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Abstract: We evaluated the role of immunoglobulin binding protein 1 (IGBP1), a phosphoprotein
associated with the B cell receptor (BCR) complex, as a urine biomarker in lupus nephritis (LN).
The IGBP1 concentrations in plasma and urine of patients with LN, systemic lupus erythematosus (SLE)
without nephritis and healthy controls were estimated by ELISA. IGBP1 expression in the kidneys of
LN patients and transplantation donors was detected by immunohistochemistry. Microarray-based
global gene expression profile of HK-2 cells with IGBP1 knock-down and fluorescence-activated
cell sorting (FACS) for intracellular IGBP1 expression in human peripheral blood mononuclear cells
(PBMCs) was performed. Urine IGBP1 levels were elevated significantly in LN patients, and it
correlated with the clinical activity indices (complement 3 (C3) level, anti-dsDNA antibodies titer,
SLE Disease Activity Index-2000 (SLEDAI-2K) and histological activity index. IGBP1 expression
was increased in LN patients as compared to the donors and was detected mainly in the tubules by
histopathology. In microarray analysis, several genes related to SLE pathogenesis (PPME1, ROCK2,
VTCN1, IL-17R, NEU1, HLA-DM, and PTX3) responded to siRNA-mediated IGBP1 silencing. In FACS,
IGBP1 was expressed mainly in the CD14+ cells. The overall expression of IGBP1 in PBMCs was
higher in LN patients as compared with that in SLE patients without nephritis. Conclusively, urinary
IGBP1 may be a novel biomarker reflecting the clinical and histological activities in LN.

Keywords: disease activity; immunoglobulin binding protein 1; inflammation; Lupus nephritis;
renal tubular epithelial cells; urine biomarker

1. Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody
production, immune complex deposition, and end-organ damage. Lupus nephritis (LN) is the most common
and serious complication of SLE. Unfortunately, 10 to 15% of LN patients progress to end-stage renal disease,
and the 5-year survival rate of LN patients is stalled at 82%, whereas the 5-year survival for SLE patients
without nephritis is 92% [1].

Histological examination of the kidney is a valuable tool for the diagnosis, assessment, and
prognostication of SLE patients. However, a kidney biopsy can be accompanied by significant
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morbidity and therefore, cannot usually be performed serially. A non-invasive, easily obtainable,
and accurate marker that can be followed serially may, therefore, be of great value in monitoring
LN patients [2,3]. Laboratory markers in current use, including serological determination of serum
anti-double-stranded (ds)DNA antibodies and complement levels can be helpful clinically, however,
the correlation between these and LN is weak [4].

Urine abnormalities and impairment of renal functions are the key manifestations of LN.
Identification of specific biomarkers in LN, distinct from SLE patients without nephritis, is important
for monitoring the disease activity and guiding treatment in LN. With respect to LN, urine biomarkers
may be more specific for the diagnosis of kidney damage than serum biomarkers. Further, obtaining
urine samples for laboratory testing is much easier and less invasive, making it an ideal biological
sample for repetitive sampling in LN [5]. Presently, the hallmark of LN is considered to be proteinuria,
and it is the principal urine biomarker that is estimated during screening and monitoring [6]. However,
a consistent concordance between proteinuria and histological activity in LN patients is lacking [7].
Therefore, the potential role of several urinary biomarkers, such as VCAM-1, TNFR1, P-selectin,
CXCL16, and TWEAK, reflecting renal activity in LN was examined [8–10]. However, these biomarkers
are not validated for use in clinical settings [5].

Although several cell types could be dysregulated, B cells have emerged as central players in
SLE and LN development, and play a role by secreting autoantibodies, presenting antigens to T cells,
and secreting inflammatory cytokines [11–13]. In healthy individuals, B cells expressing autoreactive
receptors are negatively selected during B cell maturation, but not in SLE and therefore, exert its
pathogenic effects. B cells from SLE patients have an exaggerated B cell receptor (BCR) response along
with receptor crosslinking, leading to increased tyrosine phosphorylation of the downstream signaling
molecules [14]. In a recent genome wide association studies (GWAS), variants affecting B cell and
pre–B cell signaling was found to affect both central and peripheral tolerance in SLE [15,16]. Therefore,
B cell-targeting therapy in refractory LN produces therapeutic effects in SLE patients [17–19].

Immunoglobulin binding protein 1 (IGBP1) was originally discovered as a 52-kDa phosphoprotein
associated with Ig-α in the BCR complex [20]. This protein interacts with the catalytic subunit
of protein phosphatase (PP2A) and highly conserved serine/threonine phosphatase and regulates
differentiation, proliferation, and apoptosis [21,22]. Several studies have reported that an abnormally
high PP2Ac level alters the phenotype and functions of T cells by affecting the transcription factor
activity including cAMP response element-binding protein, E74-like factor 1, and specificity protein 1
in SLE patients [23–25].

Therefore, there is a pressing need to find precise urinary biomarkers that reflect LN disease
activity. Here, we evaluated whether IGBP1, a phosphoprotein BCR complex in the urine, is a potential
biomarker representing LN activity clinically and histologically.

2. Results

2.1. Baseline Characteristics of the SLE Patients

The demographic characteristics and disease-related variables of the participants are presented in
Table 1. The patients were predominantly female, and the mean ages were 39.4 (SLE without nephritis)
and 39.1 (LN) years. The median disease duration of the patients without or with nephritis were 6.2 and
7.7 years, respectively. Compared to the SLE patients without nephritis, LN patients had higher levels
of anti-dsDNA (p = 0.037) and SLE Disease Activity Index-2000 (SLEDAI-2K) (p < 0.001). The levels of
complement 3 (C3), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) did not differ
in the SLE patients in both groups. With regard to concomitant medications, LN patients, but not SLE
patients without nephritis, were treated with glucocorticoids (median, 15 mg/day), mycophenolate
mofetil (30.8% patients), and cyclophosphamide (26.3% patients).
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Table 1. Baseline characteristics of the systemic lupus erythematosus (SLE) patients with and without nephritis.

SLE without Nephritis
(n = 30)

Lupus Nephritis
(n = 39) p Value

Female (N, %) 29 (96.7%) 38 (97.4%) >0.999
Age (years, mean ± SD) 39.4 ± 8.5 39.1 ± 11.0 0.903

Disease duration (years, median, range) 6.2 (3.2–10.7) 7.7 (2.1–10.9) 0.410
Laboratory data

Serum creatinine (mg/dl, median) 0.70 (0.63–0.80) 0.80 (0.70–1.10) 0.019
C3 (mg/dl, mean ± SD) 77.3 ± 24.3 81.3 ± 24.8 0.523

C4 (mg/dl, median) 11.7 (9.1–15.1) 14.0 (8.1–21.0) 0.037
Anti-dsDNA (IU/mL, median) 7.5 (5.3–20.0) 14.2 (7.7–78.8) 0.037

ESR (mm/hr, mean ± SD) 27.1 ± 13.8 33.2 ± 19.0 0.125
CRP (mg/dl, median) 0.10 (0.10–0.20) 0.11 (0.10–0.31) 0.129

Urine protein/creatinine ratio (mg/g, median) NA 1009.5 (155.4–2275.6) NA
Microscopic hematuria (N, %) # 1 (3.3%) 19 (48.7%) <0.001

Organ involvement (N, %)
Renal 0 (0.0%) 39 (100.0%) <0.001

Neurologic 2 (6.7%) 1 (2.6%) 0.576
Musculoskeletal 6 (20.0%) 8 (20.5%) 0.958
Mucocutaneous 4 (13.3%) 6 (15.4%) >0.999

Serositis 2 (6.7%) 1 (2.6%) 0.576
SLEDAI-2K (mean ± SD) 4.48 ± 0.73 12.18 ±1.16 <0.001

Medications
Glucocorticoids (mg/d, median) * 0.0 (0.0–10.0) 15.0 (6.3–20.0) 0.001

Hydroxychloroquine (N, %) 29 (96.7%) 31 (79.5%) 0.067
Mycophenolate mofetil (N, %) 0 (0.0%) 12 (30.8%) 0.001

Cyclophosphamide (N, %) 0 (0.0%) 10 (26.3%) 0.002
Azathioprine (N, %) 2 (6.7%) 7 (17.9%) 0.281
Methotrexate (N, %) 1 (3.3%) 0 (0.0%) 0.435

Abbreviations: SLE, systemic lupus erythematosus; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein;
NA, not available; SLEDAI-2K, Systemic Lupus Erythematosus Disease Activity Index 2000. # RBC ≥ 5/HPF (high
power field), * Prednisolone equivalent.

2.2. Urinary IGBP1 Level was Increased in Patients with Lupus Nephritis

The levels of urinary IGBP1 were measured in SLE patients with (n = 39) and without (n = 30) nephritis,
and healthy controls (n = 18) (Figure 1A). Urinary IGBP1 levels in LN patients were significantly higher
than that in SLE patients without nephritis and healthy controls. Urinary IGBP1 levels in patients with LN
showed a positive correlation with SLEDAI-2K and anti-dsDNA levels, and a negative correlation with
C3 levels (Figure 1B,C,E). However, the levels were not associated with complement 4 (C4) levels and
albuminuria (Figure 1D,F).
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Figure 1. Urinary immunoglobulin binding protein 1 (IGBP1) levels in patients with LN. (A) Urinary
IGBP1 levels; Correlation of urinary IGBP1 levels with Systemic Lupus Erythematosus Disease Activity
Index 2000 (SLEDAI-2K) (B) complement 3 (C3) levels (C), complement 4 (C4) levels (D) anti-dsDNA
levels (E), and albuminuria (F). ** p > 0.01; *** p > 0.001.

2.3. Tubular Expression of IGBP1 in Renal Pathology

The expression of IGBP1 in the renal tissues was investigated in 19 patients with LN and 5 kidney
donors (healthy control) by immunohistochemistry. As shown in Figure 2A, strong expression of
IGBP1 was observed mainly in tubular epithelial cells rather than the glomerular cells. In histological
scoring, the patients with LN class III, IV, and V showed a higher expression of IGBP1 as compared to
the healthy controls (Figure 2B). The levels of urine IGBP1 positively correlated with the histological
activity index (Figure 2C) but not with the chronicity index (Figure 2D).
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Figure 2. IGBP1 expression in the renal biopsy samples of patients with LN. (A) Immunohistochemical
staining of IGBP1; (B) H-score of IGBP1 expression according to the class of LN; Correlation of urinary
IGBP1 and histologic activity index (C) or chronicity index (D); * p > 0.05; ** p > 0.01.

2.4. Microarray Analysis in IGBP1 siRNA Transfected HK-2 Cells

To elucidate the function of IGBP1 in renal tubular epithelial cells, IGBP1 was silenced using siRNA
in the human renal tubular epithelial cell line, HK-2 and microarray assay was performed and analyzed.
A total of 88 and 104 transcripts met the filtering criteria (fold change value of >1.5 or ≤−1.5 and a p-value
of < 0.05). Canonical pathway analysis using ingenuity pathway analysis was performed to identify the
biological pathways that were significantly altered in IGBP siRNA- transfected cells. The altered pathways
are shown in Figure 3A. Of the 192 transcripts, seven genes are known to be related to SLE pathogenesis
(Figure 3B). These which included protein phosphatase methylesterase (PPME1), rho-associated, coiled-coil
containing protein kinase 2 (ROCK2), B7 homolog 4 (B7-H4, coded by VTCN1), interleukin 7 receptor (IL-7R),
and sialidase 1 (NEU1) were downregulated. The upregulated genes included major histocompatibility
complex (MHC) class II, DM (HLA-DM), and Pentraxin 3 (PTX3).
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Figure 3. Transcripts regulated by IGBP1 knockdown in HK-2 cells. (A) Regulated biological pathways
in IGBP1 siRNA transfected HK-2 cells; (B) Scatter plot of downregulated or upregulated transcripts in
IGBP1 siRNA transfected HK-2 cells; *, number of genes.

2.5. Increased Plasma IGBP1 in SLE Patients and Distribution of IGBP1 in PBMCs

The levels of plasma IGBP1 in patients with SLE with (n = 39) or without (n = 30) nephritis and
healthy controls (n = 18) were estimated (Figure 4A). The levels were increased in patients with SLE as
compared to that in the healthy control. However, no significant difference was found in the plasma
levels of IGBP1 between LN patients and patients with SLE without nephritis.
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Analysis of the distribution of IGBP1 in PBMCs of healthy subjects showed that IGBP1 was mainly
expressed in CD14+ cells, followed by CD3+, CD16+, and CD20+. In patients with SLE, the distribution
of IGBP1 expression was similar to that of the healthy subjects or LN (Figure 4B,C). However, the overall
intensity of IGBP1 in peripheral blood mononuclear cells (PBMCs) was increased in LN patients as compared
to those with SLE without nephritis or healthy subjects (Figure 4D).

Figure 4. Plasma IGBP1 in SLE patients and distribution of IGBP1 in peripheral blood mononuclear
cells (PBMCs). (A) plasma IGBP1 level; (B) IGBP1 expression in CD14+ cells in a patient with nephritis
(representative); (C) Distribution of IGBP1 expression according to cell-type; (D) overall IGBP1 intensity
in PBMCs; ** p > 0.01.
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3. Discussion

In this study, we provide evidence for the potential use of IGBP1 as a biomarker in the urine
of LN patients. This phosphoprotein of the BCR complex correlated with several indices including
SLEDAI-2K, levels of C3 and anti-dsDNA antibodies titers suggesting SLE activity. Other researchers
have demonstrated a 70% overlap between urine and kidney proteome [26,27], indicating that urine
can better reflect the functions of the kidney than other body fluids.

Renal histological analysis showed that IGBP1 expression was predominant in tubular lesions,
which correlated to the histological activity. However, urinary IGBP1 levels were not associated with
the levels of albuminuria. Previous studies have suggested that the difference in urine protein types
(albuminuria and non-albumin proteinuria) was useful in determining the origin of proteinuria in
glomerular and tubulointerstitial diseases [28]. Moreover, non-albumin proteinuria was associated
with severe tubulointerstitial inflammation in LN patients [29]. Taken together, urine IGBP1 probably
originates in the tubulointerstitium rather than glomerulus, indicating that high levels of urine IGBP1
in LN patients might represent tubulointerstitial inflammation. Therefore, this study is noteworthy in
that it suggests the pathogenic roles of IGBP1 on the renal tubular inflammation in LN patients.

Although LN classes were defined mainly by different glomerular changes, up to 70% of patients
with active proliferative glomerulonephritis exhibit immunoglobulin deposition along the renal tubular
basement membrane [30–32]. Further, the proximal tubular epithelial cells play a pivotal role in
mediating pathological processes that affect long-term renal damages, including tubulointerstitial
inflammation, epithelial-to-mesenchymal transition, and fibrosis [33–35]. Therefore, we evaluated the
function of IGBP1 in human renal proximal tubular epithelial cells, HK-2. Gene silencing of IGBP1 in
HK-2 cells resulted in the upregulation of 88 genes and downregulation of 104 genes, some of which
coded for proteins having roles in immune and inflammatory responses. Considering the interactions
between the tubular epithelial cells and infiltrating T cells involved in tubular pathogenesis, we selected
several IGBP1-associated molecules that were downregulated by siRNA-mediated silencing. PPME1
catalyzes the demethylation of PP2A, which is highly expressed in T cells of SLE patients as compared
to a healthy population and inhibits this enzyme by binding directly to the active site of PP2A [36].
ROCK2, an important regulator of T-cell effector function, is known to be activated by PP2A. As many
as 60% of patients with SLE exhibit increased ROCK2 activity in their PBMCs [37]. B7-H4 coded
by VTCN1 is a recently identified member of the B7 family. The soluble form of this costimulatory
molecule is increased in the sera of SLE patients [38] and is detected only in the tubule epithelium of
the renal tissues. It is also overexpressed in renal tissue in patients with serious tubular lesions [39].
IL-7R is a T- cell activation-related molecule and may function as a surrogate marker of LN activity [40].
Among the genes upregulated by siRNA-mediated silencing, HLA-DM plays a key role in MHC class
II antigen presentation and CD4+ T- cell epitope selection [41]. Further, polymorphisms of HLA-DM
alleles were found frequently in SLE patients [42,43].

Among the upregulated genes, NEU1 codes for an enzyme that removes sialic acids from
gangliosides and is highly expressed in kidneys [44]. Interestingly, blocking NEU inhibited IL-6
production in the mesangial cells of MRL/lpr lupus-prone mice [45]. PTX3, a long pentraxin having
a role in the clearance of dying cells, modulates leukocyte recruitment and takes part in the resolution of
muscle inflammation [46]. Hence, decreased levels of PTX3 could result in accumulation of cell debris
and subsequent inflammation and autoimmunity. Consistent with this, Wirestam et al. [47] reported
that serum PTX3 is markedly lower in SLE, particularly when IFN-α is detectable. Therefore, based on
the inverse expression of IGBP1 and PTX3 in our microarray analysis, low PTX3 induced by high IGBP1
could be associated with the defective clearance of dying cells in SLE pathogenesis. Taken together,
high levels of IGBP1 in kidneys of LN patients might activate several molecules associated with SLE
pathogenesis leading to tubulointerstitial inflammation.

In a previous study [48], IGBP1 was shown to inhibit apoptosis, which suggests silencing IGBP1
results in an upregulation of apoptotic genes. However, our microarray analysis showed several genes
for apoptosis (TNFSF10) as well as anti-apoptosis (SNAI2, EDN1 et al.) were upregulated by IGBP1
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deletion. Moreover, tubular atrophy, suggesting apoptosis, was not different in the tubules with and
without IGBP1 expression, and histological chronicity index was also not associated with the level of
IGBP1. Therefore, we could not assure the role of IGBP1 on apoptosis from the current data. Further
study is needed to clarify profound phenotypes associated with apoptosis using IGBP1 conditional
knock-down animal.

Plasma IGBP1 levels were increased in patients with SLE but did not differ between LN and SLE
without nephritis. Renal macrophage infiltration was reported as a strong prognostic biomarker for
progression of LN [49], indicating that monocytes may have a potential role in renal damage in SLE.
Interestingly, our fluorescence-activated cell sorting (FACS) analysis of IGBP1 distribution in PBMCs
showed its expression mostly in CD14+ monocytes. Since the overall IGBP1+ expression was increased
in LN patients, increased IGBP1+ PBMCs may be associated with LN development. Hence, long-term
prospective studies are needed to elucidate the relationship between IGBP1+ PBMCs and IGBP1+ renal
lesions in LN.

In conclusion, based on the present data, IGBP1 could be suggested as a protein involved in the
pathogenesis of renal tubular inflammation in LN patients, and we demonstrated that the levels of
urinary IGBP1 were higher in LN patients and the levels correlated positively with the clinical and
histological feature. Furthermore, in LN patients, we recommend that estimating the level of urine
IGBP1 will assist in identifying tubulointerstitial inflammation and thereby, can aid in deciding the
course of further therapy.

4. Materials and Methods

4.1. Patients Selection and Estimation of IGBP1 Concentration

All SLE patients, who met the criteria of 1997 American College of Rheumatology classification [50],
were recruited from the Rheumatology clinic, Asan Medical Center, from March 2014 to September 2014.
LN was classified according to the criteria defined by the International Society of Nephrology/Renal
Pathology Society in 2003 [51]. Histopathologic findings or the disease activity-related variables
including CRP, ESR, anti-dsDNA antibodies, C3, complement 4 (C4), SLEDAI-2K, microscopic
hematuria, and urine protein/creatinine ratio were extracted from the electronic medical records.
The concentrations of urine IGBP1, adjusted by urine creatinine concentration, were estimated in
the SLE patients with (n = 39) or without (n = 30) nephritis, and healthy subjects (n = 18) using
a commercially available ELISA kit (USCN Life Science, Hankou, Wuhan, China). The kidney specimens
were obtained at the time of renal biopsy from suspected LN patients or kidney transplantation donors.
The Institutional Review Board of the Asan Medical Center in Seoul, South Korea, approved the study
(IRB No. 2014-0568, 09 JUNE 2014). Written informed consent was obtained while collecting blood,
urine, and tissue samples.

4.2. Lupus Nephritis Activity and Chronicity Index Assessment

A histopathological activity index score ranging from 0 to 24, was assessed from six histological
parameters including glomerular cell proliferation, fibrinoid necrosis or karyorrhexis, cellular crescents,
hyaline thrombi or wire loop, glomerular leukocyte infiltration and interstitial inflammation [52].
The chronicity index score ranging from 1 to 12 was obtained by summing all the scores from each of the
following parameters: glomerular sclerosis, crescent fibrous structure, tubular atrophy, and interstitial
fibrosis [52]. A renal pathologist determined histopathological activity and chronicity index of the
LN tissues.

4.3. Immunohistochemistry

The renal biopsy specimens were obtained from 17 patients with LN. The normal kidney specimens
from kidney transplantation donors served as controls. The specimens were preserved in 10% buffered
formalin, and 4 µm thick slices were obtained. These sections were stained using a BenchMark ULTRA
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automatic immunostaining device (Ventana Medical Systems, Tucson, AZ, USA) with OptiView
DAB IHC Detection kit (Ventana Medical Systems) according to the manufacturer’s instructions.
The histological grades of IGBP1 were analyzed by Vectra V 3.0 and inForm (Perkin Elmer, CA, USA).

4.4. Silencing IGBP1 in HK-2 Cells

HK-2 cells are human primary human proximal tubular epithelial cell (PTEC) immortalized by
transduction with the human papilloma virus 16 E6/E7 genes and share behavioral similarities with
PTEC [53]. HK-2 cells (KTCC) were cultured in DMEM/F12 medium supplemented with 5% FBS.
IGBP1 was silenced using small interfering RNA (siRNA). The siRNA duplex used in this study was
designed to target the human IGBP1 sequence (HSS105247). Cells that achieved ≥ 80% confluence were
transfected with IGBP1 siRNA or scrambled RNA (Thermo Fisher Scientific Inc., Rockford, IL, USA)
using RNA MAXi transfection reagent (Thermo Fisher Scientific) according to the manufacturer’s
instructions. After transfection for 48 h, the cells were harvested, and total RNA extraction was carried
out for microarray analysis.

4.5. Microarray Analysis

4.5.1. RNA Isolation and Gene Expression Profiling

In the present study, Affymetrix GeneChip® Human Gene 2.0 ST Arrays were used for global gene
expression analysis. The samples were prepared according to the instructions and recommendations
provided by the manufacturer. Total RNA was isolated using RNeasy Mini Kit columns as described
by the manufacturer (Qiagen, Hilden, Germany). The RNA quality was assessed by Agilent 2100
bioanalyzer using the RNA 6000 Nano Chip (Agilent Technologies, Santa Clara, CA, USA), and RNA was
quantified by Nanodrop-1000 Spectrophotometer (Thermo Fisher Scientific). The RNA sample was used
as input into the Affymetrix procedure as recommended by the protocol (http://www.affymetrix.com).
Briefly, 300 ng of total RNA from each sample was converted to double-strand cDNA. Using a random
hexamer incorporating a T7 promoter, amplified RNA (cRNA) was generated from the double-stranded
cDNA template through an in vitro transcription reaction and purified with the Affymetrix sample
cleanup module. cDNA was regenerated through random-primed reverse transcription using a dNTP
mix containing dUTP. The cDNA was then fragmented by uracil-DNA-glycosylase (UDG) and
apurinic/apyrimidinic (AP) endonuclease (APE 1) and end-labeled by terminal transferase reaction
incorporating a biotinylated dideoxynucleotide. The fragmented end-labeled cDNA was hybridized to
the GeneChip® Human Gene 2.0 ST arrays for 17 h at 45 ◦C and 60 rpm as described in the Gene Chip
Whole Transcript Sense Target Labeling Assay Manual (Affymetrix). After hybridization, the arrays
were stained and washed in a Genechip Fluidics Station 450 (Affymetrix) and scanned by using
a Genechip Array scanner 3000 7G (Affymetrix). The expression intensity data were extracted from the
scanned images using Affymetrix Command Console software version 1.1 and stored as CEL files.

4.5.2. Data Analysis

The intensity values of CEL files were normalized to remove bias between the arrays (M1), using
the Robust Multi-array Average algorithm implemented in the Affymetrix Expression Console software
(version 1.3.1.) (http://www.affymetrix.com). The whole normalized data were imported into the
programming environment R (version 3.0.2), and the overall signal distributions of each array were
compared by plotting using tools available from the Bioconductor Project (http://www.bioconductor.org)
(M2) to check good normalization. After confirming whether the data were properly normalized,
the differentially expressed genes (DEGs) that showed over the 2-fold difference between the average
signal values of the control and treatment groups were selected manually. In addition, the normalized
data of the selected DEGs were also imported into the R programming environment. After performing
t-test, genes with a P-value < 0.05 were extracted as significant DEGs for further studies (M2). To classify
the co-expression gene groups that had similar expression patterns, hierarchical clustering analysis

http://www.affymetrix.com
http://www.affymetrix.com
http://www.bioconductor.org
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was performed with the Multi Experiment Viewer software version 4.4 (http://www.tm4.org) (M3).
Finally, using the web-based tool the Database for Annotation, Visualization, and Integrated Discovery
(DAVID), the DEGs were functionally annotated and classified based on the information of gene
function, such as OMIMDISEASE, GENE ONTOLOGY, KEGG PATHWAY and BIOCARTA databases
to reveal the regulatory networks that they are involved in (http://david.abcc.ncifcrf.gov) (M4).

4.6. Surface and Intracellular Staining and Flow Cytometry

Fc receptors were blocked with Fcγ blocker (BioLegend, San Diego, CA, USA), and the surface
markers were stained with BV450-conjugated anti-CD3 (BioLegend, clone:UCHT1), FITC-conjugated
anti-CD19 (BioLegend, clone: HIB19), APC/Cy7-conjugated anti-CD20 (BioLegend, clone: 2H7),
PE-conjugated anti-CD14 (BioLegend, clone: ΦM P9), PE-conjugated anti-CD11c (BioLegend, clone:
B-ly6), PerCP/Cy5.5-conjugated anti-CD56 (BioLegend, clone: B159), FITC-conjugated anti-CD16
(BioLegend, clone:3G8), PE-conjugated anti-CD123 (BioLegend, clone: 6H6), and APC/Cy7-conjugated
anti-CD4 (BioLegend, clone: RPA-T4). After fixing and permeabilization, IGBP1 was stained with
Alexa 647-conjugated anti-IGBP1 (Novus Biologicals, Centennial, CO, USA).

4.7. Statistical Analyses

For comparison between two groups, t-test or Mann–Whitney U test was used for variables
with normal distribution or non-normal distribution, respectively. Comparison among three groups
was analyzed by one-way ANOVA or Kruskal–Wallis test for variables with normal distribution or
non-normal distribution, respectively. To assess the correlation between urinary IGBP1 levels and
clinical parameters, Spearman correlation analysis was used. The results were plotted with Prism 5.0.
A P-value of < 0.05 was considered significant.

Author Contributions: Conceptualization, B.G., D.H.K., O.-C.K., S.H., C.-K.L. and B.Y.; Funding Acquisition,
E.-J.L. and Y.-G.K.; Methodology, E.-J.L. and D.-H.L; Validation and Data Curation, Y.-G.K. and E.-J.L.; Supervision,
Y.-G.K.; Writing—Original Draft Preparation, E.-J.L. and Y.-G.K.; Writing—Review and Editing, E.-J.L. and Y.-G.K.;

Funding: This study was supported by a grant from the National Research Foundation of Korea (NRF-
2016R1A6A3A11930269) and by a grant from Asan Institution for Life Science (grant number: 2019-463).

Acknowledgments: The authors would like to thank Enago (http://www.enago.co.kr) for the English language review.

Conflicts of Interest: The authors have declared no conflicts of interest

Abbreviations

BCR B cell receptor
CRP C-reactive protein
ESR Erythrocyte sedimentation rate
LN Lupus nephritis
MHC Major histocompatibility complex
SLE Systemic lupus erythematosus

References

1. Cameron, J.S. Lupus nephritis. J. Am. Soc. Nephrol. 1999, 10, 413–424.
2. Bevc, S.; Mohorko, E.; Kolar, M.; Brglez, P.; Holobar, A.; Kniepeiss, D.; Podbregar, M.; Piko, N.; Hojs, N.;

Knehtl, M.; et al. Measurement of breath ammonia for detection of patients with chronic kidney disease.
Clin. Nephrol. 2017, 88, 14–17. [CrossRef] [PubMed]

3. Popa, C.; Bratu, A.M.; Matei, C.; Cernat, R.; Popescu, A.; Dumitras, D.C. Qualitative and quantitative
determination of human biomarkers by laser photoacoustic spectroscopy methods. Laser Physics. 2011, 21,
1336–1342. [CrossRef]

4. Esdaile, J.M.; Joseph, L.; Abrahamowicz, M.; Li, Y.; Danoff, D.; Clarke, A.E. Routine immunologic tests in
systemic lupus erythematosus: Is there a need for more studies? J. Rheumatol. 1996, 23, 1891–1896. [PubMed]

http://www.tm4.org
http://david.abcc.ncifcrf.gov
http://www.enago.co.kr
http://dx.doi.org/10.5414/CNP88FX04
http://www.ncbi.nlm.nih.gov/pubmed/28601120
http://dx.doi.org/10.1134/S1054660X11130238
http://www.ncbi.nlm.nih.gov/pubmed/8923362


Int. J. Mol. Sci. 2019, 20, 2606 12 of 14

5. Reyes-Thomas, J.; Blanco, I.; Putterman, C. Urinary biomarkers in lupus nephritis. Clin. Rev. Allergy Immunol.
2011, 40, 138–150. [CrossRef] [PubMed]

6. Balow, J.E. Clinical presentation and monitoring of lupus nephritis. Lupus 2005, 14, 25–30. [CrossRef]
[PubMed]

7. Malvar, A.; Pirruccio, P.; Alberton, V.; Lococo, B.; Recalde, C.; Fazini, B.; Nagaraja, H.; Indrakanti, D.;
Rovin, B.H. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol. Dial. Transplant.
2017, 32, 1338–1344. [CrossRef] [PubMed]

8. Wu, T.; Xie, C.; Wang, H.W.; Zhou, X.J.; Schwartz, N.; Calixto, S.; Mackay, M.; Aranow, C.; Putterman, C.;
Mohan, C. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in
multiple murine lupus strains and human lupus nephritis. J. Immunol. 2007, 179, 7166–7175. [CrossRef]

9. Schwartz, N.; Su, L.; Burkly, L.C.; Mackay, M.; Aranow, C.; Kollaros, M.; Michaelson, J.S.; Rovin, B.;
Putterman, C. Urinary TWEAK and the activity of lupus nephritis. J. Autoimmun. 2006, 27, 242–250.
[CrossRef]

10. Schwartz, N.; Rubinstein, T.; Burkly, L.C.; Collins, C.E.; Blanco, I.; Su, L.; Hojaili, B.; Mackay, M.; Aranow, C.;
Stohl, W.; et al. Urinary TWEAK as a biomarker of lupus nephritis: A multicenter cohort study. Arthritis Res. Ther.
2009, 11, R143. [CrossRef] [PubMed]

11. Bhat, P.; Radhakrishnan, J. B lymphocytes and lupus nephritis: New insights into pathogenesis and targeted
therapies. Kidney Int. 2008, 73, 261–268. [CrossRef]

12. Nashi, E.; Wang, Y.; Diamond, B. The role of B cells in lupus pathogenesis. Int. J. Biochem. Cell Biol. 2010, 42,
543–550. [CrossRef]

13. Holdsworth, S.R.; Gan, P.Y.; Kitching, A.R. Biologics for the treatment of autoimmune renal diseases.
Nat. Rev. Nephrol. 2016, 12, 217–231. [CrossRef] [PubMed]

14. Iwata, S.; Tanaka, Y. B-cell subsets, signaling and their roles in secretion of autoantibodies. Lupus 2016, 25,
850–856. [CrossRef]

15. Morris, D.L.; Sheng, Y.; Zhang, Y.; Wang, Y.F.; Zhu, Z.; Tombleson, P.; Chen, L.; Cunninghame Graham, D.S.;
Bentham, J.; Roberts, A.L.; et al. Genome-wide association meta-analysis in Chinese and European
individuals identifies ten new loci associated with systemic lupus erythematosus. Nat. Genet. 2016, 48,
940–946. [CrossRef] [PubMed]

16. Teruel, M.; Alarcon-Riquelme, M.E. The genetic basis of systemic lupus erythematosus: What are the risk
factors and what have we learned. J. Autoimmun. 2016, 74, 161–175. [CrossRef]

17. Iwata, S.; Saito, K.; Hirata, S.; Ohkubo, N.; Nakayamada, S.; Nakano, K.; Hanami, K.; Kubo, S.; Miyagawa, I.;
Yoshikawa, M.; et al. Efficacy and safety of anti-CD20 antibody rituximab for patients with refractory
systemic lupus erythematosus. Lupus 2018, 27, 802–811. [CrossRef]

18. Tanaka, Y.; Takeuchi, T.; Miyasaka, N.; Sumida, T.; Mimori, T.; Koike, T.; Endo, K.; Mashino, N.; Yamamoto, K.
Efficacy and safety of rituximab in Japanese patients with systemic lupus erythematosus and lupus nephritis
who are refractory to conventional therapy. Mod. Rheumatol. 2016, 26, 80–86. [CrossRef]

19. Davies, R.J.; Sangle, S.R.; Jordan, N.P.; Aslam, L.; Lewis, M.J.; Wedgwood, R.; D’Cruz, D.P. Rituximab in
the treatment of resistant lupus nephritis: Therapy failure in rapidly progressive crescentic lupus nephritis.
Lupus 2013, 22, 574–582. [CrossRef] [PubMed]

20. Kuwahara, K.; Matsuo, T.; Nomura, J.; Igarashi, H.; Kimoto, M.; Inui, S.; Sakaguchi, N. Identification
of a 52-kDa molecule (p52) coprecipitated with the Ig receptor-related MB-1 protein that is inducibly
phosphorylated by the stimulation with phorbol myristate acetate. J. Immunol. 1994, 152, 2742–2752.

21. Kong, M.; Ditsworth, D.; Lindsten, T.; Thompson, C.B. Alpha4 is an essential regulator of PP2A phosphatase
activity. Mol. Cell 2009, 36, 51–60. [CrossRef] [PubMed]

22. Nanahoshi, M.; Tsujishita, Y.; Tokunaga, C.; Inui, S.; Sakaguchi, N.; Hara, K.; Yonezawa, K. Alpha4 protein as
a common regulator of type 2A-related serine/threonine protein phosphatases. FEBS Lett. 1999, 446, 108–112.
[CrossRef]

23. Juang, Y.T.; Rauen, T.; Wang, Y.; Ichinose, K.; Benedyk, K.; Tenbrock, K.; Tsokos, G.C. Transcriptional
activation of the cAMP-responsive modulator promoter in human T cells is regulated by protein phosphatase
2A-mediated dephosphorylation of SP-1 and reflects disease activity in patients with systemic lupus
erythematosus. J. Biol. Chem. 2011, 286, 1795–1801. [CrossRef]

http://dx.doi.org/10.1007/s12016-010-8197-z
http://www.ncbi.nlm.nih.gov/pubmed/20127204
http://dx.doi.org/10.1191/0961203305lu2055oa
http://www.ncbi.nlm.nih.gov/pubmed/15732284
http://dx.doi.org/10.1093/ndt/gfv296
http://www.ncbi.nlm.nih.gov/pubmed/26250434
http://dx.doi.org/10.4049/jimmunol.179.10.7166
http://dx.doi.org/10.1016/j.jaut.2006.12.003
http://dx.doi.org/10.1186/ar2816
http://www.ncbi.nlm.nih.gov/pubmed/19785730
http://dx.doi.org/10.1038/sj.ki.5002663
http://dx.doi.org/10.1016/j.biocel.2009.10.011
http://dx.doi.org/10.1038/nrneph.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26949177
http://dx.doi.org/10.1177/0961203316643172
http://dx.doi.org/10.1038/ng.3603
http://www.ncbi.nlm.nih.gov/pubmed/27399966
http://dx.doi.org/10.1016/j.jaut.2016.08.001
http://dx.doi.org/10.1177/0961203317749047
http://dx.doi.org/10.3109/14397595.2015.1060665
http://dx.doi.org/10.1177/0961203313483376
http://www.ncbi.nlm.nih.gov/pubmed/23632989
http://dx.doi.org/10.1016/j.molcel.2009.09.025
http://www.ncbi.nlm.nih.gov/pubmed/19818709
http://dx.doi.org/10.1016/S0014-5793(99)00189-1
http://dx.doi.org/10.1074/jbc.M110.166785


Int. J. Mol. Sci. 2019, 20, 2606 13 of 14

24. Katsiari, C.G.; Kyttaris, V.C.; Juang, Y.T.; Tsokos, G.C. Protein phosphatase 2A is a negative regulator of IL-2
production in patients with systemic lupus erythematosus. J. Clin. Invest. 2005, 115, 3193–3204. [CrossRef]
[PubMed]

25. Juang, Y.T.; Wang, Y.; Jiang, G.; Peng, H.B.; Ergin, S.; Finnell, M.; Magilavy, A.; Kyttaris, V.C.; Tsokos, G.C.
PP2A dephosphorylates Elf-1 and determines the expression of CD3zeta and FcRgamma in human systemic
lupus erythematosus T cells. J. Immunol. 2008, 181, 3658–3664. [CrossRef]

26. Zhao, M.; Li, M.; Yang, Y.; Guo, Z.; Sun, Y.; Shao, C.; Li, M.; Sun, W.; Gao, Y. A comprehensive analysis and
annotation of human normal urinary proteome. Sci. Rep. 2017, 7, 3024. [CrossRef] [PubMed]

27. Pieper, R.; Gatlin, C.L.; McGrath, A.M.; Makusky, A.J.; Mondal, M.; Seonarain, M.; Field, E.; Schatz, C.R.;
Estock, M.A.; Ahmed, N.; et al. Characterization of the human urinary proteome: A method for high-resolution
display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein
spots. Proteomics 2004, 4, 1159–1174. [CrossRef] [PubMed]

28. Smith, E.R.; Cai, M.M.; McMahon, L.P.; Wright, D.A.; Holt, S.G. The value of simultaneous measurements of
urinary albumin and total protein in proteinuric patients. Nephrol. Dial. Transplant. 2012, 27, 1534–1541.
[CrossRef] [PubMed]

29. Kwon, O.C.; Park, Y.; Lee, J.S.; Oh, J.S.; Kim, Y.G.; Lee, C.K.; Yoo, B.; Hong, S. Non-albumin proteinuria
as a parameter of tubulointerstitial inflammation in lupus nephritis. Clin. Rheumatol. 2019, 38, 235–241.
[CrossRef] [PubMed]

30. Yung, S.; Tsang, R.C.; Sun, Y.; Leung, J.K.; Chan, T.M. Effect of human anti-DNA antibodies on proximal
renal tubular epithelial cell cytokine expression: Implications on tubulointerstitial inflammation in lupus
nephritis. J. Am. Soc. Nephrol. 2005, 16, 3281–3294. [CrossRef]

31. Dhingra, S.; Qureshi, R.; Abdellatif, A.; Gaber, L.W.; Truong, L.D. Tubulointerstitial nephritis in systemic
lupus erythematosus: Innocent bystander or ominous presage. Histol. Histopathol. 2014, 29, 553–565.
[PubMed]

32. Yap, D.Y.; Yung, S.; Zhang, Q.; Tang, C.; Chan, T.M. Serum level of proximal renal tubular epithelial
cell-binding immunoglobulin G in patients with lupus nephritis. Lupus 2016, 25, 46–53. [CrossRef] [PubMed]

33. Yung, S.; Ng, C.Y.; Ho, S.K.; Cheung, K.F.; Chan, K.W.; Zhang, Q.; Chau, M.K.; Chan, T.M. Anti-dsDNA
antibody induces soluble fibronectin secretion by proximal renal tubular epithelial cells and downstream
increase of TGF-beta1 and collagen synthesis. J. Autoimmun. 2015, 58, 111–122. [CrossRef] [PubMed]

34. Nath, K.A. The tubulointerstitium in progressive renal disease. Kidney Int. 1998, 54, 992–994. [CrossRef]
35. Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than

an aftermath of glomerular injury? Kidney Int. 1999, 56, 1627–1637. [CrossRef]
36. Apostolidis, S.A.; Rauen, T.; Hedrich, C.M.; Tsokos, G.C.; Crispin, J.C. Protein phosphatase 2A enables

expression of interleukin 17 (IL-17) through chromatin remodeling. J. Biol. Chem. 2013, 288, 26775–26784.
[CrossRef]

37. Rozo, C.; Chinenov, Y.; Maharaj, R.K.; Gupta, S.; Leuenberger, L.; Kirou, K.A.; Bykerk, V.P.; Goodman, S.M.;
Salmon, J.E.; Pernis, A.B. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE.
Ann. Rheum. Dis. 2017, 76, 740–747. [CrossRef] [PubMed]

38. Xiao, J.P.; Wang, X.R.; Zhang, S.; Wang, J.; Zhang, C.; Wang, D.G. Increased Serum Levels of Soluble B7-H4 in
Patients with Systemic Lupus Erythematosus. Iran. J. Immunol. 2019, 16, 43–52.

39. Chen, Y.; Yang, C.; Xie, Z.; Zou, L.; Ruan, Z.; Zhang, X.; Tang, Y.; Fei, L.; Jia, Z.; Wu, Y. Expression of the novel
co-stimulatory molecule B7-H4 by renal tubular epithelial cells. Kidney Int. 2006, 70, 2092–2099. [CrossRef]

40. Badot, V.; Luijten, R.K.; van Roon, J.A.; Depresseux, G.; Aydin, S.; Van den Eynde, B.J.; Houssiau, F.A.;
Lauwerys, B.R. Serum soluble interleukin 7 receptor is strongly associated with lupus nephritis in patients
with systemic lupus erythematosus. Ann. Rheum. Dis. 2013, 72, 453–456. [CrossRef]

41. Alvaro-Benito, M.; Morrison, E.; Wieczorek, M.; Sticht, J.; Freund, C. Human leukocyte antigen-DM
polymorphisms in autoimmune diseases. Open Biol. 2016, 6, 160165. [CrossRef] [PubMed]

42. Morel, J.; Simoes Cda, S.; Avinens, O.; Sany, J.; Combe, B.; Eliaou, J.F. Polymorphism of HLA-DMA and DMB
alleles in patients with systemic lupus erythematosus. J. Rheumatol. 2003, 30, 1485–1490. [PubMed]

43. Sanchez, M.L.; Katsumata, K.; Atsumi, T.; Romero, F.I.; Bertolaccini, M.L.; Funke, A.; Amengual, O.;
Kondeatis, E.; Vaughan, R.W.; Cox, A.; et al. Association of HLA-DM polymorphism with the production of
antiphospholipid antibodies. Ann. Rheum. Dis. 2004, 63, 1645–1648. [CrossRef] [PubMed]

http://dx.doi.org/10.1172/JCI24895
http://www.ncbi.nlm.nih.gov/pubmed/16224536
http://dx.doi.org/10.4049/jimmunol.181.5.3658
http://dx.doi.org/10.1038/s41598-017-03226-6
http://www.ncbi.nlm.nih.gov/pubmed/28596590
http://dx.doi.org/10.1002/pmic.200300661
http://www.ncbi.nlm.nih.gov/pubmed/15048996
http://dx.doi.org/10.1093/ndt/gfr708
http://www.ncbi.nlm.nih.gov/pubmed/22193048
http://dx.doi.org/10.1007/s10067-018-4256-2
http://www.ncbi.nlm.nih.gov/pubmed/30094751
http://dx.doi.org/10.1681/ASN.2004110917
http://www.ncbi.nlm.nih.gov/pubmed/24288339
http://dx.doi.org/10.1177/0961203315598018
http://www.ncbi.nlm.nih.gov/pubmed/26251400
http://dx.doi.org/10.1016/j.jaut.2015.01.008
http://www.ncbi.nlm.nih.gov/pubmed/25666976
http://dx.doi.org/10.1046/j.1523-1755.1998.00079.x
http://dx.doi.org/10.1046/j.1523-1755.1999.00721.x
http://dx.doi.org/10.1074/jbc.M113.483743
http://dx.doi.org/10.1136/annrheumdis-2016-209850
http://www.ncbi.nlm.nih.gov/pubmed/28283529
http://dx.doi.org/10.1038/sj.ki.5001867
http://dx.doi.org/10.1136/annrheumdis-2012-202364
http://dx.doi.org/10.1098/rsob.160165
http://www.ncbi.nlm.nih.gov/pubmed/27534821
http://www.ncbi.nlm.nih.gov/pubmed/12858445
http://dx.doi.org/10.1136/ard.2003.015552
http://www.ncbi.nlm.nih.gov/pubmed/15547089


Int. J. Mol. Sci. 2019, 20, 2606 14 of 14

44. Nowling, T.K.; Mather, A.R.; Thiyagarajan, T.; Hernandez-Corbacho, M.J.; Powers, T.W.; Jones, E.E.;
Snider, A.J.; Oates, J.C.; Drake, R.R.; Siskind, L.J. Renal glycosphingolipid metabolism is dysfunctional in
lupus nephritis. J. Am. Soc. Nephrol. 2015, 26, 1402–1413. [CrossRef] [PubMed]

45. Sundararaj, K.; Rodgers, J.I.; Marimuthu, S.; Siskind, L.J.; Bruner, E.; Nowling, T.K. Neuraminidase activity
mediates IL-6 production by activated lupus-prone mesangial cells. Am. J. Physiol. Renal Physiol. 2018, 314,
F630–F642. [CrossRef]

46. Vezzoli, M.; Sciorati, C.; Campana, L.; Monno, A.; Doglio, M.G.; Rigamonti, E.; Corna, G.; Touvier, T.;
Castiglioni, A.; Capobianco, A.; et al. The clearance of cell remnants and the regeneration of the injured
muscle depend on soluble pattern recognition receptor PTX3. Mol. Med. 2017, 22, 809–820. [CrossRef]

47. Wirestam, L.; Enocsson, H.; Skogh, T.; Eloranta, M.L.; Ronnblom, L.; Sjowall, C.; Wettero, J. Interferon-alpha
coincides with suppressed levels of pentraxin-3 (PTX3) in systemic lupus erythematosus and regulates
leucocyte PTX3 in vitro. Clin. Exp. Immunol. 2017, 189, 83–91. [CrossRef] [PubMed]

48. Kong, M.; Fox, C.J.; Mu, J.; Solt, L.; Xu, A.; Cinalli, R.M.; Birnbaum, M.J.; Lindsten, T.; Thompson, C.B.
The PP2A-Associated protein alpha 4 is an essential inhibitor of apoptosis. Science 2004, 306, 695–698.
[CrossRef]

49. Schiffer, L.; Bethunaickan, R.; Ramanujam, M.; Huang, W.; Schiffer, M.; Tao, H.; Madaio, M.P.; Bottinger, E.P.;
Davidson, A. Activated renal macrophages are markers of disease onset and disease remission in lupus
nephritis. J. Immunol. 2008, 180, 1938–1947. [CrossRef]

50. Hochberg, M.C. Updating the American college of rheumatology revised criteria for the classification of
systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [CrossRef]

51. Weening, J.J.; D’Agati, V.D.; Schwartz, M.M.; Seshan, S.V.; Alpers, C.E.; Appel, G.B.; Balow, J.E.; Bruijn, J.A.;
Cook, T.; Ferrario, F.; et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited.
Kidney Int. 2004, 65, 521–530. [CrossRef] [PubMed]

52. Austin, H.A., 3rd; Muenz, L.R.; Joyce, K.M.; Antonovych, T.A.; Kullick, M.E.; Klippel, J.H.; Decker, J.L.;
Balow, J.E. Prognostic factors in lupus nephritis. Contribution of renal histologic data. Am. J. Med. 1983, 75,
382–391. [CrossRef]

53. Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An immortalized
proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994, 45, 48–57. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1681/ASN.2014050508
http://www.ncbi.nlm.nih.gov/pubmed/25270066
http://dx.doi.org/10.1152/ajprenal.00421.2017
http://dx.doi.org/10.2119/molmed.2016.00002
http://dx.doi.org/10.1111/cei.12957
http://www.ncbi.nlm.nih.gov/pubmed/28257596
http://dx.doi.org/10.1126/science.1100537
http://dx.doi.org/10.4049/jimmunol.180.3.1938
http://dx.doi.org/10.1002/art.1780400928
http://dx.doi.org/10.1111/j.1523-1755.2004.00443.x
http://www.ncbi.nlm.nih.gov/pubmed/14717922
http://dx.doi.org/10.1016/0002-9343(83)90338-8
http://dx.doi.org/10.1038/ki.1994.6
http://www.ncbi.nlm.nih.gov/pubmed/8127021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Baseline Characteristics of the SLE Patients 
	Urinary IGBP1 Level was Increased in Patients with Lupus Nephritis 
	Tubular Expression of IGBP1 in Renal Pathology 
	Microarray Analysis in IGBP1 siRNA Transfected HK-2 Cells 
	Increased Plasma IGBP1 in SLE Patients and Distribution of IGBP1 in PBMCs 

	Discussion 
	Materials and Methods 
	Patients Selection and Estimation of IGBP1 Concentration 
	Lupus Nephritis Activity and Chronicity Index Assessment 
	Immunohistochemistry 
	Silencing IGBP1 in HK-2 Cells 
	Microarray Analysis 
	RNA Isolation and Gene Expression Profiling 
	Data Analysis 

	Surface and Intracellular Staining and Flow Cytometry 
	Statistical Analyses 

	References

