVSAPAGGG, AGGGPNPGS, ATAAVSAPA, TAAV-
SAPAG, ENIIGINDI, INDIIRTPT, and NDIIRTPTI) for further evaluation to determine their po-
tential efficacy, safety, and suitability for vaccine design based on strong binding potential. The 
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potential to cover a large portion of the world’s population with these vaccines is sub-
stantial—88.5 % for one type and 99.99 % for another. In exploring the molecular docking an-
alyses, we examined a library of compounds from the ZINC database. Among them, we identified 
twelve compounds with the lowest binding energy. Critical residues in the MAPK1 protein, such 
as VAL48, LYS63, CYS175, ASP176, LYS160, ALA61, LEU165, TYR45, SER162, ARG33, PRO365, 
PHE363, ILE40, ASN163, and GLU42, are pivotal for interactions with these compounds. Our 
result suggests that these compounds could influence the protein’s behaviour. Moreover, our 
docking analyses revealed that the predicted peptides have a strong affinity for the MAPK1 
protein. These peptides form stable complexes, indicating their potential as potent inhibitors. This 
study contributes to the identification of new drug compounds and the screening of their desired 
properties. These compounds could potentially help reduce the excessive activity of MAPK1, 
which is linked to Alzheimer’s disease.   

1. Introduction 

Alzheimer′s disease (AD) is a chronic neurodegenerative disorder due to the overproduction or accumulation of Aβ (Amyloid β) 
plaques, which causes inhibition of phosphorylation of proteins that regulate signalling pathways [1]. The prevalence of AD increases 
with age. 5 % of the world’s population with 65–74 age, 13.1 % with 75–85 age, and 33.2 % with 85 are diagnosed with Alzheimer’s 
disease [2]. This disease is characterized by relentless progression of memory loss, such as motor ability, hallucinations, speech 
impairment, depression, aggressive behaviour, delusions, poor quality of life, and ultimately, death [3]. Despite of intensive under-
standing of the pathophysiology of this disorder, Risk gene identification biomarkers are still unknown and challenging since various 
susceptibility genes control this polygenic disorder due to the linkage of different types of AD on four different loci, particularly AD1, 
AD2, AD3, and AD4 [4]. Great efforts are needed to prevent disease formation, improve available treatments, and elucidate these 
neurodegenerative disorders’ economic and social burden. Recent studies on the pathophysiology of this disease reveal the contri-
bution of the MAPK1 Protein in AD [5]. MAPK1 is a protein coding gene and has a role in the MAPK cascade. MAPK1ise ERK2 
(extracellular signals regulatory kinase 2) that regulate various physiological processes such as cell growth, differentiation, 
embryogenesis, proliferation, survival, death, and different signalling cascades [3]. 

The signalling pathway of MAPK is activated by diverse extracellular or intracellular stimuli such as hormones, peptides, cytokines, 
growth factors, and several cellular stressors (endoplasmic reticulum and oxidative stress). At the same time, its activation requires 
phosphorylation, which activates transcription factors that initiate the production of responded protein. Increased function of MAPK1 
causes different neurodevelopmental disorders like AD. The deposition of extracellular Aβ plaques usually causes AD. Damaged 
neurons in AD are caused by Induced toxicity of Aβ plaques due to increased regulation of MAPK1 by inducing glutamate excito-
toxicity, disruption of synaptic plasticity, and NF-kB activation, so the MAPK1 Protein should be a potential target to break down the 
Aβ plaques and to cure people with AD. In short, inhibition of MAPK1 Protein could be an effective and promising strategy to manage 
such neurodegenerative disorders. 

Supportive efforts are ongoing to develop & and identify potent compounds to target the MAPK1 Protein to prevent disease for-
mation and to improve the available treatments for this neurodegenerative disorder [6]. These efforts can be augmented by utilizing 
zebrafish as model organisms, as their genes are orthologous to human mutated genes for Alzheimer’s disease. The genome of zebrafish 
has been fully characterized. It has shown a more straightforward nervous system than human and other rodent animal models for 
modelling or screening bioactive lead drug compounds, behavioural testing, and potential therapies for various neurodegenerative 
diseases. The CNS of zebrafish is traditionally arranged and separated into the forebrain, hindbrain, midbrain, motor spinal cord, 
cranial nerves, sensory nerves, and ascending and descending spinal cord. Transcriptome studies of Zebrafish have shown 87 % sig-
nificant structural similarity to humans, highly conserved regions, accessible and e & malleable models for processing vertebrate 
genomes & and neural structures, neurodegenerative research, and facilitating the discovery of exceptional characteristics of genes 
that were difficult to observe by other model organism [7]. So, zebrafish is a viable animal model to target MAPK1 protein through 
peptides, and novel compound inhibitors should be utilized as potent drug candidates designed through different In-silico immu-
noinformatic approaches. 

As in-vivo drug discovery is a lengthy process that takes 10–15 years and costs up to 2.448 billion USD for a drug to reach the 
market. It is a multi-step process, including identification, validation of drug targets, optimization, and preclinical and clinical trials, 
which is a long process. Therefore, the In-silico approach is utilized for targeted drug design to ease the in-vivo process in terms of time, 
validation, efficacy, and approval of a drug to reach the market [8]. 

The progression of computational drug designing and personalized medicine offers a way to understand different neurodegener-
ative diseases. Different structural and bioinformatics approaches were utilized to identify and design novel targeted active compounds 
for drug designing and peptides for epitope-based vaccine designing to treat several neurodegenerative diseases. Different immu-
noinformatic software was used for In Silico structure prediction by comparative modelling followed by identifying inhibitors, virtual 
screening based on physiochemical properties, and peptide design against MAPK1 in zebrafish. MAPK1 inhibitors could effectively 
mitigate the patient suffering and pathophysiology of Alzheimer’s disease [5]. 

The in-silico design of a multiepitope-based-peptide (MBP) vaccine involves the computational identification of potential epitopes 
within a specific MAPK protein associated with Alzheimer’s disease, followed by the selection of immunogenic epitopes, and the 
incorporation of these epitopes into a single peptide sequence. This peptide is optimized for immunogenicity and safety using 
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computational tools, simulating its interaction with the immune system components and predicting potential immune responses. This 
approach leverages zebrafish as a model organism for Alzheimer’s research, aiming to stimulate a broad and effective immune 
response against the targeted MAPK protein. However, experimental validation would be needed to confirm the vaccine’s efficacy and 
safety. 

This research’s primary objectives encompass identifying and evaluating new drug compounds possessing specific physiochemical 
attributes to act as inhibitors targeting the overexpression of MAPK1, with a focus on potential applications for treating neurode-
generative disorders such as Alzheimer’s disease. The study aims to understand the intricate MAPK signalling pathway’s contribution 
to neurological disorders, providing a comprehensive context for diseases like Alzheimer’s. Employing immunoinformatic analysis, the 
research aims to design epitope-based vaccines to precisely target the MAPK1 pathway, predicting β-cell and T-cell epitopes as po-
tential drug targets and vaccine candidates. Leveraging the zebrafish model, the research investigates the effects of developed drug 
compounds and vaccines on neurological disorders. A crucial aspect involves identifying top-ranked peptides within the MAPK1 
proteome capable of binding to major histocompatibility complex (MHC) molecules, facilitating vaccine development. Ultimately, this 
research strives to contribute to novel therapeutic strategies, offering insights for tailored drug design to address Alzheimer’s disease 
and other neurodegenerative conditions through MAPK1 inhibition. 

2. Materials and methods 

We performed computational analysis to predict the structure of the target protein (MAPK1) as per the mothed of earlier re-
searchers [9,10]. The amino acid sequence of this protein in FASTA format is retrieved from the UniProt database. We find appropriate 
template for the structure prediction of the target protein, the FASTA sequence of MAPK1 is subjected to BlastP, a protein-protein blast, 
against the Protein Data Bank (PDB) database as per the method of Ali, Ali, et al. [11]. We identify a suitable homologous protein 
structure that can serve as a guide for predicting the structure of the target protein. We set selection process for scrutinizing based on 
different factors such as query coverage and sequence identity, with the objective of identifying the homologous protein structure that 
best aligns with the target protein’s sequence. 

We utilized various methods for structure prediction, including homology/comparative modelling, ab initio modelling, and 
threading approach. Among these, the homology modeling method, executed through the MODELLER software, emerges as the most 
successful in generating accurate structure predictions. Homology modelling leverages the existing structural information of a related 
protein as a foundation for predicting the structure of the target protein. This methodology necessitates the utilization of multiple files 
and a command-based approach. Around 10 different model numbers are generated to construct the model, each involving a unique 
configuration. The criterion for selecting the optimal predicted model revolves around the concept of mol-pdf value, with the model 
possessing the lowest mol-pdf value being chosen as the most accurate representation. 

After model generation, the energy of the predicted structure is refined and minimized through the use of UCSF Chimera and 
ChemDraw software, both of which enhance the overall stability of the model. Assessment of the predicted structure’s reliability 
entails subjecting it to various structure evaluation tools. These tools encompass MolProbity, ERRAT, ENOLEA, Ramachandran plot 
analysis, ProCheck, and Verify 3D. This comprehensive evaluation aids in ascertaining the quality, accuracy, and overall credibility of 

Fig. 1. Applied methodology for epitope-based vaccine designing and identification of novel drug compounds against MAPK1 protein.  
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the three-dimensional structure of the MAPK1 protein. An intricate depiction of the methodology employed in this process presented in 
Fig. 1, which outlines the step-by-step journey from sequence retrieval to reliable three-dimensional structure prediction. 

2.1. Sequence retrieval 

The amino acid sequence of mitogen-activated protein kinase (Uniprot ID: Q9DGR5) was retrieved from the Uniprot Knowledge 
base (https://www.uniprot.org) in FASTA format to determine the 3-Dimensional structure of the target protein (369 residues). 
Protpam was utilized to access the biochemical properties of MAPK1 Protein [12]. 

2.2. Physiochemical properties and antigenicity prediction of protein 

Vxijen v2.0 server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was utilized to predict the protein’s antige-
nicity by submitting the FASTA sequence of Protein with 0.4 thresholds [13]. The ExPAsy-Portparam tool (https://web.expasy.org/ 
protparam/) was utilized to predict the physiochemical properties of MAPK1 Protein. 

2.3. Template selection & structure prediction 

The FASTA sequence of MAPK1 Protein was subjected to a BLASTp search against the RCSB Protein Data Bank (PDB: https://www. 
rcsb.org/) [14]to find an appropriate template structure for structure prediction through a comparative modelling approach. The 
Crystallographic structure of ERK2 in complex with compound 22 having a resolution of 1.76 Å [PDB ID; 5K4I] was chosen as an 
appropriate template having 94.54 % identity, 94 % query coverage, accession length of 352 residues, and E value 0.0 for reliable 
structure prediction. The 3-dimensional structure of MAPK1 was predicted by MODELLER 9.20 (https://salilab.org/modeller/) by 
satisfying all the spatial restraints [15]. The modeller generated 10 models. Computational Threading and ab initio approach 
(SWISS-MODEL (https://swissmodel.expasy.org/), I-TASSER (https://zhanggroup.org/I-TASSER/) Phyre2 (https://bio.tools/phyre), 
RaptorX (http://raptorx6.uchicago.edu/), ROBETTA (https://robetta.bakerlab.org/), M4t (http://manaslu.fiserlab.org/M4T/) were 
also utilized forMAPK1 Protein structure prediction. The energy minimization followed by geometrical optimization of the 3D pre-
dicted structure of MAPK1 was performed by UCSF chimaera (https://www.cgl.ucsf.edu/chimera/). 

2.4. Structure evaluation/validation 

The 3D predicted structure of MAPK1 Protein was evaluated using different evaluation tools. MolProbity (http://molprobity. 
biochem.duke.edu/) was used to assess the expected structure by the MODELLER (https://salilab.org/modeller/). At the same 
time, Rampage http://mordred.bioc.cam.ac.uk/~rapper/rampage.php [16], ProCheck https://www.ebi.ac.uk/thornton-srv/ 
software/PROCHECK/ [17], Anolea (http://leandro.iqm.unicamp.br/anolea/), and ERRAT (http://servicesn.mbi.ucla.edu/ERRAT/ 
) were utilized to access the overall quality factor of predicted structure. The Ramachandran plot (https://molprobity.biochem. 
duke.edu/images/ramachandran.png) was generated to evaluate the forecast models. It showed the distribution of residues like Φ 
and Ψ distributions of non-proline and non-glycine residues. The plotted Φ and Ψ angles were used to distinguish the favourable and 
unfavourable regions. These angles were utilized to evaluate the quality of areas. Generally, a quality factor above 95 % was generated 
for high-resolution structures. UCSF Chimera 1.14 (https://www.cgl.ucsf.edu/chimera/) was used to visualize the 3D structure of 
MAPK1 protein. WinCoot (https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/) was employed to correct all the outlier resi-
dues and poor rotamers from the final selected MAPK1 Protein structure. 

2.5. Phylogenetic analysis 

Six strains of MAPK1 were retrieved in FASTA format through the NCBI database (https://www.ncbi.nlm.nih.gov/). MSA (Multiple 
Sequence Alignment) was carried out to determine ancestral relationships; for this purpose, the well-known software MEGA-X 
(https://www.megasoftware.net/) [18] was employed for phylogenetic analysis of different strains of MAPK1 Protein. The phylo-
genetic tree of homologous sequences was built using a neighbour-joining distance-based approach, considering a bootstrap value of 
500 replications [19]. Weblogo3 was utilized to find the conserved residues among different strains of MAPK1 [20]. 

2.6. World population coverage studies 

IEBD (https://www.iedb.org/) was utilized to evaluate the world population coverage studies of predicted epitopes. Epitopes 
associated with specific HLA alleles were accessed to analyze MHC class I epitopes [21]. CTL epitopes were utilized against sets of 
particular alleles for selected population coverage studies. Different countries with higher affected rates of Alzheimer’s disease were 
selected for whole world population coverage studies. Different epitopes with region-country-ethnicity combinations were utilized to 
analyze population coverage in the global population survey. 

2.7. Prediction of linear and conformational B-cell epitopes 

Plasma (antibody) cells and memory cells derived from B-lymphocytes because of interaction between anti-β-cells and epitopes of 
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β-cells. The hydrophobic nature, flexibility, antigenicity, linear epitope forecast, and surface accessibility of β-cells are crucial for 
recognizing epitopes of β-cells [22]. β-cells epitopes were utilized by the free online IEBD abbreviated as Immune Epitope Database and 
Analysis Resource. The features of IEBD were set to 75 % specificity with 14 residual lengths of epitopes that were shown satisfactory to 
influence defensive immune response. The epitopes on the outer surface were selected, and those on the inner surface were rejected. 
The antigenicity, hydro and physiochemical properties, toxicity, digestibility, mutation, and allergenicity, were of selected epitopes 
were predicted. Hydrophilicity, linear epitopes forecast, flexibility, and surface acceptability studies were performed through Kolaskar 
& Tongaonkar antigenicity scale method [23], Karplus and Schulz for Flexibility Prediction [24], PHP (Parker’s method for Hydro-
philicity Prediction), Eminifor surface accessibility prediction [23]. Three different approaches were utilized in combination with 
Ellipro to forecast IEBD conformational β-cells epitopes (amino acid sequence having antigens interact with receptor protein of im-
mune system), linear epitopes, along with adjacent clustering residues depending proximate 3D protein structure, PI (protrusion index) 
[25] and the criteria followed was 0.5 for possible least score and 6 for maximum distance [26]. 

2.8. Prediction of CTL epitopes and peptide designing 

T cells epitopes are fragments of peptides that can provoke specific immune reactions and are immunodominant required for 
epitope-based peptide vaccine designing. CTL epitopes play an essential role in vaccine design by reducing wet lab experimentations’ 
costs and time. The epitopes’ cytotoxic effects on T lymphocytes were predicted. The predicted CTL epitopes were evaluated through 
NetCTL (https://services.healthtech.dtu.dk/services/NetCTL-1.2/) [27] for MHC class-I. For this purpose, the NetCTL features were 
set to super type A1 with TAP transport efficiency with 0.05 wt, thresholds for epitope prediction with 0.75, and C-terminal cleavage 
with 0.15. CTLs were activated through the antigenic surface of the MHC molecule. NetCTL server combined C-terminal proteasome 
cleavage, MHC Class 1 prediction, and transport efficiency TAP transporters into a single analytical system. The amino acid sequence of 
MAPK1 was used to analyze HLA (human leucocyte antigens) alleles and the length polypeptide chain. Artificial neural networks were 
used to estimate proteosome MHC class 1 binding and C-terminal cleavage, while T-epitome forecasts and weight matrix were utilized 
to evaluate transport efficiency TAP. Predicted epitopes for the Responded Protein, including antigenic residues, were analyzed 
through molecular docking studies. CTL epitopes of MAPK1Proteinrotein were predicted. The top 30 peptide sequences, along with the 
peptide’s C-terminal proteasome cleavage affinity, Rescale-binding affinity, prediction score, MHC-binding affinity, and TAP transport 
efficiency, were generated by uploading the FASTA sequence of MAPK1 in the Net CTL server. The epitopes for MHC class II were 
predicted through the IEDB database. The N-align method was used to predict MHC class II Allele to be utilized as the best epitope 
candidate. The peptide’s structure for respective Alleles was predicted by uploading the amino acid sequence of the peptide in the 
PEP-FOLD server, and a simulation of 100 runs was performed in several conformations’ changes. The energy rating of sOPEP was 
utilized to examine compliance models in complex with the PEP-FOLD3. Only model 1 from all 10 Pepfold results was used for 
molecular docking [27]. 

2.9. Antigenicity and epitope conservancy prediction 

The Vxijen 2.0 server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) and the conservancy prediction tool of IEBD 
(http://tools.iedb.org/conservancy/) were utilized to predict antigenicity/immunogenicity and conservancy of predicted peptides. 
More antigenic peptides were preferred to less antigenic ones for efficient T cell epitopes. So, the higher immunogenic epitopes were 
chosen for further analysis [28]. The conservancy implies a specific part of a protein sequence restrains the epitopes and shows 
availability with identity level [29]. 

2.10. Allergenicity and toxicity identification of predicted peptides 

AllergenFP 1.0 (https://ddg-pharmfac.net/AllergenFP/) and AllerTOP v. 2.0 (https://www.ddg-pha/rmfac.net/AllerTOP/) were 
utilized to predict the Allergenicity of the predicted peptide as a candidate for the vaccine. AllergenFP 1.0 server indicates results 
through a non-alignment descriptor-based identification approach and can predict allergenicity and non-allergenicity with an accu-
racy of 87.9 % [30]. In contrast, a robust AllerTOP v. 2.0 server predicts results through a kNN (k nearest neighbours) based com-
plementary approach to categorize allergens and non-allergens with an accuracy of 87.7 % [21]. The ToxinPred web server (http:// 
crdd.osdd.net/raghava/toxinpred/) was employed to analyze the toxicity of predicted peptides. Toxinpred expects results using 
different peptide properties based on a quantitative matrix and machine learning approaches [31]. 

2.11. Molecular docking and structure modelling 

2.11.1. Protein-peptide docking 
For protein-peptide docking studies, the PatchDock server (http://bioinfo3d.cs.tau.ac.il/PatchDock/) was used to determine 

functionally interacting residues, the binding conformation, and the best structural information and to investigate the binding pattern 
of ligands to the respective protein [32]. The docked complexes with the least binding energy were chosen to analyze the 
receptor-ligand interaction and for further post-docking analysis using UCSF Chimera (https://www.cgl.ucsf.edu/chimera/). The 
amino acid residues placed within 4 Å of the ligand and 10 interactions between receptor and ligand were identified. The docked 
complexes were categorized through geometric complementary, and all the redundant receptor atoms were removed from the docked 
complexes for reliable results. Fire-Dock (http://bioinfo3d.cs.tau.ac.il/FireDock/) software was used for flexible refinement and 
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scoring of protein-ligand/protein-protein interactions. In the Firedock, the flexibility of docking experiments was set to increase while 
the scoring errors of docked complexes were fixed to decrease. UCSF Chimera 1.14, PyMOL, and Discovery Studio were employed for 
post-docking and interactional analysis to evaluate the H-bonding interaction and binding affinity of docked complexes. 

2.11.2. Protein-protein docking 
The STRING database was employed to find out the interactions of MAPK1 Protein. It is an online database of known and predicted 

protein interactions, including direct (physical) and indirect (functional) relationships [19]. Docking of MAPK1 Protein with its 
interactive protein Atlastin GTPase 1(PDB ID: 3Q5D) was simulated using ClusPro and Patch Dock. The UCSF Chimera, Discovery 
Studio, and PyMol visualization software were utilized for post-docking studies of protein-protein interactions. 

2.11.3. Protein-ligand docking 
For molecular docking analysis and simulated scanning, the FDA-approved library of drug compounds was selected for the virtual 

screening of potential drug compounds. ZINC database (https://zinc.docking.org/) was utilized to download the library of 1800 FDA- 
approved drug compounds, which was minimized for further high throughput screening. The compound selection was based on 
pharmacophore [33,34]. This pharmacophore was screened against FDA FDA-approved zinc database library. Ligand Scout 4.4.8 
software was used to build a library and to screen compounds. AutoDock 4 (https://autodock.scripps.eu/), PyRx (https://sourceforge. 
net/projects/pyrx/) [35], and AutoDock vina (https://vina.scripps.edu/) [36] were utilized to perform molecular docking studies 
[36]. The specific binding site of receptor-ligand interaction was identified through blind docking. PubChem database was utilized for 
getting the molecular coordinates of ligands. The ligand′s SDF format was changed into.pdb format through ChemDraw [37]. The input 
files for ligand and receptor molecules should be in PDB format to execute AutoDock-vina. The polar H-atoms were introduced to the 
receptor Protein for docking studies, and thousands of docking runs were performed for each docking experiment. To examine the 
binding affinity between the selected ligand and MAPK1, an automated, flexible docking program was executed to the binding site of 
the ligand-protein through AutoDock Vina. The grid map of AutoDock facilitates the actual docking process. The grid′s dimensions for 
molecular docking analysis were 56 × 56 × 56 Å for the X, Y, and Z axis with 0.648 Å spacing for the ligand to cover up the whole 
receptor protein between the grid points. The lowest binding energy and RMSD value of docking results were utilized to evaluate the 
best-docketed complex. The Druglike chemical and physical properties were assessed through ADMETlab (https://admetmesh.scbdd. 
com/) and admetSAR. UCSF Chimera 1.14, PyMOL(https://pymol.org/2/), Discovery studio (https://discover.3ds.com/discovery- 
studio-visualizer-download), and Liplot (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/) software’s were employed to 
visualize and investigate the interacting residues. 

The best structure of MAPK1 protein was selected with poor rotamers and lower Ramachandran outliers’ residues, which WinCoot 
further accessed to decrease the errors. The UCSF chimaera was utilized to visualize the predicted structure. It was accessed for 
different In-silico analyses of MAPK1 Protein followed by peptide designing and novel drug compounds used as effective inhibitors 
against MAPK1 protein. After the structure prediction and its evaluation, the peptides were designed against the target protein based 
on epitopes. The Net CTL version 1.2 server was utilized for CTL epitope prediction, providing multiple possible peptide sequences 
from the query protein found on the presence of CTL and MHC 1 binding epitopes. The peptide sequence obtained from the Net CTL 
was placed in PEPFOLD version 1.3, and the 30-peptide model was predicted for each peptide sequence. The epitope against the target 
protein and the 3D structure of the proposed peptide were analyzed using molecular docking by Patchdock with a threshold value of 
4.0. Different docking solutions were obtained from Patchdock. The docked complexes with the least binding energy were chosen to 
analyze the receptor-ligand interaction and for further post-docking analysis using UCSF Chimera by refining patchdock results. 
Firedock gives the 10 best-refined docking solutions of protein and peptide based on global energy. protein and peptide docking results 
from Firdock were visualized by UCSF chimaera. The results show that the predicted 3D structure has two binding domains. The String 
database observed protein-protein interactions and their docking studies by the Cluspro web server, and UCSF Chimera and Discovery 
Studio visualized their docking interactions. The computation drug designing ZINC database was accessed for high throughput FDA- 
approved drug compound library screening for molecular docking studies. The FDA-approved drug library was screened through 
ligand Scoutt, and the best 50 compounds based on interactions were selected for further analysis. Different docking tools such as 
Autodock4, PyRx, and Autodock-vina were utilized for molecular docking studies, and 12 drug compounds with the lowest binding 
energy and RMSD difference of less than 2 were selected as innovative and effective inhibitors against MAPK1 protein. Most drug 
compounds interacted at the same binding pocket or active site of the target protein. 

3. Results 

3.1. 3D structure prediction and evaluation 

X-ray crystallography and nuclear magnetic resonance have not yet reported the 3D structures of MAPK1. 3D structures of Mitogen- 
activated protein kinase were predicted using threading and comparative homology modelling [19,38]. The MAPK1 amino acid 
sequence was subjected to BLASTp against the PDB database to find an appropriate template. A template was chosen for homology 
modelling comparison based on its rank as having the highest possible score regarding query coverage, maximal similarity, E value, 
and overall score. Protein sequence alignment revealed that conserved regions share similar activities [18,34,39]. MAPK1 3D struc-
tures were generated from the analyzed templates, as shown in Fig. 2 (A & B). 

In general, homology modelling revealed query coverage and similarities of＞94 % between all the used templates and MAPK1, 
which is deemed adequate for robust structures. The threading method was used to fix the mistakes and improve the 3D model’s 
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structure. Different software (I-TASSER, SWISS-MODEL, M4t, Robetta, Raptor X Phyre2, 3D-jigsaw, and MODELLER) were employed 
to predict numerous models of MAPK1 by satisfying the sequence. Modeller 9.20 made a total of 10 models. The second one was the 
best because it had the lowest molpdf value. Favored and allowed regions, outliers, the overall quality factor, and binding regions were 
used to assess each of the created models. Different evaluation tools like Rampage and ERRAT were used to investigate the precision 
and accuracy of the forecast model. According to the ERRAT forecast, Model 2 was the best-predicted structure because it has an 
84.225 % overall quality factor, as shown in Fig. 3. 

Model 2 seemed to have the highest quality by ERRAT, with an overall quality factor of 84.225 %. Consistently, ERRAT was used to 
evaluate all the models’ overall quality. After thoroughly analysing the evaluation factors that decided which structures would move 
forward, UCSF Chimera 1.14 was used to examine the secondary structures, side chains, ions, and ligands of proteins. Table 1 indicates 
that of 20 top-ranked 3D predicted structures of MAPK1 by MODELLER, the overall quality factor of predicted structure, Pro-check 
gives the %value of amino acid residue presents in favored, allowed, and outlier regions of a protein, and z score values for pre-
dicted 3D structures of MAPK 1. 

3.2. Phylogenetic analysis 

A phylogenetic tool called MEGA X was used to make the nearest tree of a chosen candidate gene to determine how it changed over 
time in humans, mammals, and Rattus norvegicus. The Molecular Evolutionary Algorithm Based (MEGA X), the most widely used 
software for phylogenetic studies, was used on MAPK1 to find the relationships between its ancestors. MSA of protein sequences 
represents the conserved part of MAPK1 strains having similar functions, as mentioned in Fig. 4. 

These templates were also used to create 3D structures of MAPK1. The distance-based method was used with neighbour-joining and 
a bootstrap valuation of 500 replications to make the phylogenetic tree, as mentioned in Fig. 5. 

For making a phylogenetic tree or to find out the evolutionary relationship of MAPK strains, different strains in humans were 
downloaded through BlastP search against a database (PDB). Six top-ranked optimally aligned proteins FASTA sequences with 
maximum E-value, query coverage, and % identity were selected in Table 2. 

Fig. 2. (A) MAPK1 structures predicted using 5K4I template with 0 E-value and 94 % query coverage. (B) Superimposition of 5K4I and predicted 
MAPK1 structures, demonstrating high identity and structural similarity. 

Fig. 3. Quality Assessment of Predicted MAPK1 Structure (Overall Quality Factor: 84.225) by Errat. Interactions visualized: white (bonded), red 
(non-bonded), and yellow (allowed residues). 
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Fig. 4. Conserved residues in six MAPK1 strains highlighted by color-coded diagram, demonstrating high similarity across orthologous species. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Total of 20 top-ranked 3D predicted structures of MAPK1 base on In-silco investigations.  

MODELS SOFTWARE ERRAT % VERIFY 3D (RESIDUE VALUE %) PROCHECK PROSA 

FAVORED REGION ALLOWED REGION OUTLIERS Z SCORE VALUE % 

Model 1 MODELLER 74.5098 98.64 % 90.10 % 9.00 % 0.30 % − 8.77 
Model 2 MODELLER 84.225 98.10 % 91.00 % 7.40 % 0.60 % − 8.6 
Model 3 MODELLER 70.028 98.37 % 89.50 % 9.60 % 0.00 % − 8.58 
Model 4 MODELLER 68.0556 96.75 % 89.80 % 8.70 % 0.30 % − 8.72 
Model 5 MODELLER 70.9141 96.48 85.80 % 12.70 % 0.30 % − 9.15 
Model 6 MODELLER 68.6275 100 % 87.30 % 9.90 % 0.90 % − 9.01 
Model 7 MODELLER 69.8324 96.75 % 88.20 % 9.90 % 1.20 % − 8.29 
Model 8 MODELLER 70.0831 97.83 % 89.50 % 9.90 % 0.00 % − 8.66 
Model 9 MODELLER 69.3593 98.37 % 87.30 % 10.50 % 0.30 % − 8.96 
Model 10 MODELLER 72.6257 98.10 % 88.50 % 10.20 % 0.30 % − 9.09 
Model 11 MODELLER 72.0339 98.92 % 88.90 % 9.30 % 1.20 % − 8.72 
Model 12 MODELLER 67.22 96.56 % 87.90 % 9.60 % 0.60 % − 8.59 
Model 13 MODELLER 68.7151 97.56 % 88.50 % 10.50 % 0.00 % − 8.61 
Model 14 MODELLER 72.0222 100 % 88.20 % 10.50 % 0.60 % − 8.8 
Model 15 MODELLER 71.3889 100 % 89.80 % 9.00 % 0.30 % − 8.69 
Model 16 MODELLER 70.5556 100 % 87.90 % 10.20 % 0.60 % − 8.59 
Model 17 MODELLER 61.9444 97.29 % 87.00 % 10.20 % 0.60 % − 8.82 
Model 18 MODELLER 74.3733 98.64 % 89.80 % 9.00 % 0.30 % − 8.6 
Model 19 MODELLER 72.1127 99.19 % 87.90 % 10.80 % 0.30 % − 8.98 
Model 20 MODELLER 70.7042 98.37 % 88.90 % 9.60 % 0.30 % − 9.04  

Fig. 5. MAPK1 strain phylogeny by neighbour-joining method.  

Table 2 
Maximum score, query coverage, % identity, and E-value of MAPK1 strains in humans, Rattus norvegicus, saccharomyces cerevisiae, Arabidopsis 
thaliana, Pyricularia oryzae.  

Accession ID Max. score Total score Query coverage Max. identity E-value 

AQTA 690 690 94 % 94.54 % 0.0 
3O71 690 690 94 % 94.54 % 0.0 
2B9H 353 353 91 % 50.14 % 0.0 
6DTL 338 338 92 % 51.16 % 0.0 
5Z33 337 337 92 % 50.72 % 0.0 
7E73 688 688 94 % 94.25 % 0.0  
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3.3. Structure-based prediction of MPAK1 epitopes 

Surface acceptability, antigenicity, flexibility, and predicted epitopes of 3D structures were evaluated to reduce the errors [40]. The 
interaction between antibody and protein was examined for selected epitopes, and the best leading conformational epitopes of MAPK1 
having greater than 0.7 scores were further investigated. As per earlier research, conformational β-cells epitopes, linear epitopes, and 
adjacent clustering residues were determined for the target 3D protein structure through PI value [41]. The parameter was set at 
maximum distance and minimum length to predict 3D conformational epitopes, residual position, size, and name. The score range was 
observed between 0.685 and 0.714 for predicted peptides; a graphical representation of all applied parameters is mentioned in Fig. 6 
(A). 

3.4. Surface acceptability analysis of MAPK1 

The surface accessibility >1.0 was observed for predicted peptides, indicating the presence of selected peptides on the protein 
surface. The forecast peptides were pragmatic based on the Y-axis, and reliably predicted peptides against MAPK1 were chosen for 
sequence position and surface probability analysis. Graphically representation of all applied parameters mentioned in Fig. 6 (B), such 
as the highest value observed for predicted peptides was 0.998with sequence PTIDQM ranging from 102 To 107 amino acids, while the 
lowest value observed for predicted peptides was 0.051 having sequence VGCILA ranging from 223 to 228 amino acids. 

3.5. Surface flexibility analysis of MAPK1 

Schulz and Karplus’s flexibility method was employed to analyze and calculate different atomic vibration motions of 3D protein 
structures determined by temperature and B-factor [24]. The structure’s organization, quality, and stability were identified through 
values of the B-factor, which determine the quality of the structure. The highest value B-factor suggests poorly ordered and less ordered 
structures, while the lower B-factor values depict reliable and highly organized and ordered structures [23]. The highest and lowest 

Fig. 6. 6(A) we represent the detail of Structure-based prediction of MPAK1 epitopes, 6(B) Surface acceptability, 6(C) Surface flexibility 6(D) 
hydrophilicity 6(E) Antigenicity and 6(F) represent the World population Coverage Analysis. 
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flexibility values were determined as 1.125 and 0.896 at locations 141–147 and 254-260for heptapeptide sequences [23]. The 
graphical representation of all applied parameters is mentioned in Fig. 6 (C). 

3.6. Hydrophilicity analysis of MAPK1 

The hydrophilicity of peptides was analyzed through Parker’s method by utilizing Reverse-phase HPLC on column C18 to deter-
mine the retention duration of the predicted peptide. Parker’s hydrophilicity predictions have the highest hydrophilicity values. The 
graphical representation of all applied parameters is mentioned in Fig. 6 (D), such as interactions between hydrophilic regions and 
antigenic sites were determined because of immunological studies. The hydrophilic graph was utilized to predict the peptides’ hy-
drophilicity, in which the graph’s X-axis represents the residual position. At the same time, Y-axes are shown measuring hydropho-
bicity to analyze the hydrophilicity of MAPK1-predicted peptides. 

3.7. Antigenicity analysis of MAPK1 by Kolaskar and Tongaokar method 

The antigenicity of MPAK1 was predicted by uploading the amino acid FASTA sequence of MAPK1 protein to the Vaxijen v2.0 
server. The highest antigenicity was observed as 0.675 for protein sequence GGGPNPG at position 17. In contrast, the least antigenicity 
was observed as 0.242 for protein sequence CYFLYQI at positions 136 and 142, and a graphical representation of all applied pa-
rameters is mentioned in Fig. 6 (E). 

3.7.1. World population coverage and allergenicity analysis 
IEBD was utilized to evaluate the world population coverage studies of predicted epitopes, especially MHC HLA binding alleles. 

Epitopes associated with specific HLA alleles were accessed to analyze MHC class I of T cells. MHC HLA binding allele distribution 
varies among diverse ethics groups and geographic areas. Therefore, population coverage is crucial for effective vaccine design. The 
present study studied MHC-I-binding alleles of 30 epitopes for population coverage analysis. Significantly higher population coverage 
was observed for selected epitopes in different regions of the globe. The highest population Epitope coverage analysis for MHC class I 
was observed at 90 % worldwide and higher in Finland and UK populations. The graphical representation of all applied parameters is 
mentioned in Fig. 6 (F). 

Allergenicity and toxicity prediction is vital during vaccine designing because many vaccines show allergic reactions because of 
immune response by initiating T helper cells type II and immunoglobulins. Therefore, the allergenicity and toxicity of predicted 
peptides were determined through AllergenFP. 1.0, ToxinPred server, and AllenTOP v. 2.0. The 3D structure of MHC class I and MHC 
class II of Tcells epitopes and 3D structure linear epitopes of B cells were predicted by the PEPFOLD server. The peptides PAGGGPNPG, 
GGPNPGSGA, EMVRGQAFD, RYSNLSYIG, MATAAVSAP, DNKVRVAIK, TAAVSAPAG, AVSAPAGGG, GINDIIRTP, INDIIRTPT, IIRTP-
TIDQ were determined as potential allergens to human. In contrast, the rest of the peptides are probable non-allergens to humans. The 
3D structure of B cell, MHC class-1, and class-II of T cell epitopes was determined by submitting their peptide sequence into the 
PEPFOLD server. 

3.8. Peptide designing and structure prediction 

The Net CTL 1.2 webserver was utilized to predict CTL epitopes in a protein sequence for 12 supertypes. The amino acid sequence of 
MAPK1 was uploaded to the Net CTL server. A table was generated for the top 30 peptides having peptide Rescale binding affinity, TAP 
transport efficiency, MHC binding affinity, Prediction score, and C- terminal cleavage affinity through utilizing weigh matrix and 
artificial neural network, MHC class 1 epitopes respectively, as shown in Table 3. 

We explore that T-cell epitopes are immunodominant fragments of peptides that can provoke an immune response and are integral 
for epitope-based peptide vaccine design (see Table 4). For this purpose, The NetCTL server was utilized for CTL (cytotoxic T-lym-
phocytes) epitope prediction from an amino acid sequence of the respective protein. It predicts human CD8+ T-cell epitopes for twelve 
major supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62) considering TAP transport efficiency, MHC class I 
binding, binding affinity, proteasomal C terminal cleavage through weight matrix and neural network method. In this study, we 
predicted epitopes for all twelve supertypes considering threshold value 1.25, which has 0.993 specificity and 0.54 sensitivity, 
respectively. Initially, 150 epitopes considering the highest combined score were selected, which were further evaluated through 
Vaxijen v2.0 software to analyze the immunogenicity, toxicity, and antigenicity of predicted peptides for final selection and toxicity 
prediction is a vital step during vaccine designing because many vaccines show allergic reactions because of immune response by 
initiating T helper cells type II and immunoglobulins. Therefore, the allergenicity and toxicity of predicted peptides were determined 
through AllergenFP. 1.0, ToxinPred server, and AllenTOP v. 2.0. 

The 3D structure of MHC class I and MHC class II of Tcells epitopes and the 3D structure of linear epitopes of B cells were predicted 
by the PEPFOLD server. The peptides PAGGGPNPG, GGPNPGSGA, EMVRGQAFD, RYSNLSYIG, MATAAVSAP, DNKVRVAIK, TAAV-
SAPAG, AVSAPAGGG, GINDIIRTP, INDIIRTPT, IIRTPTIDQ were determined as potential allergens to human. In contrast, the rest of the 
peptides are probable non-allergens to humans. The 3D structure of B cell, MHC class-1, and class II of T cell epitopes was determined 
by submitting their peptide sequence into the PEPFOLD server. 

Among 150 primarily designed epitopes for T-cells, 79 epitopes were observed under 0.00 threshold value on the Vaxijen web-
server, while 41 peptides were observed under 0.00 immunogenicity value. This observation shows that all the predicted epitopes with 
the highest combined score were unreliable and couldn’t be considered best. Thus, 30 epitopes with positive immunogenicity and 
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Table 3 
Top-ranked 30 T-Cell epitopes with interacting MHC-1 alleles, epitope antigenicity, conservancy, score, allergenicity, mutation, hydrophobicity, hydrophilicity, and toxicity.  

Sr. 
No. 

Peptide 
Sequence 

Peptide 
MHC 
binding 
affinity 

Rescale 
binding 
affinity 

C- 
terminal 
cleavage 
affinity 

TAP 
transport 
efficiency 

Prediction 
score of 
MHC 
binding 
affinity 

Conservancy Antigenicity 
score 

Toxicity Allergenicity Mol wt. Hydrophobicity Hydrophilicity Mutation 
prediction 

Charge SVM 
Score 

AllerTOP 
2.0 

AllergenFP 
1.0 

1. PAGGGPNPG 0.0501 0.2127 0.046 − 1.832 0.1281 100 % 1.5096 NO NO YES 722.88 0.00 − 0.03 NO 0.00 − 0.66 
2. ATAAVSAPA 0.0827 03510 0.9067 − 0.3600 04690 100 % 1.4078 NO NO NO 757.94 0.14 − 0.46 NO 0.00 − 0.47 
3 GGGPNPGSG 0.0481 0.2042 0.0444 − 1.850 0.1184 14.9 % 1.2459 NO NO NO 698.82 − 0.03 0.06 NO 0.00 − 0.75 
4. GGPNPGSGA 0.0497 0.2108 0.3556 − 1.026 0.2129 33.3 % 0.8650 NO NO YES 712.84 − 0.02 0.00 NO 0.00 − 0.91 
5. NPGSGAEMV 0.0599 0.2542 0.7530 − 0.261 0.3541 100 % 0.5841 NO NO NO 861.06 − 0.02 0.02 NO − 1.00 − 0.56 
6. PGSGAEMVR 0.0433 0.1840 0.4734 0.8750 0.2988 100 % 0.8645 NO NO NO 903.14 − 0.15 0.33 NO 0.00 − 0.75 
7. EMVRGQAFD 0.0555 0.2358 0.0281 − 1.666 0.1567 100 % 1.2480 NO NO YES 1052.29 − 0.22 0.38 NO − 1.00 − 0.92 
8. APAGGGPNP 0.0524 0.2127 0.4669 − 1.8320 0.1281 100 % 1.2377 NO NO NO 736.90 0.01 − 0.19 NO 0.00 − 0.59 
9. PRYSNLSYI 0.0510 0.2163 0.7480 0.4180 0.3494 33 % 1.5095 NO NO NO 1112.37 − 0.19 − 0.49 NO 1.00 − 90 
10. RYSNLSYIG 0.0520 0.2207 0.1556 − 1.036 0.1922 33 % 1.3891 NO NO YES 1072.31 − 0.16 − 0.49 NO 1.00 − 0.60 
11. MATAAVSAP 0.0664 0.2820 0.0742 − 0.1660 0.3014 100 % 0.9822 NO NO YES 923.12 0.04 − 0.32 NO − 1.00 − 0.72 
12. SAYDRDNKV 0.0713 0.3027 0.8990 0.6000 0.4675 100 % 0.7874 NO NO NO 1067.23 − 0.49 0.91 NO 0.00 − 0.73 
13. DRDNKVRA 0.0493 0.2095 0.2071 − 0.873 0.1969 100 % 1.9579 NO NO NO 973.15 − 0.74 1.65 NO 1.00 − 0.78 
14. RDNKVRVAI 0.0576 0.2447 0.1973 0.2380 0.2862 85.4 % 0.7266 NO NO NO 1070.38 − 0.44 0.77 NO 2.00 − 0.84 
15. DNKVRVAIK 0.0474 0.2013 0.7292 0.1260 0.3170 74.6 % 0.5797 NO NO YES 1042.37 − 0.36 0.77 NO 2.00 − 0.90 
16. AIKKISPFE 0.0504 0.2141 0.0247 − 1.248 0.1554 33.3 % 0.8488 NO NO NO 1032.37 − 0.09 0.30 NO 1.00 − 1.26 
17. SAPAGGGPN 0.0656 0.2659 0.0342 − 1.1780 0.2121 14.9 % 1.1791 NO NO NO 726.86 − 0.06 − 0.01 NO 1.50 − 0.85 
18. TAAVSAPAG 0.0580 0.2461 0.0348 − 1.1930 0.1917 72.4 % 0.5891 NO NO YES 743.92 0.13 − 0.40 NO 1.50 − 1.41 
19. AVSAPAGGG 0.0586 0.2488 0.0286 − 0.9630 0.2050 100 % 1.0560 YES NO NO 685.85 0.16 − 0.30 NO 0.05 − 1.28 
20. ISPFEHQTY 0.2829 1.2012 0.9750 3.0740 1.5011 24.4 % 0.5730 NO NO NO 1121.34 − 0.10 − 0.44 NO − 0.50 − 0.80 
21. ENIIGINDI 0.0532 0.2259 0.5385 0.2240 0.3178 94.2 % 0.7984 NO NO NO 1000.26 0.05 − 0.09 NO − 2.00 − 0.78 
22. IIGINDIIR 0.0569 0.2416 0.0822 1.6140 0.3346 86.6 % 1.0368 NO NO NO 1026.39 0.08 − 0.31 NO 0.00 − 0.41 
23. IGINDIIRT 0.0581 0.2467 0.0302 − 0.871 0.2077 100 % 0.6975 NO NO NO 1014.33 − 0.02 − 0.16 NO 0.00 − 0.555 
24. GINDIIRTP 0.0533 0.2264 0.2396 − 0.031 0.2608 100 % 1.1470 NO YES NO 998.28 − 0.11 0.04 NO 0.00 − 0.64 
25. INDIIRTPT 0.0541 0.2295 0.0301 − 1.041 0.1820 82.9 % 1.0889 NO YES NO 1042.33 − 0.15 0.00 NO 0.00 − 0.74 
26. NDIIRTPTI 0.0506 0.2148 0.4440 0.3420 0.2985 23.4 % 0.6587 NO NO NO 1042.33 − 0.15 0.00 NO 0.00 − 0.52 
27. DIIRTPTID 0.0535 0.2273 0.0282 − 1.793 0.1419 100 % 0.7061 NO NO NO 1043.31 − 0.16 0.31 − 1.00 NO − 0.49 
28. IIRTPTIDQ 0.0537 0.2281 0.0335 − 0.044 0.2310 42.3 % 0.5511 NO YES NO 1056.36 − 0.16 0.00 NO 0.00 − 0.45 
29. RTPTIDQMK 0.0909 0.3858 0.4122 0.6810 0.4817 14.29 % 1.3169 NO NO NO 1089.40 − 0.41 0.59 NO 1.00 − 0.86 
30. DQMKDVYIV 0.0586 0.2487 0.5812 0.1480 0.3433 33.3 % 0.8014 NO NO NO 1110.42 − 0.13 − 0.09 NO − 1.00 − 0.82  
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Table 4 
Prediction of top-ranked 30 MHC-II alleles for desired epitopes.   

MHC-II Allele 
Position Core 

Sequence 
Peptide Sequence IC50 

value 
Rank Antigenicity 

Score 
Toxicity Hydroph0bicity Hydrophilicity Mutation 

Prediction 
Charge SVM 

score 
Molecular 
weight 

Allergenicity 

AllerTOP 
2.0 

AllergenFP 
1.0 

HLA-DRB1*04:05 144–158 YIHSANVLH RGLKYIHSANVLHRD 6.70 0.01 0.4749 No − 0.29 0.12 No 3.00 − 0.98 1779.26 Yes No 
HLA-DRB1*04:05 145–159 GLKYIHSANVLHRDL 6.80 0.01 0.2509 No − 0.13 − 0.20 No 2.00 − 0.98 1736 No No 
HLA-DRB1*04:05 146–160 LKYIHSANVLHRDLK 7.60 0.01 0.5898 No − 0.22 0.00 No 3.00 − 1.08 1807.36 No No 
HLA-DRB3*02:02 269–283 YLLSLPLRS ARNYLLSLPLRSKVP 9.00 0.45 0.4488 No − 0.20 − 0.11 No 3.00 − 1.29 1727.30 No No 
HLA-DRB5*01:01 268–282 KARNYLLSLPLRSKV 8.10 0.77 0.6047 No − 0.27 − 0.09 No 4.00 − 1.30 1758.36 No No 
HLA-DPA1*03:01/ 

DPB1*04:02 
344–358 TLKELIFEX LDDLPKETLKELIFE 959.3 31.0 0.3343 No − 0.15 − 0.61 No − 3.00 − 1.77 1803.31 No No 

HLA-DPA1*02:01/ 
DPB1*01:01 

299–313 MLTFNPHK LDKMLTFNPHKRIEV 1069 31.0 0.8176 No − 0.23 0.24 No 1.50 − 1.43 1841.43 Yes No 

HLA- 
DQA1*01:02/ 
DQB1*06:02 

225–339 AEMLSNRPI CILAEMLSNRPIFPG 962.7 31.0 0.3552 No 0.03 − 0.40 No 0.00 − 0.90 1661.23 Yes No 

HLA-DRB1*11:01 56–70 VRVAIKKIS NKVRVAIKKISPFEH 3.40 0.02 0.4654 No − 0.24 0.36 No 3.50 − 1.16 1766.36 No No 
HLA-DRB1*04:05 147–161 YIHSANVLH KYIHSANVLHRDLKP 13.20 0.07 0.4161 No − 0.26 0.12 No 3.00 − 0.99 1791.31 No No 
HLA-DRB1*12:01 260–274 IINIKARNY DLNCIINIKARNYLL 15.70 0.08 1.0557 No − 0.09 − 0.33 No 1.00 − 0.58 1776.36 No No 
HLA-DRB1*12:01 261–275 LNCIINIKARNYLLS 16.50 0.1 0.9209 No − 0.06 − 0.51 No 2.00 − 0.61 1748.35 No No 
HLA-DRB1*12:01 269–273 EDLNCIINIKARNYL 18.20 0.01 1.0401 No − 0.17 − 0.01 No 0.00 − 0.45 1792.31 No No 
HLA-DRB1*12:01 262–276 NCIINIKARNYLLSL 19.30 0.11 0.8983 No − 0.06 − 0.51 No 2.00 − 0.52 1748.35 No No 
HLA-DRB1*12:01 258–272 QEDLNCIINIKARNY 22.90 0.13 1.0882 No − 0.25 0.12 No 0.00 − 0.03 1807.28 Yes No 
HLA-DRB1*12:01 263–277 CIINIKARNYLLSLP 24.90 0.15 0.7558 No − 0.03 − 0.53 No 2.00 − 0.83 1731.36 No No 
HLA-DRB4*01:01 120–134 LLKTQHLSN DLYKLLKTQHLSNDH 14.00 0.25 0.9376 No − 0.27 0.12 No 1.00 − 0.90 1825.75 No No 
HLA-DRB4*01:01 21–35  LYKLLKTQHLSNDHI 13.50 0.23 − 0.6296 No − 0.17 − 0.20 No 2.00 − 0.93 1823.37 No No 
HLA-DRB1*11:01 57–71 VRVAIKKIS KVRVAIKKISPFEHQ 5.80 0.25 0.2936 No − 0.25 0.36 No 3.50 − 1.31 780.37 No Yes 
HLA-DRB1*11:01 53–67 DRDNKVRVAIKKISP 4.90 0.18 0.6534 No − 0.43 0.96 No 3.00 − 1.34 1739.26 Yes No 
HLA-DRB1*11:01 54–68 RDNKVRVAIKKISPF 3.90 0.11 0.6600 No − 0.34 0.59 No 4.00 − 1.30 1771.35 No No 
HLA-DRB1*11:01 55–69 DNKVRVAIKKISPFE 3.80 0.09 0.5399 No − 0.26 0.59 No 2.00 − 1.28 1744.28 No No 
HLA-DRB1*01:01 268–282 YLLSLPLRS KARNYLLSLPLRSKV 3.30 0.09 0.6047 No − 0.27 0.09 No 4.00 − 1.30 1758.36 No Yes 
HLA-DRB1*01:01 269–283 ARNYLLSLPLRSKVP 3.50 0.11 0.4485 No − 0.20 − 0.11 No 3.00 − 1.29 1727.30 No No 
HLA-DRB1*01:01 270–284 RNYLLSLPLRSKVPW 3.80 0.14 0.1028 No − 0.19 − 0.31 No 3.00 − .12 1842.44 No No 
HLA-DRB1*04:05 118–132 YKLLKTQH ETDLYKLLKTQHLSN 16.20 0.13 1.0167 No − 0.25 0.13 No 0.50 − 1.05 1803.23 No No 
HLA-DRB1*04:05 119–133 TDLYKLLKTQHLSND 16.90 0.14 0.9217 No − 0.26 0.13 No 0.50 − 0.88 1789.25 No No 
HLA-DRB1*04:05 117–131 METDLYKLLKTQHLS 17.40 0.15 0.9272 No − 0.19 0.03 No 0.50 − 1.15 1820.37 No No 
HLA-DRB1*12:01 137–151 YQILRGLKY YFLYQILRGLKYIHS 25.30 0.16 0.5531 No − 0.02 − 0.83 No 2.50 − 0.66 1914.52 No No 
HLA-DRB1*12:01 136–150  CYFLYQILRGLKYIH 2.70 0.17 0.6318 No 0.00 − 0.91 No 2.50 − 0.42 1930.58 Yes No  

Y. A
rfat et al.                                                                                                                                                                                                           



Heliyon9(2023)e22204

13

Table 5 
Prediction of linear B-cell epitopes of MAPK1 protein through Bepipred-2.0  

Sr. 
No. 

Peptide Sequence Position Peptide 
MHC pair 

Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/ 
Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Conserved 
Residues 

Antigenicity 
score 

Toxicity Allergenicity Mol wt. Hydrophobicity Hydrophilicity Mutation 
prediction 

Charge SVM 
Score 

AllerTOP 
2.0 

AllergenFP 
1.0 

1. NHILGILGSPSQEDLNCIINIKARNYL 
LSLPLRSKVPWNRLFPNADPKALD 

247–297 PRO102 
CG-VAL7 
CG1, 
PRO365 
CG-AR6 
CG3, ILE99 
CG2-IL9 C, 
ALA10 N- 
VAL5 CG2, 
ALA4 CA- 
VAL5 CG1, 
VAL30 C- 
ILE9 CB, 
PRO32 O- 
ASP2 OD2, 
ASN15 N- 
LYS4 NZ, 
ALA4 CA- 
VAL5 CG1, 
GLY13 O- 
LYS4 CE, 
PRO14 CA- 
LYS4 NZ, 
ALA4 N- 
ASN3 O, 
THR3 CA- 
ASN3 O. 

− 31.36 − 36.51 − 4.71 ARG33, 
ILE99, 
ARG100, 
PRO102, 
THR101, 
GLN106, 
GLY12, 
GLY11, 
ALA10. 

0.5251 NO NO NO 5625.38 − 0.12 − 0.17 NO 3.50 − 0.77 

2. MATAAVSAPAGGGPNPGSGAEM 
VRGQAFDVGPRYSNLS 

1–38 GLY12 N- 
SER2 CB, 
ASP290- 
PRO5 CA, 
ASP290 
OD2-LEU1 
C. 

− 31.24 − 32.94 − 4.84 GLY12, 
ASP290. 

0.9304 NO NO YES 3649.57 − 0.06 − 0.10 NO 0.00 − 1.14 

3 ARFQPGNRP 361–369 MET22 CE- 
ARG2 NH2 

− 23.29 − 23.56 − 2.51 MET22 0.0448 NO YES YES 1042.28 − 0.44 − 1.67 NO 2.00 − 1.24 

4. ADPDHDHTGFL 183–193 PRO9 CG- 
LYS6 CA, 
PRO9 CG- 
VAL7 CG2, 
ALA1 O- 
ARG3 CD. 

− 29.46 − 29.34 − 1.03 ARG100, 
GLN364. 

− 0.248 NO NO YES 1224.40 − 0.15 0.25 NO − 2.00 − 0.57 

5. YDRDNKVR 52–59 PRO365 O- 
ARG8 O2, 
PRO365 
CB-ASN5 

− 35.15 − 35.20 − 4.58 PRO365, 
PRO9, 
ALA10, 
PRO102 

1.1874 NO NO NO 1065.25 − 0.77 1.43 NO 1.00 − 0.70 

(continued on next page) 
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Table 5 (continued ) 

Sr. 
No. 

Peptide Sequence Position Peptide 
MHC pair 

Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/ 
Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Conserved 
Residues 

Antigenicity 
score 

Toxicity Allergenicity Mol wt. Hydrophobicity Hydrophilicity Mutation 
prediction 

Charge SVM 
Score 

AllerTOP 
2.0 

AllergenFP 
1.0 

CB, ASN5 
C-LYS6 N, 

6. EEALAHPYLEQYYDPTDEPVAEAP 
FKFDMELDDLPKETLKELIFE 

314–358 PRO365 
CB-ILE2 
CD, VAL6 
O-ILE3 
CG2, ALA4 
CB-ILE8 
CG1, 
ARG33 
CG-THR7 
CB, ASP55 
N-THR7 
CG2, 
ARG54 CA- 
THR7 CG2, 
ARG54 CB- 
PROR6 O2. 

− 30.72 − 34.41 − 4.67 PRO365, 
VAL6, 
ALA4, 
ARG33, 
ASP55, 
ARG54. 

0.2551 NO NO YES 5331.56 − 0.15 0.40 NO − 10.5 − 1.28 

7. RTPTIDQMKD 100–109 PRO102 
CG-ARG8 
CG, 
GLN364 E- 
ARG8 CB, 
PRO9 CG- 
ARG3 C. 

− 14.29 − 29.88 0.00 ASN5, 
ARG8, 
LYS6, 
VAL7, 
ARG3. 

1.4968 NO YES YES 1204.50 − 0.44 0.83 NO 0.00 − 0.94 

8. KTQHLSNDHICY 126–137 THR199 
CG2-GLN9 
C, ASP158 
OD1-GLN9 
O1, 
LYS160 
NZ-ASP8 
C, TYR122 
CD1-ILE7 
CG1, 
THR45 
CE1-ARG3 
NH2, 
ALA44 CA- 
ARG3 NE, 
GLU42 O- 
ILE2 C, 
GLY41 CA- 
ILE2 C, 
GLY41 CA- 
ILE1 O. 

− 27.51 − 30.54 − 2.44 CYS160, 
ASP158, 
SER162, 
THR122, 
ALA44, 
GLY43, 
TYR45, 
GLU42. 

0.1609 NO YES NO 1458.79 − 0.26 − 0.13 NO 1.00 − 0.51 

(continued on next page) 
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Table 5 (continued ) 

Sr. 
No. 

Peptide Sequence Position Peptide 
MHC pair 

Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/ 
Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Conserved 
Residues 

Antigenicity 
score 

Toxicity Allergenicity Mol wt. Hydrophobicity Hydrophilicity Mutation 
prediction 

Charge SVM 
Score 

AllerTOP 
2.0 

AllergenFP 
1.0 

9. GKHYLD 239–244 GLN364 
OE1-TYR4 
CD1, 
PRO102 
CG-GLYI C, 
PRO102 
CG-LEU5 
CG, 
GLN106 
OE1-LEU5 
CD, PRO9 
CB-LYS2 
CG, ALA10 
CA-LYS52 
CE, GLY11 
N-LYS2 
NZ, GLY11 
CA-ASP6 
OD1, 
ALA10 C- 
ASP6 OD2. 

− 42.53 − 19.78 − 1.52 PRO365, 
GLN364, 
PRO102, 
GLN106, 
GLY11, 
ALA10, 
PRO9. 

− 1.416 NO YES YES 731.89 − 0.25 0.23 NO 0.50 − 0.93 

10. NTTCD 167–171 ALA8 CB- 
ILE9 CD, 
ALA10 C- 
OLE3 CD, 
GLY11 N- 
ILE3 CD, 
PRO14 CD- 
ASN1 ND2, 
ASP29 N- 
ARG5 
NH2, 
GLY12 CA- 
ASP2 OD2, 
VAL30 C- 
ARG5 CD, 
GLY12 N- 
ASN1 N, 
ALA5 N- 
ILE9 O1, 

− 24.26 − 20.54 − 1.51 ALA4, 
PRO32, 
VAL30, 
PRO14, 
GLY12, 
GLY11, 
ASP29, 
ALA10, 
PRO9, 
ALA8, 
ALA5. 

__ NO NO YES 552.61 − 0.34 0.28 NO − 1.00 0.74 

(continued on next page) 
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Table 5 (continued ) 

Sr. 
No. 

Peptide Sequence Position Peptide 
MHC pair 

Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/ 
Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Conserved 
Residues 

Antigenicity 
score 

Toxicity Allergenicity Mol wt. Hydrophobicity Hydrophilicity Mutation 
prediction 

Charge SVM 
Score 

AllerTOP 
2.0 

AllergenFP 
1.0 

PRO32 CG- 
TRY6 OG1, 
ALA4 CB- 
THR8 CA, 
PRO9 C- 
ILE3 CG1, 
PRO9 O- 
ILE9 CG1, 
PRO9 CG- 
THR8 N, 
ALA6 O- 
ILE9 CA 

11. LSNRP 231–235 PRO102 
CG-ARG44 
NH2, 
ARG100 C- 
PRO5 CG, 
ILE99 CG2- 
PRO5 CB, 
ILE99 CG2- 
ARG4 C. 

− 32.34 − 14.77 − 1.20 LEU1, 
PRO5, 
ARG4, 
ASN3, 
SER2. 

__ NO NO NO 585.72 − 0.44 0.34 NO 1.00 − 0.66  
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antigenicity scores were selected as highly immunogenic epitopes that can interact with MHC alleles with high binding affinity to 
generate an effective and strong immune response. The IEBD tools were utilized to study immunogenicity and conservancy analysis of 
predicted peptides. Conservancy refers to a specific protein sequence with a particular level of identity that shows availability and 
restrains an epitope. Higher immunogenic peptides are preferable to less immunogenic peptides to be considered reliable candidates 
for vaccine development. The conservancy analysis of 30 epitopes resulted in 13 epitopes with 100 % conservancy scores and 19 
epitopes having greater than 70 % conservancy scores, which were reliable for effective vaccine development. The higher conservancy 
score of predicted epitopes ensures the best target among different variants of respective proteins for improved, effective, and reliable 
vaccine design. Among 30 peptides, 13 epitopes show greater than 1 Vaxijen score which reveals the antigenic nature of the corre-
sponding peptides which could be a good criterion for reliable epitope selection as the higher score increases the probability to provoke 
an effective and reliable immune response. While the rest of the 11 epitopes were considered less immunogenic for a vaccine candidate. 

We also predict the most frequently occurring MHC binding alleles to predict potent peptides. The predicted peptides with lower 
IC50 values were chosen as potent candidates because this shows the higher affinity of peptides for respective epitopes. We also 
utilized these epitopes to predict MHC II alleles and CD4+ T-cell epitopes. The epitopes, MHC class II alleles, and individual peptides 
are presented in Table 4. The Accessibility, flexibility, epitope prediction, and antigenicity of the predicted 3D structure were eval-
uated to decrease the errors. The antibody-protein interaction for the selected epitope and top-ranked conformational epitope with 
more than 0.7score of MAPK1 were analyzed further by isoelectric point. The linear conformational and discontinuous epitopes were 
predicted through Bepipred 2.0 as B cells are categorized into these recognized through humoral immunity through antibodies or B cell 
receptors. 

Therefore, predicting these B cell peptides is essential for peptide-based vaccine designing. 11 linear B cell peptides with different 
lengths were predicted from antigenic MAPK1 protein through the BepiPred 2.0 method. The peptide structure was predicted using the 
Pepfold server to study various post-docking analyses. The antigenicity, toxicity, hydrophobicity, hydrophilicity, IC50 value, and 
mutations were also predicted for respective peptides. Epitope 9 was shown to be toxic among all predicted epitopes for MHC-1, while 
different allergenicity results were observed for different software. This finding indicates that these epitopes were reliable for peptide- 
based vaccine design against MAPK1. 

In this computational in-silico analysis, the epitope AVSAPAGGG was observed as toxic for vaccine design. Allergenicity of pre-
dicted peptides was anticipated through AllergenFP 1.0 and AllerTOP v.2.0, and toxicity was expected through the ToxinPred web-
server. Allergenicity analysis is vital before vaccine development as many vaccines reverse immune response to hypersensitivity and 
allergic reaction through IgE and Type II helper T cells. The predicted allergenicity was different for different software’s like AllerTOP 
shows allergenicity for 3 epitopes, while AllergenFP shows allergenicity for 7 epitopes. Each software offers allergenicity even for 100 
% conserved epitopes. Successful recognition of predicted epitopes through HLA molecules with high binding affinity is not enough for 
an effective and reliable immune response rather, it also depends on considerable immunogenicity and antigenicity scores. So, the 
potential epitopes with the highest antigenicity, immunogenicity, non-allergens, and non-toxins recognized by many HLA molecules 
were selected to induce a strong and effective immune response. 

Identification of B cell epitopes is a critical step, especially for epitope-based peptide vaccine designing as B cells are antigenic 
sequences that were recognized either by antibodies or specific receptors of B cells because of the humoral response. The epitopes of B 
cells are categorized into two main types: linear or continuous epitopes of B cells and conformational and discontinuous epitopes of B 
cells. Most research reveals that above 90 % of B cell epitopes are conformational. Therefore, B cell epitopes from highly antigenic 
MAPK1 protein were identified through Insilico analysis using online Bepipred2.0 software which is the best-known epitope prediction 
method for B cell epitopes and shows reliable results for linear epitopes data predicted through the IEDB database and crystallographic 
approach. The discontinuous and confirmation epitopes of B cells were predicted through IEDB B-cell conformational epitope pre-
diction tools ElliPro by using default parameters of a minimum score of 0.8 and a maximum distance of 7 Å. B-cell conformational 

Table 6 
Prediction of discontinuous or conformational B-cell epitopes of MAPK1 protein.  

Sr. 
no. 

Residues Number of 
residues 

score 

1. A:M1, A:A2, A:T3, A:A4, A:A5, A:V6, A:S7, A:A8, A:P9, A:A10, A:G11, A:G12, A:13, A:P14, A:N15, A:P16, A:G17, A:S18, A: 
G19, A:A20, A:E21, A:M22, A:V23, A:R24, A:G25, A:Q26, A:A27, A:F28, A:D29, A:V30, A:G31, A:P32, A:R33, A:S35, A: 
N36, A:L37, A:S38, A:Y52, A:D53, A:R54, A:D55, A:N56, A:K57, A:V58 

44 0.747 

2. A:H187, A:D188, A:H189, A:T190, A:G191, A:F192, A:L193, A:T194, A:N210, A:S21, A:K212, A:F237, A:P238, A:G239, A: 
K240, A:H241, A:Y242, A:L243, A:D244, A:N247, A:H248, A:L250, A:G251, A:I252, A:G254, A:S255, A:P256, A:S257, A: 
Q258, A:E259, A:D260, A:L261, A:N262, A:C263, A:I264, A:I265, A:N266, A:I267, A:K268, A:A269, A:R270, A:N271, A: 
Y272, A:L274, A:S275, A:L276, A:P277, A:L278, A:R279, A:S280, A:K281, A:V282, A:P283, A:N285, A:R286, A:T304, A: 
F305, A:N306, A:P307, A:H308, A:K309. 

62 0.699 

3. A:F68, A:R100, A:T101, A:P102, A:T103, A:I104, A:D105, A:Q106, A:M107, A:K108, A:D1009, A:F338, A:K339, A:F340, A: 
D341, A:M342, A:E343, A:L344, A:D345, A:D345, A:D346, A:L347, A:P348, A:K349, A:E350, A:T351, A:L352, A:K353, AA: 
E354, A:L355, A:F357, A:E358, A:A361, A:Q364, A:P365, A:G366, A:N367 

36 0.672 

4. A: K126, A: T127, A: Q128 3 0.661 
5. A:E118, A:H129, A:L130, A:S131, A:N132, A:D133, A:H134, A:C136, A:Y137, A:A152, A:N167, A:T168, A:T169, A:C170, 

A:D171, A:L231, A:S232, A:N233, A:R234, A:P235 A:L287, A:F288, A:P289, A:N290, A:A291, A:D292, A:P293, A:K294, A: 
A295, A:L296, A:I311, A:E312, A:E314, A:E315, A:L317, A:A318, A:H319, A:P320, A:Y321, A:L322, A:E323, A:Q324, A: 
Y325, A:Y326, A:D327, A:P328, A:T329, A:D330, A:E331, A:P332, A:V333, A:A334, A:E335, A:A336, A:P337 

55 0.658  
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Table 7 
Peptide-MAPK1 docking: Assessing interactions and energy factors.  

Sr. 
No. 

Peptide 
Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Peptidase 
MHC-pair 

Bond 
Distance Å 

Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

1 PAGGGPNPG 9–17 − 52.26 − 24.88 − 2.57 ASP120 OD2- 
PRO6 CD, 
LYS123 CE- 
PRO6 CD. 
CYS75 SG-PRO 
4 CG, SER162 
O-ASN5CB, 
LYS63 CD- 
GLY30, 
GLU42O-PRO6 
O, ASO176 
OD2-GLY9 O1, 
LEU176 OD1- 
GLY9 O2, 
GLY46 CA- 
GLY10, TRY45 
N-GLY GLY1 
CA, ALA44 N- 
GLY1 CA, 
GLY43 C-GLY1 
CA 

2.395 Å, 
3.068 Å, 
2.148 Å, 
2.206 Å, 
2.313 Å, 
2.1175 Å, 
1.806 Å, 
2.179 Å, 
2.133 Å, 
2.849 Å, 
2.449 Å, 
2.358 Å 

PRO4, 
PRO6, 
GLY3, SER8, 
GLY1, 
GLY7, 
ASN5, 
GLY9, 

LYS63, 
LEU40, 
GLU42, 
GLY43, 
SER162, 
LYS123, 
THR122, 
ASP176, 
THR45, 
ALA44, 
LEU179, 
ASP120, 
CYS175, 

LYS63, 
GLU42, 
GLY43, 
SER162, 
LYS123, 
THR122, 
ASP176, 
THR45, 
ALA44, 
LEU179, 
ASP120, 
CYS175, 

2 ATAAVSAPA 2–10 − 52.43 − 26.95 − 2.21 PRO32 CG- 
THR 2 N, 
ASP29 O-ALA4 
CB, ASP29 OD- 
ALA7 CB, ARG 
100 CA-ALA9 
O2, GLN106 
OE1-ALA7 O. 

2.553 Å, 
2.421 Å, 
2.374 Å, 
2.345 Å, 
2.027 Å 

ALA1, 
GLY3, 
GLY4, 
ASN6, 
PRO7, SER9 

GLY43, 
ASP176, 
SER162, 
ASP120, 
LYS160, 
GLY42 

GLY43, 
ASP176, 
SER162, 
ASP120, 
LYS160. 

3 GGGPNPGSG 11–19 − 37.75 − 21.85 − 1.60 ASP120 OD2- 
VAL9 CG4, 
MET8 CE- 
ASP176 CG, 
MET8 CA- 
VAL48 CG2, 
LYS63 CD- 
MET8 CG, 
ASN163-GLY5 
CA, LYS160 
NZ-GLY3 O, 
VAL9 CG1-LUE 
165 CD2, VAL9 
ASP120-CG, 
SER162-ALA6 
CA, GLY5 CA- 
ASP176 OD2, 
ASN1 N- 
THR199 CG2, 
MET8 CA- 
LYS63 NZ, GLY 
43CA-GLU7 
CG, GLU42 O- 
GLU7 CB 

2.452 Å, 
2.604 Å, 
2.855 Å, 
2.862 Å, 
2.439 Å, 
1.798 Å, 
2.670 Å, 
3.006 Å, 
2.505 Å, 
2.426 Å, 
2.866 Å, 
2.766 Å, 
2.36 Å, 2.70 
Å 

ANS1, 
VAL3, 
ALA6, 
GLY5, 
GLY3, 
GLU7, 
MET8 

ASP120, 
LEU165, 
VAL48, 
GLU42, 
SER162, ASN 
163, LYS 160, 
LYS63, 
GLY43, 
ASP176, 
THR199, 
ARG203. 

ASP120, 
LEU165, 
VAL48, 
SER162, ASN 
163, LYS 160, 
LYS63, 
GLY43, 
ASP176, 
ARG203 

4 GGPNPGSGA 12–20 − 40.36 − 27.92 − 3.44 LEU165 CD2- 
VAL9 CG1, ASP 
120 CB-VAL9 
CG1, SER162 
O-VAL9 CG2, 
ASN63 OD1- 
GLY5 CA, 
ARG203 NH2- 
ASN1 ND2, 
ASP176 OD2- 
GLY5 CA, 
ASP176 CG- 

2.670 Å, 
2.730 Å, 
2.414 Å, 
2.414 Å, 
2.439 Å, 
2.505 Å, 
2.587 Å, 
2.426 Å, 
2.604 Å, 
2.766 Å, 
2.826 Å, 
2.866 Å, 

VAL9, 
MET8, LY5, 
ALA6, 
GLU7, 
GLY3, ASN1 

LYS63, 
ALA48, 
VAL48, 
ASP120, 
ASN163, 
LYS160, 
ARG203, 
THR199, 
GLU92, 
GLY43, 
SER62, 

LYS63, 
VAL48, 
ASP120, 
ASN163, 
LYS160, 
ARG203, 
THR199, 
GLY43, 
LEU165, 
VAL48. 

(continued on next page) 
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Table 7 (continued ) 

Sr. 
No. 

Peptide 
Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Peptidase 
MHC-pair 

Bond 
Distance Å 

Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

MET8 CE, 
LYS63 NZ- 
MET8 CE, 
THR199 CG2- 
ASN21 N, 
LYS160 NZ- 
GLY30, GLY43 
CA-GLU7 CG, 
GLU42 O-GLU7 
CB. 

1.798 Å, 
2.366 Å, 
2.270 Å 

LEU165, 
VAL48. 

5 NPGSGAEMV 15–23 − 10.23 − 8.94 0.00 ALA10 CB- 
GLN6 CB, 
ALA8 O-GLN6 
O, ALA5 CB- 
ALA7 CB, ALA8 
CB-ASP9 O1 

2.962 Å, 
2.031 Å, 
2.85 Å, 2.55 
Å 

ASP9, 
GLN8, ALA7 

ALA10, 
ALA8, ALA5 

ALA10, 
ALA8, ALA5 

6 PGSGAEMVR 16–24 − 17.71 − 27.64 − 1.77 THR103 CG2- 
VAL6 CG1, 
PRO102 CD- 
GLY1 N, 
PRO365 CG- 
PRO8 CG, 
RO365 CG- 
GLN2 CG, 
ALA8 CA-AR9 
O2, PRO9 CD- 
ARG9 C, PRO9 
CB-ALA3 CA, 
ALA10-ALA3 
CB. 

2.685 Å, 
2651 Å, 
2.933 Å, 
2.730 Å, 
2.545 Å, 
2.860 Å, 
2.705 Å, 
2.354 Å. 

PRO8, 
GLN2, 
ARG9, 
VAL6, 
ALA3, 
GLY1. 

PRO365, 
THR103, 
ALA3, PRO9, 
ALA10, 
PRO102 

PRO36, 
PRO9, 
ALA10, 
PRO102 

7 EMVRGQAFD 21–29 − 52.29 − 26.93 − 1.89 ASN367 O- 
SER4 O, 
PRO369 C- 
SER4 O, 
PRO369 CD- 
ALA5 CA. 

2.035 Å, 
2.612 Å, 
3.143 Å. 

ALA5, SER4 ASN367, 
PRO369. 

ASN367, 
PRO369 

8 APAGGGPNP 25–33 − 40.72 − 19.49 − 2.17 GLN364 OE1- 
PRO7 CB, 
PRO102 CG- 
ASN8 N, 
PRO102 CG- 
PRO7 CA, 
ILE99 CG2- 
GLY6 CA, 
ALA10 O-PRO2 
CB, PRO32 CG- 
PRO2 CA, 
PRO9 CB-ALA3 
CB. 

2.45 Å, 
2.525 Å, 
2.943 Å, 
3.100 Å, 
2.374 Å, 
2.723 Å, 
2.575 Å, 
2.602 Å. 

PRO9, 
ASN8, 
PRO102, 
GLY6, 
ALA3, PRO5 

PRO9, 
ALA10, 
ALA4, 
PRO32, 
PRO102, 
ILE99, 
GLN364 

PRO9, 
ALA10, 
ALA4, 
PRO32, 
PRO102, 
ILE99, 
GLN364 

9 PRYSNLSYI 32–40 − 38.32 − 24.80 − 1.68 ASP55 CG-ASN 
ND2 

2.743 Å ASN1 ASP55 NO 

10 RYSNLSYIG 33–41 − 14.20 − 5.06 − 0.99 PRO365 CA- 
TYR2 CE1, 
PRO365 CB- 
SER6 OG, 
VAL6 O-ILE8 
CA, ALA5-O- 
ILE8 O, ALA4 
CB-GLY9 CA. 

2.99 Å, 
2.528 Å, 
2.50 Å, 2.50 
Å, 1.827 Å, 
2.656 Å 

TYR2, SER6, 
ILE8, GLY9 

ASN367, 
GLY366, 
PRO365, 
PRO9, VAL6, 
ALA5, ALA4. 

ASN367, 
PRO365, 
PRO9, VAL6, 
ALA5, ALA4 

11 NLSYIGEGA 36–44 − 45.02 − 20.54 − 2.16 LYS160 CD- 
MET1 CG, 
SER162 CB- 
MET1 CE, 
SER162 OG- 
ALA4 CB, 
GLU42 O-ALA5 

2.847 Å, 
2.849 Å, 
2.433 Å, 
2.571 Å, 
2.463 Å, 
2.505 Å, 
2.227 Å, 

VAL6, SER7, 
ALA4, 
MET1, 
ALA5, 
PRO9, 
THR3. 

GLY46, 
GLY43, 
LYS63, 
GLU42, 
LEU179, 
ASP176, 
ILE40, 

GLY46, 
GLY43, 
LYS63, 
GLU42, 
LEU179, 
ASP176, 
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Table 7 (continued ) 

Sr. 
No. 

Peptide 
Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Peptidase 
MHC-pair 

Bond 
Distance Å 

Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

CB, ILE40 C- 
ALA5 O, 
GLY43 CA- 
VAL6 CG2, 
ASP176 OD2- 
THR3 C, 
LEU179 CD1- 
THR3 CG2, 
ASP176 CG- 
SER7 CB, 
LYS63 NZ- 
SER7 CB, 
LYS63 CD-VAL 
6 O, GLY46 N- 
VAL6 CG1. 

2.949 Å, 
2.411 Å, 
2.791 Å, 
2.939 Å, 
2.662 Å, 
2.390 Å, 
2.836 Å. 

LYS160, 
SER162. 

LYS160, 
SER162. 

12 SAYDRDNKV 50–58 − 23.24 − 26.81 − 2.81 VAL6 O-VAL9 
CG1, PRO32 
CB-LYS8, 
GLY12 N-ARG5 
NH, GLY11 CA- 
ARG5 NH1, 
ALA10 O-AR 5 
CD, PRO9 CG- 
ASP6 CA, 
PRO365 CG- 
ASP6 CB, 
PRO365 CD- 
TYR3 CA, 
PHE363 O- 
TYR3 CD1. 

2.545 Å, 
2.488 Å, 
2.227 
Å,2.456 Å, 
2.628 Å, 
3.089 Å, 
2.925 Å, 
2.749 Å, 
2.368 Å. 

TYR3, ASP6, 
VAL9, LYS8, 
ARG5. 

PHE363, 
PRO365, 
VAL6, GLY12, 
PRO9, 
PRO32, 
ALA10, 
GLY11. 

PHE363, 
PRO365, 
VAL6, 
GLY12, 
PRO9, 
PRO32, 
ALA10, 
GLY11. 

13 DRDNKVRA ____ − 27.91 − 29.21 − 2.79 ARG33 CB- 
ARG7 NH2, 
PRO9 CD-VAL8 
CG1, ALA10 O- 
ASN4 O, 
ALA10 L-LYS5 
CA, GLY11 CA- 
LYS5 CB, 
GLY11 CA- 
ASP1 CG, 
GLY12 N-ASP1 
CB, GLY106 
OE1-ARG2 
CG2, PRO102 
CG-VAL6 CG2, 
ILE99 CG2- 
ASP3 OD1, 
THR101 CG2- 
ARG2 CD, 
ARG100 CA- 
ARG2 NH2. 

2.428 Å, 
3.116 Å, 
1.859 Å, 
2.679 Å, 
3.148 Å, 
3.069 Å, 
2.101 Å, 
2.587 Å, 
2.398 Å, 
2.418 Å, 
2.917 Å, 
2.822 Å. 

VAL6, 
ARG7, 
VAL6, ASP3, 
ARG2, 
LYS5, ASP1, 
ASN4. 

ARG33, 
ILE99, 
ARG100, 
PRO102, 
THR101, 
GLN106, 
GLY12, 
GLY11, 
ALA10, 
PRO9. 

ARG33, 
ILE99, 
ARG100, 
PRO102, 
THR101, 
GLN106, 
GLY12, 
GLY11, 
ALA10, 
PRO9. 

14 RDNKVRVAI _____ − 31.14 − 23.34 − 3.51 PRO102 CG- 
VAL7 CG1, 
PRO365 CG- 
AR6 CG3, 
ILE99 CG2-IL9 
C, PRO9 CB- 
VAL5 CB, 
ALA10 N-VAL5 
CG2, ALA4 CA- 
VAL5 CG1, 
PRO32 CD- 
ILE9 CG2, 
VAL30 C-ILE9 
CB, PRO32 O- 
ASP2 OD2, 

2.898 Å, 
3.103 Å, 
2.692 Å, 
3.046 Å, 
2.513 Å, 
2.940 Å, 
2.809 Å, 
1.974 Å, 
2.604 Å, 
1.989 Å, 
2.243 Å, 
2.549 Å, 
1.924 Å, 
2.940 Å, 
2.592 Å, 

ILE9, ARG6, 
VAL5, 
ASN3, LYS4, 
VAL7, 
ARG2. 

PRO369, 
PRO102, 
ALA10, 
PRO9, ILE99, 
VAL30, 
ALA4, GLY13, 
ASN15, 
THR3, ALA2, 
PRO14, 
GLY31, 
PRO32, 
VAL30. 

PRO369, 
PRO102, 
ALA10, 
PRO9, ILE99, 
VAL30, 
ALA4, THR3, 
ALA2, 
GLY31, 
PRO32, 
VAL30. 
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Table 7 (continued ) 

Sr. 
No. 

Peptide 
Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Peptidase 
MHC-pair 

Bond 
Distance Å 

Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

ASN15 N-LYS4 
NZ, VAL30 O- 
ILE9 CD, 
GLY31 CA-ILE9 
CG, ALA4 CA- 
VAL5 CG1, 
GLY13 O-LYS4 
CE, PRO14 CA- 
LYS4 NZ, ALA4 
N-ASN3 O, 
THR3 CA- 
ASN3 O. 

2.920 Å, 
2.010 Å, 
1.803 Å. 

15 DNKVRVAIK ____ − 7.77 − 22.40 − 5.20 PRO365 CD- 
ARG6 CD, 
GLN364 OE1- 
ARG6 CD, 
ARG33 CD- 
ILE9 CA, 
ARG33 CD- 
ALA8 C, 
PRO32 CD- 
VAL7 CG1, 
GLY31 N-VAL7 
CG1, PRO9 CG- 
VAL5 CG1. 

2.453 Å, 
2.363 Å, 
2.920 Å, 
2.872 Å, 
2.629 Å, 
2.907 Å, 
2.575 Å. 

ILE9, VAL5, 
VAL7, 
ALA8, 
ARG6. 

ILE365, 
GLN364, 
PRO9, 
GLY31, 
VAL30, 
PRO32, 
ARG33. 

GLN364, 
PRO9, 
GLY31, 
VAL30, 
PRO32, 
ARG33. 

16 AIKKISPFE 1–9 − 23.99 − 23.85 − 0.55 GLY366 CA- 
PRO7 CD, 
ALA8 CB-ILE2 
CG1, ALA8 CB- 
ALA1 N, PRO9 
CD-ILE5 CD. 

2.906 Å, 
2.805 Å, 
2.848 Å, 
3.033 Å. 

ILE5, ILE2, 
ALA1, 
PRO7. 

ALA8, PRO9, 
GLY363. 

ALA8, PRO9, 
GLY36 

17 SAPAGGGPN 7–13 − 42.08 − 25.39 − 3.27 GLY46 O-GLY5 
CA, GLY43 CA- 
GLY5 CA, 
GLY43 CA- 
GLY6 N, 
GLU42 O- 
PRO8 CB, 
CYS175 SG- 
PRO3 CD, 
LYS123 CE- 
ASN9 D2, 
SER162 O- 
PRO3 CG, 
ASP120 OD2- 
ASN9 O2, 
LEU165 CD2- 
SER1. 

2.679 Å, 
2.581 Å, 
2.784 Å, 
2.343 Å, 
2.681 Å, 
2.571 Å, 
2.432 Å, 
2.163 Å, 
2.532 Å. 

SER1, 
PRO3, 
ALA4, 
ASN9, 
PRO8, 
GLY6, 
GLY5. 

LEU165, 
CYS175, 
VAL48, 
GLY46, 
ASP120, 
LYS123, 
SER162, 
GLU42, 
GLY43. 

LEU165, 
CYS175, 
VAL48, 
GLY46, 
ASP120, 
LYS123, 
SER162, 
GLU42, 
GLY43. 

18 TAAVSAPAG 3–11 − 42.15 − 26.07 − 1.24 ASP29 O-ALA8 
O, ASP29 OD1- 
PRO7 O2, 
ARG33 CB- 
VAL4 CG1, 
PRO9 CB-ALA6 
CB, PRO9 CB- 
ALA3 CA, 
PRO9 CG-ALA2 
C, PRO365CB- 
ALA2 N, 
PRO365 CB- 
THR1 CB. 

2.124 Å, 
2.681 Å, 
3.082 Å, 
2.719 Å, 
2.966 Å, 
2.797 Å, 
2.833 Å, 
3.005 Å. 

THR1, 
ALA2, 
VAL4, 
ALA3, 
ALA6, 
ALA8, 
PRO7. 

PRO365, 
ARG33, 
ASP29, 
PRO9. 

PRO365, 
ARG33, 
PRO9. 

19 AVSAPAGGG 4–12 − 44.41 − 25.19 − 0.97 TYR45 CZ- 
ALA1 CB, 
LYS64 O-GLY9 
O1, LYS63 CG- 
GLY9 O2, 

2.854 Å, 
1.919 Å, 
2.206 Å, 
2.121 Å, 
3.093 Å, 

ALA1, 
GLY9, 
GLY8, 
GLY7, 
VAL2, 

VAL48, 
LYS63, 
GLY46, 
GLU42, 
TYR45, 

VAL48, 
LYS63, 
GLY46, 
GLU42, 
TYR45, 
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Table 7 (continued ) 

Sr. 
No. 
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Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 
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Peptidase 
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Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

GLY46 CA- 
GLY9 O1, 
VAL48 CG2- 
GLY8 CA, 
LYS123 CE- 
PRO5 O2, 
ASP120 OD2- 
PRO5 O2, 
ASP120 OD2- 
ALA6 CB, 
ASN163 OD1- 
VAL2 CG1, 
LYS160CE- 
VAL2 CG2, 
LEU165 OD2- 
PRO5 CD, 
LEU165 OD2- 
ALA4 CA, 
SER162 O- 
ALA4 CB. 

2.120 Å, 
2.159 Å, 
2.166 Å, 
2.200 Å, 
2.812 Å, 
2.518 Å, 
3.060 Å, 
2.663 Å, 
2.270 Å 

ALA6, 
ALA4, 
PRO5. 

ASP176, 
CYS175, 
LEU165, 
ASP120, 
LYS123, 
ASN163, 
SER162, 
LYS160. 

ASP176, 
CYS175, 
LEU165, 
ASP120, 
LYS123, 
ASN163, 
SER162, 
LYS160. 

20 ISPFEHQTY 5–13 − 45.03 − 36.51 − 3.30 PRO365 CB- 
PHE4 CE1, 
GLN364 CB- 
GLN7 OE1, 
PRO9 CG- 
PHE4 CE2, 
PRO102 CB- 
HIS6 C, 
ARG100 O- 
PRO3 CG, 
GLN106 NE2- 
HIS6 CE1, 
GLN11 CA- 
ILE1 CG2, 
GLY11 CA- 
GLU5 OE1, 
ALA10 O-GLU5 
CD, PRO9 CB- 
THR8 OG1, 
PRO9 CG- 
PHE4 CE2. 

3.007 Å, 
2.499 Å, 
2.9003 Å, 
3.117 Å, 
2.879 Å, 
2.670 Å, 
2.287 Å, 
2.445 Å, 
2.639 Å, 
2.381 Å, 
2.476 Å, 
2.903 Å. 

PHE4, 
THR8, 
GLN7, 
PRO3, HIS6, 
GLU5, ILE1 

GLN364, 
ARG100, 
PRO102, 
GLN106, 
GLY11, 
ALA10, 
PRO9, ILE90 

GLN364, 
ARG100, 
PRO10, 
GLY11, 
ALA10, 
PRO9, ILE90 

21 ENIIGINDI 30–38 − 24.92 − 21.34 − 0.85 ARG33 CD- 
ASP8 O, 
ARG33 CB- 
ILE9 CA, 
VAL30 O-ILE9 
CD, PRO32 CA- 
ILE9 CG2, 
PRO32 CB- 
GLU1 N, 
PRO32 CB- 
ILE3 CG1, 
ALA4 CB-ASN2 
O, ALA10 O- 
ILE3 O, PRO9 
CG-ASN2 CG, 
GLY5 C-ILE6 N, 
GLN364 OE1- 
ILE6 CD, 
PRO365 CD- 
ILE6 CG2, 
PHE363 O- 
ASP8 OD2, 
PRO365 CG- 
ASN7 N. 

2.055 Å, 
3.142 Å, 
2.826 Å, 
3.672 Å, 
2.622 Å, 
1.667 Å, 
2.668 Å, 
1.326 Å, 
2.248 Å, 
2.62 Å, 
2.124 Å, 
2.150 Å 

ASN7, 
ASP8, ILE6, 
GLN2, ILE3, 
GLU1, ILE9, 
ASN2. 

PRO365, 
PHE363, 
GLN364, 
PRO9, 
ALA10, 
VAL30, 
ALA4, 
ARG33, 
PRPO32. 

PRO365, 
PHE363, 
GLN364, 
PRO9, 
ALA10, 
VAL30, 
ALA4, 
ARG33, 
PRPO32. 
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22 IIGINDIIR 32–40 − 29.61 − 30.79 − 0.68 ALA10 CA- 
ARG9 NH2, 
PRO9 O-ARG9 
NH2, PRO9 O- 
ARG9 CB, 
ALA8 O-ARG9 
O2. 

2.669 Å, 
2.258 Å, 
2.121 Å. 

ARG4. PRO9, ALA8, 
ALA10. 

PRO9, ALA8, 
ALA10 

23 IGINDIIRT 33–41 − 45.59 − 27.75 − 3.37 GLU358 CA- 
ILE7 CD, 
PHE357 OD2- 
ILE7 CD, 
ALA361 N-ILE3 
CG2, PHE363 
N-ILE3 CD, 
ALA361 N-ILE3 
CG2, PHE363 
N-ILE3 CD, 
PRO369 OXT- 
ASP5 CG, 
ARG368 O- 
GLY2 CA, 
ARG368 N- 
ILE1 C, 
ASN367 N- 
ILE1 CG2, 
GLY366 CA- 
ILE1 CD, 
GLN365 CD- 
ILE1 CD. 

3.050 Å, 
2.679 Å, 
2.519 Å, 
2.880 Å, 
2.675 Å, 
1.791 Å, 
2.127 Å, 
2.591 Å, 
2.390 Å, 
2.964 Å, 
2.689 Å, 
3.092 Å. 

ASP5, GLY2, 
ILE3, ILE7, 
ILLE1. 

PRO369, 
ARG368, 
ASN367, 
GLY377, 
PRO365, 
GLN364, 
PHE363, 
ARG362, 
PHE357, 
ALA361, 
GLU358. 

PRO369, 
ASN367, 
PRO365, 
GLN364, 
PHE363. 

24 GINDIIRTP 34–42 − 35.8 − 27.63 − 1.39 ALA8 CB-ARG7 
NH2, ALA10 
CB-ARG7 CB 

2.890 Å, 
3.038 Å 

ARG7 ALA8, ALA10 ALA8, ALA10 

25 INDIIRTPT 35–43 − 17.39 − 28.72 − 2.57 ASP29 CG- 
PRO8 CA, 
ILE99 CG2- 
ILE5 O, GLY31 
CA-ILE4 CG2, 
GLY12 N-THR9 
C, GLY11 C- 
THR9 O2, 
PRO32 CG- 
ILE1 CG1, 
ALA4 CB-ILE1 
CG1, ARG100 
C-ARG6 O, 
THR101 CA- 
ARG60, 
GLN106 OE1- 
THR7 CB, 
THR101 
CG2THR7 CG2, 
PRO102 CG- 
THR7 CG2, 
GLN364 OE1- 
ARG6 CG, 
PRO9 CG- 
ASN2 ND2, 
PRO9 CB-ASP3 
OD1, ALA10 
CA-ASP3 CG. 

3.128 Å, 
2.09 Å, 
2.897 Å, 
2.543 Å, 
2.179 Å, 
3.063 Å, 
2.513 Å, 
2.402 Å, 
1.889 Å, 
2.353 Å, 
2.769 Å, 
2.897 Å, 
2.656 Å, 
2.306 Å, 
2.146 Å, 
2.971 Å. 

PRO8, 
THR9, ILE4, 
ILE1, ILE5, 
ASP3, 
ASN2, 
THR7, 
ARG6. 

PRO102, 
ARG100, 
THR101, 
GLN106, 
PRO9, 
ALA10, 
ALA4, GLY11, 
GLY31, 
PRO32, 
GLY12, 
ASP29, 
GLN364, 
ASP29. 

PRO102, 
ARG100, 
THR101, 
GLN106, 
PRO9, 
ALA10, 
ALA4, 
GLY11, 
GLY31, 
PRO32, 
GLY12, 
ASP29, 
GLN364, 
ASP29. 

26 NDIIRTPTI 36–44 − 30.71 − 25.00 − 1.58 ALA8 CB-ILE9 
CD, ALA10 CB- 
ILE9 CG2, 
ALA10 C-OLE3 
CD, GLY11 N- 
ILE3 CD, 

2.185 Å, 
2.436 Å, 
2.449 Å, 
2.483 Å, 
2.483 Å, 
2.746 Å, 

ILE4, ILE3, 
ASN1, 
ARG5, 
ASP2, 
THR6, 

ALA4, 
PRO32, 
GLY31, 
VAL30, 
PRO14, 
GLY12, 

ALA4, 
PRO32, 
GLY31, 
VAL30, 
GLY12, 
GLY11, 
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PRO14 CD- 
ASN1 ND2, 
ASP29 N-ARG5 
NH2, VAL30 
CA-ARG5 NE, 
GLY12 CA- 
ASP2 OD2, 
GLY31 N-ARG5 
NE, VAL30 C- 
ARG5 CD, 
GLY12 N-ASN1 
N, GLY11 C- 
ASN1 N, ALA4 
C-ILE9 O1, 
ALA5 N-ILE9 
O1, PRO32 CG- 
TRY6 OG1, 
ALA4 CB-THR8 
CA, PRO9 C- 
ILE3 CG1, 
PRO9 O-ILE9 
CG1, PRO9 CG- 
PRO7 CA, 
PRO9 CG- 
THR8 N, PRO9 
CA-ILE9 N, 
ALA6 O-ILE9 
CA. 

2.583 Å, 
2.632 Å, 
1.997 Å, 
2.025 Å, 
2.279 Å, 
1.935 Å, 
2.587 Å, 
2.370 Å, 
1.830 Å, 
2.457 Å, 
3.128 Å, 
2.678 Å, 
2.787 Å, 
2.602 Å, 
2.255 Å, 
2.168 Å. 

THR8, 
PRO7, ILE2. 

GLY11, 
ASP29, 
ALA10, 
PRO9, ALA8, 
ALA5. 

ASP29, 
ALA10, 
PRO9, ALA8, 
ALA5. 

27 DIIRTPTID 37–45 − 25.24 − 30.03 − 2.30 PRO365 CB- 
ILE2 CD, VAL6 
O-ILE3 CG2, 
ALA4 CB-ILE8 
CG1, ARG33 
CG-THR7 CB, 
ASP55 N-THR7 
CG2, ARG54 
CA-THR7 CG2, 
ARG54 CB- 
PROR6 O2. 

2.938 Å, 
2.160 Å, 
3.159 Å, 
2.698 Å, 
2.497 Å, 
3.003 Å, 
2.603 Å. 

ILE3, THR7, 
PRO6, ILE2, 
ILE8. 

PRO365, 
VAL6, ALA4, 
ARG33, 
ASP55, 
ARG54. 

PRO365, 
VAL6, ALA4, 
ARG33. 

28 IIRTPTIDQ 38–46 − 28.22 − 22.26 − 0.53 PRO102 CB- 
THR6 CG2, 
ALA8 CB-GLN9 
CG, SER7 CB- 
GLN9 NE, 
PRO9 CD-ILE7 
CG2, PRO9 O- 
ILE1 CG2, 
ALA10 CB-ILE 
CA. 

3.137 Å, 
2.823 Å, 
2.907 Å, 
2.907 Å, 
2.980 Å, 
2.453 Å., 
3.078 Å. 

THR6, ILE7, 
GLN9, ILE1. 

ALA10, 
PRO02, 
PRO9, ALA8, 
SER7. 

ALA10, 
PRO02, 
PRO9, ALA8. 

29 RTPTIDQMK 40–48 − 16.23 − 36.39 − 5.34 THR199 CG2- 
GLN9 C, 
ASP158 OD1- 
GLN9 O1, 
LYS160 NZ- 
ASP8 C, 
TYR122 CD1- 
ILE7 CG1, 
THR45 CE1- 
ARG3 NH2, 
ALA44 CA- 
ARG3 NE, 
GLU42 O-ILE2 
C, GLY41 CA- 
ILE2 C, GLY41 
CA-ILE1 O. 

2.679 Å, 
1.976, 
2.342 Å, 
1.746 Å, 
2.486 Å, 
2.581 Å, 
2.782 Å, 
2.403 Å, 
1.887 Å, 
2.355 Å, 
2.415, Å, 
2.54 Å. 

ILE2, ARG3, 
ILE1, ILE7, 
GLN9, 
ASP8. 

CYS160, 
ASP158, 
SER162, 
THR122, 
ALA44, 
GLY43, 
TYR45, 
GLY41, 
GLU42. 

SER162, 
THR122, 
ALA44, 
GLY43, 
TYR45, 
GLU42. 

(continued on next page) 
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epitopes are antigenic amino acid sequences interacting with immune system receptors. 
In contrast, Ellipro predicts both conformational and linear epitopes based on the 3D structure of protein and indicates score as 

protrusion index PI value. The bepiPred 2.0 server predicted 11 linear epitopes of B cells with different variations in length. The linear 
epitopes of B cells with different variations in length, as presented in Table 5. Among these 11 predicted peptides, 4 B-cell epitopes 
were observed as nonantigenic through Vaxijen v 2.0 forecasts, and these epitopes couldn’t be considered potential vaccine candidates. 
In contrast, the remaining 7 epitopes could be regarded as potential vaccine candidates due to their high antigenicity score. After that, 
allergenicity and toxicity were also predicted for these epitopes. The toxicity, antigenicity, allergenicity, and conservancy analysis 
reveals that epitopes 5 and 11 could be considered potential and reliable B-cell epitope for effective vaccine designing. In this 
computational analysis total of 5 conformational and discontinuous epitopes of B-cells were predicted by utilizing the IEDB tool 
Elllipro. The epitopes having PI scores greater than 0.6 were considered. The protrusion index value of 8 predicted epitopes was 
analyzed between 0.658 and 0.747. The higher score of residues reveals greater solvent accessibility. The Conformation epitopes of B- 
cells, their length, individual residues, score, and residue position are presented in Table 6. 

3.9. Protein-peptide docking 

The PatchDock software was utilized to examine the docking conformation, functionally interacting residues and optimal structural 
information of the peptide with its target protein (see Table 7). The binding energy of each complex was calculated after docking, and 
the one with the lowest energy was chosen for further study using UCSF Chimera to examine receptor-peptide interactions. For this 
study, we looked at how likely amino acid residues within 4 Å of the peptide would interact with each other (Sehgal, 2017). Three 
hundred thirty interactions were detected between Peptide and receptor Protein (MAPK1). Fire Dock docking software was used for 

Table 7 (continued ) 

Sr. 
No. 

Peptide 
Sequence 

Position Global 
energy 
(Kcal/ 
Mol) 

Attractive 
energy 
(Kcal/Mol) 

H-bond 
energy 
(Kcal/ 
Mol) 

Peptidase 
MHC-pair 

Bond 
Distance Å 

Interactive 
Residues of 
Peptide 

Interactive 
Residues of 
Protein 

Conserved 
Residues 

30 DQMKDVYIV 45–53 − 34.00 − 23.16 − 1.22 PRO365 CB- 
ASP1 N, 
PRO365 CG- 
G1N 2 N, 
PRO102 CB- 
GLN2 NE2, 
PRO102 CD- 
VAL6 CG2, 
ILE99 CG2- 
ASP5 CB, 
GLN364 OE1- 
GLN2 CG, 
ASP29 O-ASP5 
O, PHE28 O- 
ILE8 CD, 
ASP29 CA-ILE8 
CD, GLY31 N- 
ILE8 CD, ALA2 
O-VAL9 CA, 
ASP29 OD2- 
VAL6 O. 

2.377 Å, 
2.830 Å, 
2.512 Å, 
2.849 Å, 
2.318 Å, 
1.946 Å, 
1.842 Å, 
2.644 Å, 
2.517 Å, 
2.724 Å, 
2.848 Å, 
2.295 Å, 
3.037 Å, 
I.835 Å. 

GLN2, 
ASP1, 
MET3, 
TYR7, 
VAL6, LYS4, 
ASP5, ILE8, 
VAL9. 

PRO365, 
GLN364, 
PRO102, 
PRO9, 
ALA10, 
GLY11, 
ILE99, THR3, 
PRO32, 
ALA2, 
VAL30, 
ASP29, 
GLY31. 

PRO365, 
GLN364, 
PRO102, 
PRO9, 
ALA10, 
GLY11, ILE9, 
PRO32, 
VAL30, 
ASP29, 
GLY31.  

Fig. 7. (A) Docking of 30 CTL predicted epitopes with MAPK1, 6 CTL epitopes were bound on the primary binding site of the protein. In contrast, 16 
epitopes were present on the secondary active site of the protein. (B) shows the interaction of top-ranked 4 linear B cell epitopes at the secondary 
binding domain. 
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flexible refinement and scoring protein-peptide interactions. UCSF chimaera was used to visualize protein-peptide interacting residues. 

3.10. Fire dock results in evaluation by UCSF chimera 

30 CTL epitope and their sequences were identified against MAPK1. It was also evaluated that from all Protein-peptide docking 
solutions, six peptides (1,3,11,17,19,29) were present in the same binding pocket A, and 16 peptides were present in the other same 
binding pocket B. In comparison, eight peptides (5,7,9,10, 22,24,27,28) were present on different active sites/binding pocket of 
MAPK1 protein as shown in Fig. 7(A). Only the 4 top-ranked linear B cell epitopes show interaction at the secondary binding domain 
among 11 as shown in Fig. 7(B). 

The Individual docked complexes along their binding residues are presented in Fig. 8. 
Different docking interactions of predicted peptides of MHC class-1 and class-II against MAPK1, along with attractive energy, global 

energy, hydrogen bonding, Bond distance, Bond distance, interacting residues, and conserved residues of docking complexes are 
presented in Table [7 & 8]. 

The 3D representation of linear B-cell epitopes of MAPK1 protein is presented in Fig. 9. However, the position of confirmational 
epitopes on 3D protein structure is presented in Fig. 10. 

3.11. Protein-ligand docking 

Various bioinformatics tools such as ChemDraw, AutoDock Tools, PyRx, PyMol [42], UCSF Chimera, and Discovery Studio were 

Fig. 8. Docking of CTL epitopes on primary A and secondary B binding/active site pocket interacting residues were labelled in different colors. A 
represents docking of 5 peptides MHC class1 HLA-B interacting residues of MAPK1 were presented in different colors. B represents the docking of 3 
peptides MHC class1 HLA-B interacting residues of MAPK1 were shown in different colors. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9. The position of Linear epitopes on 3D protein structure was presented.  

Fig. 10. The 3D representation displays B-cell epitopes of the antigenic MAPK1 protein. The docking complex is depicted, with the protein in grey 
sticks and epitopes in yellow surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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used for the In-silico study ofMAPK1 [43]. The receptor molecule (Protein) was prepared by adding polar H-atoms. Colman’s charges 
are added in preparation for ligand molecule. The minimization of the predicted structure was performed with a 1000 bootstrap value. 
FDA-approved library from the zinc database was screened for the best-interacting compound having the potential to inhibit target 
protein. FDA-approved compound library of 11600 compounds was selected for making Ligand-based pharmacophores. After 
screening, the 50 best-interacting compounds were selected based on high binding affinity and the difference between upper and lower 
RMS values. MAPK1 Protein has two main domains, amino acid sequence from 1 to 33 has domain I, and from 34 to 322 amino acid 
sequence contains Domain II. In-depth Analysis shows that Domain II with amino acid sequence from 34 to 322 is functionally active. 
The two domains (Domain I & Domain II) of MAPK1 protein are presented with two different colors along with the Top-ranked potent 
compound as shown in Fig. 11 (see Table 8). 

Figs. 12 and 13 shows the interaction of the 12 best drug compounds on protein domains I and II with the potential to inhibit 
MAPK1 Protein expression according to ADMET analysis, as presented in Table 9. Extensive In-silico studies show that these com-
pounds can inhibit MAPK1 (target protein) by satisfying the desired drug properties, as presented in Fig. 14. 

3.12. Protein-protein docking 

Different Interactions of MAPK1 protein with functionally and structurally partner proteins were observed through the STRING 
database by integrating other interactions by predicting various physical and structural associations between proteins. The results of 
STRIG are mentioned in Fig. 15. 

MAPK1 protein may directly or indirectly link or interact with other proteins to perform a specific function. Best interactions of 
MAPK1 protein were observed dusp6 (Uniprot ID: Q7T2L8) Protein. The docking of MAPK1 Protein with its best functionally inter-
acting partner protein dusp6 (Uniprot ID: Q7T2L8), along with their interacting residues, are mentioned in Fig. 16. The 3D structure of 
dusp6 was downloaded for protein-protein Docking analysis through Cluspro and Ppatchdock. UCSF Chimera was utilized to find 
interacting residues and other post-docking analyses. 

4. Discussion 

Research on neurodegenerative disorders is imperative to facilitate the discovery of effective treatments for Alzheimer’s disease 
[44]. The contribution of the MAPK signaling pathway is a critical element of various neurological disorders case neurodegenerative 
diseases. Scientific efforts are needed to prevent disease formation and improve the current treatment options. An immunoinformatic 
analysis is borderline for targeting epitope-based vaccine designs to control MAPK1 pathways, as per the investigation of earlier re-
searchers [45]. In our study investigations, the zebrafish allow us to explore various neurological-related disorders. We used the 
Uniprot database to retrieve the MAPK1 sequence for identifications of details analysis related to MSA for Structure prediction, 
evaluation, phylogeny, and population Coverage, and the results were matched [46]. We also predict epitopes and their Antigenicity 
and Allergenicity using high-throughput bioinformatics approaches. 

Further, we carry out Pharmacophore-Based Virtual Screening Molecular Docking and structure modelling where we explore tool- 
based Protein-peptide docking, Protein-Protein Docking, and Protein-ligand docking as per the analysis of earlier researchers [10,11]. 
The relation of the MAPK pathway with Alzheimer’s disease was the idea leading to this present study. Identifying MAPK1 inhibitors 
effectively eradicates the patient’s suffering and pathophysiology of Alzheimer’s disease [5]. Extensive In-silico analysis was executed 

Fig. 11. The figure displays MAPK protein’s binding domains: Domain I (green) and Domain II (deep sky-blue). Compounds interact at Domain II, 
highlighting its functional importance. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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to identify, evaluate, and design innovative compounds by targeting MAPK1 [47]. The 3D structure of MAPK1 has not yet been 
documented in PDB or determined by NMR or X-ray crystallography. 

The six leading optimally aligned appropriate templates with maximum query coverage, identity, score, and E-value were selected. 
Among the chosen templates, the 5K4I [PDB ID] template showed the best evaluation for reliable structure prediction for MAPK1 
homology or comparative modelling using MODELLER 9.20. The target sequence (MAPK1) query coverage and template sequence 
query coverage were satisfactory for the 3D structure prediction of MAPK1. Threading and ab initio approaches were also utilized to 
decrease the chance of errors and to predict the reliable 3D structure of MAPK1 [48]. Different structure Evaluation software was used 
to find the most reliable 3D predicted structure of MAPK1, followed by protein-ligand, protein-peptide, and protein-protein docking 
analysis. The Ramachandran Plot showed that 91.00 % of residues of the predicted structure were present in the favored region, 7.40 % 
were in the allowed region, and 0.30 % were outliers. The overall quality of the predicted structure was 97.44 %, as observed by 
ERRAT. 

Multiple sequence alignment was performed to trace the conserved region of the target candidate gene through the time of 

Fig. 12. Interactions of docked protein-drug complexes in Domain I are shown. Top-ranked drug compound’s interacting residues, 2D pharma-
cophore diagram, and Ramachandran plot illustrate complex interactions. 
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evolution in humans. For this purpose, the genome of six MAPK1 strains was retrieved to build a neighbour-joining tree using an 
evolutionary tool (MEGAX) as per the method of earlier researchers [49,50]. The observation shows the binding domain or active site 
was conserved among all MAPK1 strains. Different molecular Docking analyses were performed for ligand-based drug designing [51] 
and peptide-based vaccine designing [52]against MAPK1 in zebrafish. The protein-ligand docking analysis was performed using Pyrx, 
protein-protein docking utilizing ClusPro, and protein-peptide docking using Patch Dock. UCSF Chimera, Discovery Studio, and Pymol 

Fig. 12. (continued). 
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then visualize the docking analysis. The energy of docking complexes was minimized to fix & and remove the steric hinderances. 
PatchDock server was used to perform protein-peptide docking, followed by peptide-based vaccine designing. Receptor-peptide 

docking reagents were sourced from various databases, most frequently NetCTL 1.2 and PEP-FOL. NetCTL webserver was utilized 
for CTL prediction from protein sequence by submitting FASTA sequence of Protein on NetCTL 1.2 server, which utilizes MHC 
supertype A1 and 0.75000. Top-ranked 30 CTL epitopes of MHC class I of T cells and their sequence were identified against MAPK1. 
These antigenic determinants associated with specific HLA alleles were assessed to analyze MHC class 1 & and MHC class ll epitopes 
present in 90 % of the world population. The epitopes of MHC class II of T cells and linear and discontinuous epitopes of B cells were 
predicted using the IEDB server. Comparative molecular-docking Analysis of predicted epitope followed by comparative and structural 
genomic analysis strategies to identify effective drug and novel inhibitors for Alzheimer’s disease in humans by targeting MAPK1 
isoforms. PEPFOLD 2.0 server was then utilized to predict 3D models of responding epitopes for protein-peptide docking analysis. 

Top-ranked docked complexes were evaluated for similar residues [53]. The binding energy of each complex was calculated after 
docking [54], and the one with the lowest energy was chosen for further study using UCSF Chimera to examine peptide-receptor 
interactions [55]. It was also evaluated that from all 30 peptides, 6 CTL epitopes were present in the primary binding pocket and 
16 CTL epitopes were present in the secondary binding pocket. Protein-peptide docking analysis reveals that VAL48, LYS63, GLU42, 
GLY43, CYS175, ASP176, LYS 160, ALA 61, LEU165, ALA61, ASP120, SYS175, LYS160, VAL48, ASN163, ALA4, ALA5, ALA8, ALA10, 
TYR45, SER162, GLY11, GLY12, VAL6, GLN364, PRO9, PRO32, PRO102, ILE99, ASN367, ARG33, PRO365, PHE363, ILE40, ASN 163, 
ASP29, GLY31, VAL30, GLN106, ARG100, VAL6 and GLU42 are critical residues for protein-peptide interaction followed by 
peptide-based vaccine designing. 

The FDA-approved ZINC database library of 1600 compounds was selected and screened by post-Docking Analysis [56], and 50 
potential top-ranked drug compounds were selected for further analysis. For this purpose, PyRx (virtual screening) software, Auto 
Dock Vina & and Auto Dock 4 are Utilized for receptor-ligand Docking Studies [57], and ChemDraw& Open Babel for energy mini-
mization, removing salts bridges and importing SDF files [58]. These findings would be helpful in the novel therapeutic discovery of 
targeted drug designing to cure Alzheimer’s disease. Receptor-ligand decking was simulated on Auto Dock software [59]. The docked 
complexes with the least binding energy were selected to analyze protein-ligand interaction using VMD [60]. Protein-ligand docking 
analysis reveals that VAL48, LYS63, CYS175, ASP176, LYS 160, ALA 61, LEU165, ALA61, TYR45, SER162, ARG33, PRO365, PHE363, 
ILE40, ASN 163 and GLU42 are critical residues for protein-drug interaction. The interaction was observed at a similar site among all 
docked complexes. Extensive In-silico studies show that these compounds can inhibit MAPK1 (target protein) by satisfying the desired 
drug properties [61]. Protein-protein docking analysis reveals that THR169, PRO328, GLU315, HIS 308, LYS 5, and GLU259 residues 
of MAPK1 interact with its functional partner protein dusp6 (Uniprot ID: Q7T2L8). Protein-protein docking [62]was performed on 
Patch Dock and ClusPro followed by post-docking analysis on UCSF chimaera [63]. 

An emergent need for effective AD treatment [64]. Developing a vaccine is of substantial curiosity to the peptide inhibitors [65]. 

Fig. 13. Interaction of docked complexes of protein and drug compounds for Domain II, Interacting residues of the top-ranked selected drug 
compound, 2D diagram pharmacophore-based drug compound, and Ramachandran plot showing interaction of docked complexes. 
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The predicted peptide target has the most negligible side effect, lower toxicity, and is faster in action than other traditional 
ligand-based medicinal products [66]. CTL epitopes of MAPK protein were predicted against Alzheimer’s disease. In-silico approaches 
facilitate scientists to minimize laboratory work burden, cost-effective and less expedient [67]. Thirty peptides for B cells, MHC class I 
and II of T cells were selected with the most remarkable binding affinities and antigenicity; among these peptides (PAGGGPNPG, 
GGGPNPGSG, SAPAGGGPN, AVSAPAGGG, AGGGPNPGS, ATAAVSAPA, TAAVSAPAG, ENIIGINDI, INDIIRTPT, and NDIIRTPTI 
showed effective and maximum interaction depending on global energies. We identified a total of 30 CTL against MAPK1 Protein, 
where 10 top is further evaluated and found potent peptides binding to MHC class I and MHC class II that are 80–90 % identical with 
experimentally determined epitopes and this will likely be beneficial for quick progression and promising candidates for vaccine 
design with adequate world population coverage of 88.5 % and 99.99 %, respectively. The molecular docking analyses were conducted 
on the ZINC database library, and ten top selected from 30 compounds having the least binding energy were scrutinized. Protein-ligand 
docking analysis reveals that VAL48, LYS63, CYS175, ASP176, LYS 160, ALA 61, LEU165, ALA61, TYR45, SER162, ARG33, PRO365, 
PHE363, ILE40, ASN 163 and GLU42 are critical residues for protein-drug interaction. Furthermore, docking analyses revealed that the 
predicted peptides engaged in strong bonding with the MAPK1 Protein, where docked complexes have maximum interaction as a 
potent inhibitor. 

The in-silico design of a multiepitope-based-peptide (MBP) vaccine against the MAPK protein for Alzheimer’s disease in zebrafish 
presents promising implications. Through a rational epitope selection process, epitopes were chosen based on their potential to induce 
an immune response and alignment with the MAPK protein. These approaches can potentially modulate the pathways associated with 
Alzheimer’s disease progression, offering a novel strategy for therapeutic intervention. The multiepitope-based process demonstrates 
advantages in targeting diverse aspects of the MAPK protein, increasing the likelihood of an effective immune response. While lim-
itations of in silico methods and assumptions exist, this research lays a foundation for future studies encompassing in vitro and in vivo 
validation, epitope prediction improvements, and the exploration of cross-species applicability. The ethical considerations associated 
with animal experimentation and responsible research practices further underscore the significance of these findings. In conclusion, 
this study contributes to understanding Alzheimer’s disease treatment strategies by proposing a computational approach that warrants 
further investigation and experimental validation. 

5. Conclusion 

Our computer-based efforts to create a vaccine (a way to fight diseases) using multiple epitopes, focused on the MAPK protein 
connected to Alzheimer’s disease in zebrafish, have shown promising results. Our analysis of the MAPK1 protein was conducted based 
on multiple steps, including sequence retrieval from Uniprot, physiochemical property prediction via ExPAsy-ProtParam, and 

Table 8 
Firedock evaluation of docked complexes of antigenic protein and MHC II alleles for desired epitopes.  

Sr. No. Peptide Sequence Global energy (Kcal/Mol) Attractive energy (Kcal/Mol) H-bond energy (Kcal/Mol) MHC-II Alleles 

1 RGLKYIHSANVLHRD − 18.17 − 44.22 − 5.04 HLA-DRB1*04:05 
2 GLKYIHSANVLHRDL − 53.69 − 31.42 − 3.95 HLA-DRB1*04:05 
3 LKYIHSANVLHRDLK − 4.02 − 8.08 − 0.89 HLA-DRB1*04:05 
4 ARNYLLSLPLRSKVP − 10.12 − 26.81 − 5.31 HLA-DRB3*02:02 
5 KARNYLLSLPLRSKV − 34.13 − 30.48 − 4.72 HLA-DRB5*01:01 
6 LDDLPKETLKELIFE − 19.24 − 20.85 − 1.49 HLA-DPA1*03:01/DPB1*04:02 
7 LDKMLTFNPHKRIEV − 3.43 − 3.66 − 1.60 HLA-DPA1*02:01/DPB1*01:01 
8 CILAEMLSNRPIFPG − 23.04 − 29.01 − 5.22 HLA-DQA1*01:02/ 

DQB1*06:02 
9 NKVRVAIKKISPFEH − 21.78 − 30.90 − 3.02 HLA-DRB1*11:01 
10 KYIHSANVLHRDLKP − 7.82 − 27.65 − 6.87 HLA-DRB1*04:05 
11 DLNCIINIKARNYLL − 22.43 − 37.30 − 5.48 HLA-DRB1*12:01 
12 LNCIINIKARNYLLS − 30.76 − 23.23 − 3.97 HLA-DRB1*12:01 
13 EDLNCIINIKARNYL − 21.43 − 34.38 − 3.81 HLA-DRB1*12:01 
14 NCIINIKARNYLLSL − 42.75 − 23.50 − 1.46 HLA-DRB1*12:01 
15 QEDLNCIINIKARNY − 18.31 − 23.39 − 2.85 HLA-DRB1*12:01 
16 CIINIKARNYLLSLP − 18.04 − 25.48 − 1.50 HLA-DRB1*12:01 
17 DLYKLLKTQHLSNDH − 19.19 − 36.85 − 3.18 HLA-DRB4*01:01 
18 LYKLLKTQHLSNDHI − 13.74 − 26.41 − 3.27 HLA-DRB4*01:01 
19 KVRVAIKKISPFEHQ − 34.33 − 32.43 − 4.59 HLA-DRB1*11:01 
20 DRDNKVRVAIKKISP − 6.58 − 21.47 − 0.63 HLA-DRB1*11:01 
21 RDNKVRVAIKKISPF − 52.64 − 39.49 − 2.70 HLA-DRB1*11:01 
22 DNKVRVAIKKISPFE − 6.99 − 26.27 − 0.96 HLA-DRB1*11:01 
23 KARNYLLSLPLRSKV 0.43 − 22.98 − 3.85 HLA-DRB1*01:01 
24 ARNYLLSLPLRSKVP − 15.37 − 26.04 − 2.66 HLA-DRB1*01:01 
25 RNYLLSLPLRSKVPW − 43.91 − 25.96 − 3.15 HLA-DRB1*12:01 
26 ETDLYKLLKTQHLSN − 23.95 − 23.20 − 1.83 HLA-DRB1*04:05 
27 TDLYKLLKTQHLSND − 14.62 − 7.40 − 0.95 HLA-DRB1*04:05 
28 METDLYKLLKTQHLS − 29.39 − 24.37 − 0.64 HLA-DRB1*04:05 
29 YFLYQILRGLKYIHS − 20.64 − 9.91 − 0.54 HLA-DRB1*12:01 
30 CYFLYQILRGLKYIH − 29.67 − 22.08 − 1.47 HLA-DRB1*12:01  
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Table 9 
Virtual screening and comparative docking: Identifying novel drug compounds with ADMET analysis.  

Ligands Binding 
Affinity 

RMSD 
value 

Molecular 
weight 

Interacting 
Residues 

No. of 
heavy 
atoms 

No. of 
rotatable 
bonds 

No. of H 
acceptor 

No. of 
H 
donors 

Density Consensus 
Logp 

Pharmacokinetics Medicinal 
Chemistry 

Drug Likeliness 

GI 
absorption 

BBB 
(blood- 
brain 
barrier) 

P-gp 
substrate. 

P-gp 
Inhibitor 

PAINS Synthetic 
Accessibility 

Lipinski’ 
Rules 

Bioavailability 
score 

Water 
solubility 

Acute 
Oral 
Toxicity 
(kg/Mol) 

GSK Pfizer 
Rule 

ZINC000003920266 − 9.7 1.5 497.5 LYS160, 
ASP158, 
SER162, 
VAL48, 
LEU165, 
ALA61, LYS63, 
ARG176, 
TYR122. 

36 3 10 5 1.032 2.801 Low No Yes No No 5.63 Accepted 0.94 − 3.41 4.45 Rejected Accepted 

ZINC000000001984 − 7.6 0.591 318.756 ALA61, 
VAL48, 
LEU165, 
LYS160, 
TYR45, 
CYS175. 

12 5 4 1 1.011 3.34 High No No No No 2.14 Accepted 0.85 − 4.62 2.145 Accepted Rejected 

ZINC000000001758 − 7.5 1.2 320.341 GLN114, 
LYS63, 
ASP176, 
VAL48, CY175, 
LEU165, 
ILE40. 

23 6 6 2 0.993 2.72 High Yes No No No 3.02 Accepted 0.56 − 4.19 2.821 Accepted Accepted 

ZINC000003812863 − 7.4 1.746 405.496 TYR45, ILE65, 
LYS63, VAL48, 
CYS175, 
LYS160, 
ASP176, 
SER162. 

29 13 7 4 0.975 0.13 High Yes No No No 3.67 Accepted 0.84 − 2.18 2.003 Rejected Accepted 

ZINC000000004009 − 7.2 0.304 306.276 ASN163, 
ASP176, 
ASP120, 
LEU165, 
VAL48, 
GLN114, 
ALA61. 

22 5 7 1 1.108 0.88 High Yes No No No 2.45 Accepted 0.55 − 1.86 1.781 Accepted Accepted 

ZINC000000599734 − 9.7 0.559 369.368 GLY46, LYS64, 
TYR45, ILE65, 
CYS63, VAL48, 
LEU165, 
ALA61. 

25 6 7 1 1.124 3.13 High Yes Yes No No 3.40 Accepted 0.928 − 4.22 2.041 Accepted Accepted 

ZINC000028467879 − 7.9 1.72 554.552 TRP261, 
LYS160, 
GLY43, 
ASP176, 
LYS63, 
GLN114, 
CYS175, 
VAL48. 

36 9 11 4 1.193 − 0.67 Low No Yes yes No 5.08 Rejected 0.64 − 3.09 2.017 Rejected Accepted 

ZINC000035653007 − 7.2 1.904 373.449 LYS63, ILE65, 
TYR45, 
GLY46, GLY43, 
ASP176, ALA4. 

26 6 5 0 1.026 3.78 High Yes Yes Yes No 3.76 Accepted 0.55 − 3.74 3.246 Accepted Rejected 

(continued on next page) 

Y. A
rfat et al.                                                                                                                                                                                                           



Heliyon9(2023)e22204

34

Table 9 (continued ) 

Ligands Binding 
Affinity 

RMSD 
value 

Molecular 
weight 

Interacting 
Residues 

No. of 
heavy 
atoms 

No. of 
rotatable 
bonds 

No. of H 
acceptor 

No. of 
H 
donors 

Density Consensus 
Logp 

Pharmacokinetics Medicinal 
Chemistry 

Drug Likeliness 

GI 
absorption 

BBB 
(blood- 
brain 
barrier) 

P-gp 
substrate. 

P-gp 
Inhibitor 

PAINS Synthetic 
Accessibility 

Lipinski’ 
Rules 

Bioavailability 
score 

Water 
solubility 

Acute 
Oral 
Toxicity 
(kg/Mol) 

GSK Pfizer 
Rule 

ZINC000003927870 − 7.2 1.62 365.214 GLU42, 
ASP158, 
LYS160, 
SER162, 
ASN163, 
ASN163, 
ASP176, 
LYS63, 
CYS175, 
VAL48, 
GLN14. 

24 9 11 5 1.269 − 1.86 Low No No No No 4.43 Accepted 0.68 − 3.08 1.254 Accepted Accepted 

ZINC000008551177 − 7.6 11.50 477.603 ILE40, 
CYS175, 
SER62, 
TYR202, 
LYS160, 
GLU42. 

33 7 12 8 1.032 − 2.22 Low No No No No 6.51 Rejected 0.88 − 2.13 1.858 Rejected Accepted 

ZINC000004468780 − 7.4 1.96 455.474 PRO32, AR33, 
ILE99, ASP97, 
GLY13, ASP29, 
GLN364, 
PRO365, 
PHE363, 
ILE998. 

30 9 9 3 1.161 − 0.27 Low No No Yes No 4.79 Accepted 0.75 − 2.81 1.284 Rejected Accepted 

ZINC000003913937 − 8.2 1.92 517.564 PRO32, 
PRO365, 
ASP29, LYS08, 
ASP109, 
THR101, 
ARG100, 
PRO102. 

36 9 7 3 1.070 − 0.24 Low No Yes No No 4.91 Rejected 0.91 − 3.24 2.027 Rejected Accepted  
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antigenicity assessment using VaxiJen. The 3D structure was predicted through a comparative modelling approach with ERK2 tem-
plate (PDB ID: 5K4I) via MODELLER and validated using various tools. Phylogenetic analysis was performed using MEGA-X. Epitope 
prediction encompassed world population coverage, B-cell epitopes, and CTL epitopes through IEDB. Allergenicity and toxicity were 
evaluated with AllergenFP, AllerTOP, and ToxinPred. Molecular docking involved protein-peptide (PatchDock, FireDock), protein- 
protein (STRING, ClusPro), and drug compound interactions from ZINC database. 

Findings were integrated for potential vaccine and drug development insights. The study’s main results encompass diverse aspects 
of MAPK1 analysis. Notably, the absence of its 3D structure reported by X-ray crystallography and NMR prompted threading and 
homology modelling. BLASTp aided template selection based on coverage, similarity, E value, and score, resulting in robust 3D models. 
Phylogenetic analysis via MEGA X and Molecular Evolutionary Algorithm revealed conserved regions in protein sequences. Epitope 
prediction involved assessing surface attributes and interactions, unveiling conformational β-cells and linear epitopes, while hydro-
philicity analysis showcased distinctive regions. Antigenicity evaluation with Vaxijen indicated world population coverage preference 
in MHC class I of T cells. Peptide design produced reliable CTL and B cell epitopes, while protein-peptide docking highlighted 

Fig. 14. 2D structures of FDA-approved selected drug library from Zinc database (a) Idarubicidin, (b) Finofibric acid (c) Myfortic (d) Lisinopril (e) 
Diflucan (f) Lansoprazole, (g) Ceftriaxone (h) prasugrel (i) fludarabine (j) gentamincin mixture (l) Cefotaxime (k) gentamincin mixture (m) 
piperacillin. 
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interactions and residues. Structural visualization depicted epitope positions and B cell epitopes’ 3D representation. Additionally, in- 
silico protein-ligand interactions yielded potential inhibitors from an FDA-approved compound library, identifying key binding do-
mains and interactions. Protein-protein docking demonstrated MAPK1’s interaction with dusp1, emphasizing its functional associa-
tions. We picked specific CTL epitopes (PAGGGPNPG, GGGPNPGSG, SAPAGGGPN, AVSAPAGGG, AGGGPNPGS, ATAAVSAPA, 
TAAVSAPAG, ENIIGINDI, INDIIRTPT, and NDIIRTPTI) that could trigger a strong defense response and match well with the MAPK 
protein. Protein-ligand docking analysis reveals that VAL48, LYS63, CYS175, ASP176, LYS 160, ALA 61, LEU165, ALA61, TYR45, 
SER162, ARG33, PRO365, PHE363, ILE40, ASN 163 and GLU42 are critical residues for protein-drug interaction. This extensive In- 
silico analysis proposed that reported compounds are effective against Alzheimer’s disease by targeting and inhibiting MAPK1. 
This approach seems capable of influencing the processes linked to Alzheimer’s disease. Using many epitopes also seems smart as it can 
deal with the MAPK protein’s complexity. The study provided comprehensive insights into MAPK1’s structure, epitopes, interactions, 
and potential therapeutic applications. By offering this In-silicon study, our work lays a foundation for future researchers to test and 
develop new ways to fight Alzheimer’s disease. This study could inspire new ideas among scientists, showing a way forward to find a 

Fig. 15. Predicted Interaction: MAPK1 and dusp1 (Uniprot ID: Q7T2L8) through STRING Server.  

Fig. 16. Docking of MAPK1 with dusp6 (Uniprot ID: Q7T2L8) and Their Interacting Residues.  
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solution for Alzheimer’s by creating a special vaccine. 
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