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Abstract
Circumventricular organs (CVOs), including the mediobasal hypothalamus (MBH), have an incomplete blood–brain barrier 
(BBB). In this study, we determined if the BBB function in the MBH is modulated by the gut microbiota or by the Toll-like 
receptor (TLR) adapter proteins TRIF or MyD88 signaling. By injecting mice with Evans blue, a marker for BBB perme-
ability, we show that germ-free (GF) and conventionally raised (CONV-R) mice did not differ in the number of Evans blue-
positive cells in MBH. Acute modulation of the gut microbiota did not change the number of Evans blue-positive cells. In 
contrast, CONV-R Myd88−/− and Trif−/− mice had a reduced number of cells in direct contact to the circulation compared 
to wildtype (WT) mice. This was accompanied by increased tight junction proteins in the blood vessels in Myd88−/− mice. 
To further characterize the BBB function, we injected WT and Myd88 −/− CONV-R mice as well as WT GF mice with 
monosodium glutamate (MSG), a neurotoxin that does not cross the BBB. While MSG caused vast cell death in the MBH 
in CONV-R and GF WT mice, Myd88 −/− mice were protected from such cell death suggesting that fewer cells are exposed 
to the neurotoxin in the Myd88 −/− mice. Taken together, our results suggest that MyD88 deficiency, but not gut microbiota 
depletion, is sufficient to modulate the BBB function in the MBH.

Keywords  Gut microbiota · MyD88 · Blood–brain barrier · Circumventricular organs · Hypothalamus · Tight junction 
proteins

Introduction

The blood–brain barrier (BBB) prevents the entry of poten-
tially harmful blood-derived substances, pathogens, and 
blood cells into the brain. In the embryo, a primitive BBB 
is established, which continues to mature after birth [1]. The 
BBB is composed of highly specialized endothelial cells, 
which express tight junction proteins including zonula 
occludens-1 (ZO-1), occludin, and claudin-1, -3, and -5. 
In addition to this endothelial barrier, the BBB also con-
sists of pericytes and astrocytic end-feet, which surround 
the endothelial cells [1]. Certain areas in the brain, the so-
called circumventricular organs (CVOs), have fenestrated 

capillaries resulting in direct contact between the brain and 
the circulation, which allows neurons in these areas to sense 
blood-derived signals or secrete hormones into the circu-
lation. One of these areas is the median eminence in the 
mediobasal hypothalamus (MBH) [2].

The hypothalamus regulates food intake and energy 
expenditure, and the neuronal circuits involved in this reg-
ulation mature during the first postnatal weeks in rodents. 
Agouti-related protein (AgRP-) and proopiomelanocor-
tin- (POMC-) expressing neurons are a part of these cir-
cuits. They are so-called first-order neurons located in the 
arcuate nucleus (ARC) in the MBH. The ARC is uniquely 
located next to the median eminence. Previous studies 
have shown that ARC also has an incomplete BBB, and 
cells located in this region can readily sense and respond 
to substances in the blood that do not cross the BBB [3, 
4]. Tanycytes are ependymoglial cells that line the wall of 
the third ventricle. Previous studies have suggested that 
tanycytes can regulate the entry of substances into the 
MBH, potentially via a vascular endothelial growth factor 
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A (VEGF-A)-mediated mechanism [5, 6]. The unique 
location of the ARC allows neurons located here to sense 
signals from the body. However, it also makes cells in this 
region more sensitive to blood-derived molecules. Feed-
ing a Western diet leads for example to an inflammatory 
response specifically in the MBH [7]. Taken together, the 
incomplete BBB in the MBH has important consequences 
for the activation and protection of neurons in this region.

Studies have shown that the gut microbiota can affect 
the function and development of the CNS including the 
BBB permeability [8]. A previous study has shown that 
germ-free (GF) mice have a more permeable BBB com-
pared to conventionally-raised (CONV-R) mice, with 
reduced expression of tight junction proteins [9]. This 
study focused on brain areas exhibiting a complete BBB. 
It is not known if the gut microbiota affects the CVOs 
differently. Notable, Toll-like receptor 4 (TLR4), that rec-
ognizes bacterial and viral products including lipopoly-
saccharide (LPS), is particularly highly expressed in the 
CVOs [10–12]. Astrocytes and tanycytes, involved in 
the BBB function in the MBH, are among the cells that 
express the receptor in the MBH [10]. Wnt/β-catenin sign-
aling has been shown to be essential for BBB development 
and maintenance, and the signaling is downregulated in 
CVOs [13]. Dominant genetic activation of β-catenin in 
the endothelial cells leads to tightening of the blood ves-
sels in the CVOs [13]. Several studies have shown a cross-
talk between Wnt/β-catenin and TLR4/NF-κB signaling 
[14], suggesting that TLR4 signaling could play a role in 
the BBB function in these regions. Furthermore, intestinal 
inflammation has been shown to modulate the brain cho-
roid plexus through bacteria-derived LPS, which in turn 
regulated Wnt/β-catenin signaling [15]. In this article, we 
determined if the presence of gut microbes or signaling via 
the TLR adapter proteins MyD88 and TRIF could modify 
the BBB function in the MBH.

Materials and Methods

Mice

Mice were housed in a room with a 12-h light–dark cycle 
with free access to water and autoclaved chow diet (Lab-
diet, St. Louis, MO). Female and male C57BL/6 J mice 
(10–14 weeks old) were used for immunofluorescence. GF 
mice were maintained in flexible film isolators and the GF 
status was monitored regularly by anaerobic culturing and 
PCR for bacterial 16S ribosomal RNA. All experiments 
were approved by the ethical committee at the University of 
Gothenburg. Trif and MyD88 deficient mice have previously 
been described [16].

Antibiotic Treatment

Mice were treated with 1 g/L ampicillin and 0.5 g/L neo-
mycin added to the drinking water in light protected bottles 
for 10 days to 4 weeks. New solutions were prepared every 
second day. We have previously confirmed that the antibiotic 
treatment led to depletion of the gut microbiota [7].

Colonization of GF Mice Using Mouse Donors

Total cecal content from CONV-R donor mice was resus-
pended in 3 ml of sterile PBS, and each GF mouse was given 
200 μl of this solution by an oral gavage. The resulting con-
ventionalized (CONV-D) mice were kept in standard cages 
for 28 days before used.

Analysis of the BBB Function Using Evans Blue 
and Monosodium Glutamate (MSG)

Mice were anesthetized and injected with 1% (wt/vol) Evans 
blue (Sigma) in 50 µL saline transcardially, and perfused 
with PBS followed by 4% (wt/vol) paraformaldehyde (PFA) 
in PBS 10 min later. The brains were dissected, postfixed 
in 4% PFA, and transferred to 30% (wt/vol) sucrose in PBS 
overnight at 4 °C. Part of the brain containing the hypothala-
mus was embedded in OCT (Histolab, Gothenburg, Swe-
den), frozen and kept in − 80 °C until sectioned in 10 µm 
thick coronal sections using a cryostat. Direct fluorescence 
from Evans blue was captured using Zeiss Axioplan 2 imag-
ing system equipped with an AxioCam digital camera HRc 
using the program Axio Vision 4.8.2.0 (Zeiss, Oberkochen, 
Germany). At least two different sections were stained 
per mouse. The positive cells in the MBH (Bregma − 2.15 
to − 2.03) were counted blinded and expressed as an average 
per coronal sections (10 µm thick). Some mice were injected 
with MSG (0.1 g) or vehicle subcutaneously 24 h before per-
fusion. MSG solutions were prepared on the day of injection 
and filter-sterilized under sterile conditions.

Immunofluorescence

Fed mice were perfused with PBS followed by 4% (wt/vol) 
PFA in PBS. Brains were dissected and further processed as 
described above. The brains used for tight junction proteins 
and MECA-32 staining were only perfused with PBS and 
transferred to sucrose solution within 4 h. For staining of 
GFAP and Vimentin, sections containing the MBH were 
incubated sequentially for 10 min each in 0.3% (wt/vol) gly-
cine solution and 0.3% (wt/vol) SDS solution. For co-stain-
ing of GFAP and TLR4 as well as Vimentin and TLR4, no 
unmasking was used. For HuC/HuD staining, hypothalamic 
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sections were boiled in sodium citrate (10 mM, pH 6) dur-
ing 10 min using a pressure cooker and then allowed to cool 
down in room temperature. For staining for MECA32 or for 
the tight junction protein ZO-1 with Vimentin and/or CD31 
slides were fixed in ice-cold 95% EtOH for 30 min, fol-
lowed by 1 min cold Acetone (histological grade, 534,064, 
Sigma) and washed in PBS. For claudin-5 together with 
Vimentin and CD31 staining, slides were fixed for 10 min 
in 4% (wt/vol) PFA in PBS at room temperature and then 
washed in PBS. All sections were blocked in 10% donkey 
or 10% goat serum for 1 h at room temperature, and incu-
bated with primary antibodies (see Table 1) overnight at 
4 °C. The sections were then washed in PBS-tween, incu-
bated with respective secondary antibodies (see Table 1) for 
1 h at room temperature, and then washed with PBS-tween 
again. Hoechst solution (dilution 1:10,000, H1399, Thermo 
Fisher Scientific) was used to visualize cell nuclei. Fluores-
cence images were captured using Zeiss Axioplan 2 imag-
ing system or Zeiss Imager M1 equipped with an AxioCam 
digital camera MRm using the program Axio Vision 4.8.2.0 
(Zeiss, Oberkochen, Germany) or with a Nikon microscope 
of the eclipse Ni-E series equipped with an Andor Zyla 
PLUS sCMOS camera using the program NIS-Element 
5.30.04 (Bergman Labora Göteborg, Sweden). The positive 
cells in the ARC (Bregma − 2.15 to − 2.03) were counted 
blinded and expressed as an average of at least two coro-
nal sections (10 µm thick). Average tight junction protein 
immunoreactivity in CD31+ blood vessels was measured by 
Fiji-ImageJ.

Cell Death Assay

To determine hypothalamic cell death after vehicle or 
MSG administration, the In Situ Cell Death Detection Kit 
(Cat# 11,684,795,910, Merck) was used according to the 
manufacturer’s recommendations on cryopreserved tissue 
sections (10 µm).

Experimental Design and Statistical Tests

Female and male C57BL/6 J mice were used in this study 
as indicated. Data are presented as mean ± SEM. Each data 
point in the figures represents data from one mouse. For 
immunofluorescence analyses, at least two different sections 
were stained per mouse. Statistical differences were tested 
with two-sided Mann–Whitney test, or Kruskal–Wallis test 
with Dunn’s correction for multiple tests. Statistical analysis 
was performed using GraphPad Prism 9.

Results

GF Mice Do Not Have an Altered BBB Function 
in the MBH

The gut microbiota has previously been shown to regu-
late BBB permeability in parts of the brain with a com-
plete BBB [9], and intraperitoneal administration of LPS 
has been shown to regulate vasculature permeability in 
the choroid plexus [15]. We hypothesized that the gut 

Table 1   Antibodies. List 
of primary and secondary 
antibodies used for 
immunofluorescence with 
dilution and catalogue number

Antibody Dilution Cat#, company

Primary antibodies
CD31 1:500 NB100-2284, Novus biologicals
Claudin-5 1:500 34–1600, Thermo Fisher Scientific, Waltham, MA
GFAP 1:500 ab53554, Abcam, Cambridge, UK; 13–300, 

Thermo Fisher Scientific, Waltham, MA
HuC/HuD 1:2000 Ab210554, Abcam
MECA32 1:500 Developmental Studies Hybridoma Bank DSHB
TLR4 1:200 SPC-200, Stress Marq Biosciences
Vimentin 1:1000 AB5733, Sigma Aldrich
ZO-1 1:500 61–7300, Thermo Fisher Scientific, Waltham, MA
Secondary antibodies
AlexaFluor 488 donkey anti-rabbit 1:300 A-21206, Invitrogen, Waltham, MA
AlexaFluor 594 donkey anti-rabbit 1:300 A-21207, Invitrogen, Waltham, MA
AlexaFluor 647 donkey anti-rabbit 1:300 A-31571, Invitrogen, Waltham, MA
AlexaFluor 488 goat anti-chicken 1:300 A11039, Invitrogen, Waltham, MA
AlexaFluor 594 goat anti-chicken 1:300 A11042, Invitrogen, Waltham, MA
AlexaFluor 488 goat anti-rabbit 1:400 A11070, Invitrogen, Waltham, MA
AlexaFluor 594 donkey anti-rat 1:300 A21209, Invitrogen, Waltham, MA
AlexaFluor 488 donkey anti-goat 1:300 A11055, Invitrogen, Waltham, MA
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microbiota modulates the BBB function in the MBH, a 
CVO, in healthy mice. To test this hypothesis, GF and 
CONV-R mice were injected with Evans blue, a marker 
for BBB permeability, labeling cells outside the BBB in 
the MBH [3, 4]. The number of Evans blue-positive cells, 
i.e. the number of cells outside the BBB in the MBH, did 
not differ between the groups (Fig. 1a-b). We observed a 
trend of reduced number of astrocytes in the GF compared 
to the CONV-R female mice (Fig. 1c-d), which is in line 
with our previous results [7]. There was no difference in 

the tanycytes (vimentin) or fenestration (MECA-32) pat-
tern in the MBH (Fig. 1e-g). The number of MECA-32+ 
blood vessels in ARC did not differ between CONV-R and 
GF mice. (Fig. 1e-f), and the tight junction protein expres-
sion did not significantly differ between GF and CONV-R 
mice (Fig. 1g-i). However, there was a trend of reduced 
ZO-1 immunoreactivity in GF compared to CONV-R mice 
(Fig. 1i). Taken together, these results suggest that life-
long microbiota depletion is not sufficient to alter the BBB 
function in the MBH.

Fig. 1   Absence of gut micro-
biota does not alter the BBB 
function in the mediobasal 
hypothalamus. CONV-R 
(n = 14) and GF (n = 11) 
female mice were transcardi-
ally injected with Evans blue 
to mark hypothalamic cells that 
are in direct contact with the 
circulation. Sections containing 
the hypothalamus were analyzed 
for Evans blue-positive cells 
(a–b). p = 0.38 as analyzed by a 
Mann–Whitney test. Hypotha-
lamic sections were stained for 
the astrocyte marker GFAP and 
the number of GFAP+ cells was 
determined in CONV-R (n = 13) 
and GF (n = 9) female mice 
(c-d). p = 0.09 using a Mann–
Whitney test. Representative 
pictures of fenestration marker 
MECA-32 immunoreactiv-
ity in MBH (e). The number 
of MECA-32+ blood vessels 
in ARC (f) was determined in 
CONV-R (n = 5) and GF male 
mice (n = 8). p = 0.18 using a 
Mann–Whitney test. Expression 
patters of vimentin, claudin-5 
and ZO-1 were determined 
in CONV-R (n = 7) and GF 
(n = 9) male mice (g-i). p = 0.68 
(claudin-5) and p = 0.09 (ZO-1) 
using a Mann–Whitney test 
between CONV-R and GF mice. 
Graphs show mean ± SEM. 
Scale bars: 100 μm
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Acute Modulation of the Gut Microbiota in Adult 
Mice Is Not Sufficient to Induce Changes in BBB 
Function in the MBH

The lack of difference in BBB function between GF and 
CONV-R mice may be due to compensatory mechanisms, 
similar to what is observed in many transgenic mouse mod-
els [17]. Therefore, to minimize the impact of compensatory 
mechanisms, we also determined if the BBB function could 
be modulated by acutely depleting the gut microbiota from 
CONV-R mice. We treated CONV-R mice with vehicle or 
antibiotics for 10 days or 4 weeks and injected Evans blue 
before perfusing the mice. We have previously confirmed a 
dramatic depletion of the gut microbiota using this antibiotic 
treatment protocol [7]. Ten-day or 4-week antibiotic treat-
ment did not alter the number of Evans blue-positive cells 
significantly (Fig. 2a-c). Similarly, we colonized adult GF 
mice, and observed no difference in the number of Evans 
blue-positive cells in the MBH from the colonized mice 
compared to the GF mice (Fig. 2d). These results suggest 
that acute modulation of the gut microbiota is not sufficient 

to affect the number of cells in direct contact with the circu-
lation in the MBH.

TLR Adapter Protein MyD88 Signaling Modulates 
BBB Function in the MBH

Bacteria-derived LPS, a ligand to TLR4, has been 
shown to modulate the brain choroid plexus through 
Wnt/β-catenin signaling [15]. Since our results suggest 
that the absence of gut microbiota is not sufficient to 
modulate the BBB function in MBH in healthy mice, 
we next determined if complete deficiency of the TLR 
adapter protein MyD88 and TRIF signaling could alter 
the BBB function in the MBH. Previous results suggest 
that TLR4 is particularly highly expressed in the CVOs 
of the brain, and that both astrocytes and tanycytes can 
express the receptor. We confirmed that TLR4 is highly 
expressed in the MBH and that both astrocytes and tany-
cytes express the receptor (Supplemental Fig. 1a-e). By 
injecting mice with Evans blue, we show that adult Trif 
−/− and Myd88 −/− male mice had a reduced number of 

Fig. 2   Gut microbiota modula-
tions do not alter the BBB 
function in the mediobasal 
hypothalamus. Mice were 
treated with antibiotics in the 
drinking water for 10 days or 
4 weeks before being injected 
with Evans blue to mark cells 
in the hypothalamus that are in 
direct contact with the circula-
tion. The number of Evans blue-
positive cells was determined 
in CONV-R (n = 8) and 10-day 
antibiotic-treated male mice 
(n = 8) (a). p = 0.51 as analyzed 
by a Mann–Whitney test. The 
number of Evans blue-positive 
cells was determined in CONV-
R (n = 7) and 4-week antibiotic-
treated female mice (n = 10) 
(b–c). p = 0.23 as analyzed by a 
Mann–Whitney test. Scale bar: 
100 μm. GF mice were colo-
nized by cecal mice microbiota 
and injected with Evans blue 
and perfused four weeks later. 
The number of Evans blue+ 
cells in the mediobasal hypo-
thalamus was determined in GF 
(n = 6) and CONV-D female 
mice (n = 9) (d). p = 0.95 as ana-
lyzed by a Mann–Whitney test. 
Graphs show mean ± SEM
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Evans blue-positive cells in the MBH compared to wild-
type (WT) male mice, indicating that signaling via these 
adapter proteins modulate the BBB function (Fig. 3a-b). 
Since the difference compared to WT mice was smaller 
in Trif −/− compared to Myd88 −/− mice, we focused on 
the Myd88 −/− mice in further experiments. First, we con-
firmed the reduced number of Evans blue-positive cells in 
female Myd88 −/− mice compared to WT female control 
mice (Fig. 3c). We further examined the number of astro-
cytes as well as the tanycytes and fenestration patterns. 
While the number of astrocytes in the ARC was reduced 
in Myd88 −/− mice compared to WT control mice (Fig. 3d-
e), there was no noticeable difference in the tanycyte or 
fenestration patterns in the MBH (Fig. 3f-g). We observed 
a few MECA-32+ blood vessels in the ARC in both Myd88 
−/− and WT mice, and the number did not differ between 
the groups (Fig. 3h). Next, we determined if there were 
any differences in tight junction protein expression. The 
claudin-5 immunoreactivity was increased in MyD88 
deficient mice compared to WT controls in blood ves-
sels in the ARC as well as in blood vessels which were 
connected with tanycytic projections (Fig. 3i-k). We did 
not observe any differences in ZO-1 immunoreactivity in 
blood vessels in ARC or specifically in the blood vessels 
to which the tanycytes connect (Fig. 3l-m). Altogether, 
these results suggest that fewer cells in the MBH directly 
sense blood-borne substances in mice lacking MyD88 and 
TRIF, and that increased claudin-5 in blood vessels from 
MyD88 deficient mice may contribute to this phenotype.

Monosodium Glutamate (MSG) Causes Cell Death 
in CONV‑R and GF WT Mice, but to a Lesser Extent 
in CONV‑R Myd88 −/− Mice

To further functionally characterize the BBB in the MBH, 
we injected the neurotoxin MSG subcutaneously in Myd88 
−/− and WT CONV-R mice as well as in WT GF mice and 
perfused the mice 24 h later. MSG is a neurotoxin that kills 
neurons outside the BBB, but does not cross the BBB [4]. It 
can therefore be used to assess the BBB function. Two WT 
CONV-R mice (22%) showed signs of ataxia within a few 
hours after MSG injection and were therefore euthanized 
without further analyses. No GF or MyD88 deficient mice 
had to be euthanized prior to the end of the experiment. 
To determine ongoing cell death in the MBH, we used a 
TUNEL-based assay and the number of cells with labeled 
DNA strand breaks was counted. The number of cells with 
signs of ongoing cell death did not differ between the three 
MSG-injected groups using the TUNEL assay (Fig. 4a-b). 
None of the vehicle-injected mice showed any signs of cell 
death in the MBH. Since cell death may have occurred prior 
to the 24-h endpoint, we also determined if the number of 
neurons was reduced after MSG injection compared to 
vehicle. While the number of neurons in the ARC was sig-
nificantly reduced in MSG-injected CONV-R and GF WT 
mice compared to vehicle, the number of neurons in ARC 
from MyD88 deficient mice was not decreased compared to 
vehicle-injected mice (Fig. 4c-d). Furthermore, while cell 
death was evident by visible inspection of the stained hypo-
thalamic sections in WT GF and CONV-R mice, it was not 
in the Myd88 −/− CONV-R mice. These findings support the 
results from the Evans blue-injections and suggest that fewer 
cells are in direct contact with the circulation in the MBH, 
and thereby sensitive to blood-borne substances, in MyD88 
deficient mice compared to controls.

Discussion

In this study, we show that TLR adapter proteins MyD88 and 
TRIF deficiency, but not gut microbiota depletion, are suf-
ficient to modulate the BBB function in the MBH (Fig. 5). 
While MyD88 and TRIF deficient mice had a reduced num-
ber of cells in direct contact with the circulation compared 
to WT CONV-R mice, GF WT mice did not differ from 
CONV-R WT mice. Furthermore, we show that MyD88 
deficient mice are less sensitive to circulating toxins. Subcu-
taneous administration of MSG caused extensive cell death 
in the mediobasal hypothalamus in GF and CONV-R WT 
mice, but not in MyD88 deficient mice.

MyD88 is central in TLR/interleukin-1 receptor (IL-1R) 
signaling, and all TLRs/IL-1Rs except TLR3 utilize MyD88 
[18]. Thus, the phenotype we observed in MyD88 deficient 

Fig. 3   Reduced number of cells in contact with the circulation in 
mediobasal hypothalamus in Trif −/− and Myd88 −/− mice. Trif −/−, 
Myd88 −/− and WT mice were transcardially injected with Evans blue 
to mark hypothalamic cells that are in direct contact with the circula-
tion. Sections containing the hypothalamus were analyzed for Evans 
blue-positive cells in male (a–b, n = 5–8 per group) and female (c, 
n = 4 per group) mice. p = 0.047 for male Trif −/− and WT mice and 
p = 0.0003 for Myd88 −/− and WT male mice as analyzed by Kruskal–
Wallis. p = 0.029 for Myd88−/− and WT female mice as analyzed by 
a Mann–Whitney test. Hypothalamic sections were stained for the 
astrocyte marker GFAP and the number of astrocytes was determined 
in Myd88−/− (n = 9) and WT (n = 17) male mice (d–e). Expression 
pattern, as analyzed by immunofluorescence, of the tanycyte marker 
vimentin (f) as well as for MECA-32 (g), a marker for fenestrated 
capillaries. n = 5 WT mice and n = 3 Myd88 −/− male mice. The num-
ber of MECA-32+ blood vessels in ARC in Myd88 −/− and WT mice 
was counted (h). p = 0.86 as analyzed with a Mann–Whitney test. 
Claudin-5 immunoreactivity was determined in blood vessels in ARC 
(i; p = 0.017) as well as in blood vessels to which tanycytes connect 
(j–k; p = 0.0043) in Myd88−/− (n = 6) and WT (n = 5) mice. Scale bar: 
100 μm. ZO-1 immunoreactivity was determined in blood vessels in 
ARC (l; p = 0.66 as analyzed with a Mann–Whitney test) as well as 
in blood vessels to which tanycytes connect (m; p = 0.54 as analyzed 
by a Mann–Whitney test) in Myd88 −/− (n = 6) and WT (n = 5) male 
mice. Graphs show mean ± SEM

◂
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mice may be due not only to diminished TLR4 signaling 
but also to other TLRs and IL-1Rs signaling. In contrast 
to the wide usage of MyD88 in TLR/IL-1R signaling, only 
TLR3 and TLR4 utilize TRIF. We observe a similar but less 
pronounced phenotype in TRIF deficient mice compared to 
the MyD88 deficient mice, suggesting that at least some of 
the effect is due to TLR4 signaling.

TLRs, including TLR4 and TLR2, are particularly 
highly expressed in CVOs indicating an important role 
of these receptors in detecting the presence of invading 
microorganisms in these regions [10–12, 19]. Notable, 

TLR signaling is tightly regulated by negative feedback 
to avoid detrimental effects, and MyD88 can act as an 
intracellular negative regulator to protect against TLR 
overactivation [20]. Laflamme et al. found that LPS admin-
istration diminished the expression of TLR4 in the CVOs 
including the mediobasal hypothalamus [12]. Together 
with our results, these results suggest that the decreased 
TLR4 expression may act as a protective mechanism lead-
ing to increased tight junction protein expression during 
systemic infection, which in turn inhibits microorganisms 
to enter the CNS via CVOs.

Fig. 4   Monosodium glutamate 
(MSG) causes cell death in 
CONV-R and GF WT mice, but 
to a lesser extent in CONV-R 
Myd88−/− mice. CONV-R WT, 
GF WT, and CONV-R Myd88 
−/− female mice were treated 
with the neurotoxin MSG or 
vehicle and perfused 24 h later. 
A TUNEL assay was used to 
determine cell death in the 
mice (a–b). CONV-R vehicle 
n = 6, CONV-R MSG n = 7, GF 
vehicle n = 9, GF MSG n = 12, 
Myd88 −/− vehicle n = 3, Myd88 
−/− MSG n = 4. p > 0.99 for 
CONV-R WT MSG compared 
to GF MSG, and p > 0.99 for 
CONV-R WT MSG compared 
to Myd88 −/− MSG as analyzed 
by a Kruskal–Wallis test. Hypo-
thalamic sections were stained 
for the neuronal marker HuC/D 
and the number of neurons in 
the ARC was determined in 
CONV-R WT, GF WT, and 
CONV-R MyD88 deficient 
mice (c-d). CONV-R vehicle 
n = 7, CONV-R MSG n = 7, GF 
vehicle n = 9, GF MSG n = 12, 
Myd88−/− vehicle n = 4, Myd88 
−/− MSG n = 5. p = 0.035 for 
CONV-R WT vehicle com-
pared to MSG, p = 0.020 for 
GF WT vehicle compared to 
MSG, and p > 0.99 for Myd88 
−/− vehicle compared to MSG as 
analyzed by a Kruskal–Wallis 
test. Graphs show mean ± SEM. 
Scale bars: 100 μm
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TLR4 recognizes bacterial and viral products including 
LPS [21], but it has also been suggested that TLR4 signaling 
can be activated and modulated by endogenous signals and 
dietary fatty acids [22, 23]. These dietary fatty acids and 
endogenous ligands can potentially activate TLR4 signaling 
in GF mice. Furthermore, grain-based rodent diets, which 
has been used in this study, have previously been shown 
to contain bacterial parts and components including LPS 
and that such components can affect experimental results 
using GF mice [24, 25]. Taken together, TLR4 may also be 
activated in the absence of microorganisms and complete 
deletion of the adapter proteins in the knockout mice may 
therefore cause a more sever phenotype, as observed in this 
study.

Previous studies have shown that LPS induce tight junc-
tion permeability in the gut via TLR4-induced activation of 
membrane-associated adaptor protein FAK and MyD88, and 
silencing of MyD88 using siRNA prevented LPS-induced 
tight junction permeability [26]. LPS administration in 
mice have also been shown to increase BBB permeability, 
an effect that was associated with increased MyD88 gene 
expression and decreased tight junction expression in the 
brain [27]. In an in vitro model of brain microvascular 
endothelial cells, LPS exposure led to an altered morphology 

and staining patterns for ZO-1 and claudin-5 [28]. Together 
with our study, these studies suggest that LPS-TLR4-MyD88 
signaling can regulate BBB function by altering the tight 
junctions.

Wnt/β-catenin signaling regulates BBB development 
and maintenance in endothelial cells in CNS vessels dur-
ing embryonic and postnatal development [29]. Benz et al. 
showed that low Wnt/β-catenin signaling in CVOs leads 
to leaky vessels, and dominant, endothelial cell-specific 
β-catenin expression in mice transformed leaky blood ves-
sels into BBB-like vessels by increasing claudin-5 positive 
vessels, stabilizing junctions and reducing MECA-32 [13]. 
Notable, there are cross-talks between the MyD88 down-
stream signaling mediator NFκB and Wnt/β-catenin signal-
ing [14]. The interaction is bidirectional i.e. Wnt/β-catenin 
can regulate the NFκB activity and NFκB can regulate Wnt/
β-catenin signaling, potentially integrating the two pathways 
in regulating BBB function. In terms of the NFκB effect on 
Wnt/β-catenin signaling, many studies observe a negative 
regulation of NFκB on Wnt/β-catenin signaling [14], sug-
gesting that the lack of MyD88 and thereby NFκB signaling 
in our study could lead to increased Wnt/β-catenin signaling 
and less leaky blood vessels. Notable, a recently published 
article showed that intestinal inflammation, leading to gut 

Fig. 5   Graphical summary 
of the main findings of this 
article. The lack of a micro-
biota in germ-free (GF) mice 
does not significantly affect 
the number of cells in contact 
with the circulation in the MBH 
compared to conventional mice. 
The expression of tight junction 
proteins in the blood vessels in 
the ARC did not differ between 
CONV-R and GF mice. In 
contrast to the GF mice, deple-
tion of the Toll-like receptor 
adapter protein Myd88 resulted 
in increased expression of tight 
junction protein claudin-5 as 
well as reduced number of cells 
in contact with the circulation in 
the MBH

Myd88 Myd88 Myd88

LPS
Other TLR ligands

Tight junction protein

Number of cells in contact 
with the circulation

Conventional Germ-free Myd88 -/-
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vascular barrier opening, modulates the brain choroid plexus 
through bacteria-derived LPS which in turn leads to clo-
sure of the brain choroid plexus by the up-regulation of the 
Wnt/β-catenin signaling pathway, protecting the brain from 
inflammation [15]. The authors observed a temporal effect 
of intestinal inflammation, with an early increased perme-
ability in choroid plexus, followed by closure of the choroid 
plexus [15]. These results could indicate a negative feedback 
mechanism of LPS via MyD88, that further cross-talk with 
Wnt/β-catenin signaling.

In contrast to previous studies, showing an effect of the 
gut microbiota on the BBB [9, 30], we did not observe such 
effects. Several factors could explain these differences. First, 
this study focuses on an area of the brain with an incomplete 
BBB, while previous studies focus on areas with a com-
plete BBB. Different mechanisms are most likely involved 
in the BBB regulation in these areas, supported by the higher 
TLR4 expression in the CVOs, and the presence or absence 
of a gut microbiota may therefore lead to different effects in 
these areas. Second, gut microbial composition in CONV-
R mice from different animal facilities have been shown to 
differ significantly and can lead to different phenotypes [31, 
32]. Thus, it is possible that differences in the CONV-R gut 
microbial composition can explain differences in the pheno-
type. As discussed above, the diet is another factor that may 
affect the results. Different antibiotic protocols have also 
been used. We used a relatively mild antibiotic treatment 
compared to previous studies [30]. Our protocol was used 
due to its minimal effects on the mice feeding behavior. Even 
though such antibiotic treatment does not completely deplete 
the gut microbiota, we have previously shown that this anti-
biotic treatment protocol results in a dramatic depletion of 
the gut microbiota as well as microbial-produced metabo-
lites [7]. However, differences in antibiotic treatment could 
potentially cause differences in the phenotype observed both 
by affecting the gut microbial composition as well as affect-
ing feeding behavior. Antibiotics may also exert intrinsic 
off-target effects that are not related to the depletion of the 
microbiota. Taken together, further studies are needed to 
disentangle how these different factors modulate the effects 
of the gut microbiota in these studies.

Our study has limitations. First, it should be noted that 
the microbiota composition was not analyzed after the col-
onization procedure in this study, and the exact microbial 
composition in the colonized mice is therefore not known. 
However, previous studies using a similar protocol, have 
shown that transplantation of cecal content from one mouse 
to another mouse results in microbial composition compa-
rable to the donor mouse [33]. Another limitation of the 
present study is that only female GF mice were used and 
compared to female CONV-R mice. Thus, sex differences 
could not be detected. However, in contrast to the GF mice, 
both male and female mice were included when comparing 

Myd88 deficient mice to WT mice. In this experiment, 
female and male mice showed similar phenotype compared 
to their controls.

In conclusion, our results suggest that MyD88 signaling 
in CVOs plays a role in the CVOs’ function by decreasing 
expression of tight junction proteins and thereby allowing 
neurons to sense blood-borne substances as well as secrete 
neurohormones to the blood stream. In contrast, our results 
suggest that modulation of the gut microbiota is not suffi-
cient to alter the BBB function in the mediobasal hypothala-
mus. Further studies are needed to determine if increased 
MyD88 signaling in MBH during systemic infection is 
involved in a negative feedback mechanism leading to clo-
sure of the CVO.
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