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scoring features, to represent the modified residues. Based on these encoding features, we established
a predictor called DeepNitro using deep learning methods for predicting protein nitration and nitro-
sylation. Using n-fold cross-validation, our evaluation shows great AUC values for DeepNitro, 0.65
for tyrosine nitration, 0.80 for tryptophan nitration, and 0.70 for cysteine nitrosylation, respectively,
demonstrating the robustness and reliability of our tool. Also, when tested in the independent data-
set, DeepNitro is substantially superior to other similar tools with a 7% —42% improvement in the
prediction performance. Taken together, the application of deep learning method and novel encod-
ing schemes, especially the position-specific scoring feature, greatly improves the accuracy of nitra-
tion and nitrosylation site prediction and may facilitate the prediction of other PTM sites. DeepNitro
is implemented in JAVA and PHP and is freely available for academic research at http://deepnitro.

renlab.org.

Introduction

Proteins undergo various post-translational modifications
(PTMs) to maintain their functions. Of the nearly 460 types
of PTMs, protein nitration and nitrosylation are special epige-
netic regulations that are mainly caused by unfavorable side
reactions from metabolic processes during normal cellular
activities. Under physiological conditions, nitric oxide (NO)
is produced by NO synthases (NOS) [1] and subsequently dif-
fuses through cell membranes. As a signaling molecule, NO is
able to regulate many vascular and neuronal signaling path-
ways, as well as mitochondrial proliferation [2,3]. In the pres-
ence of oxidants, NO can be further converted into different
reactive nitrogen species (RNS), such as nitrous acid
(HNO»), dinitrogen trioxide (N,Os3), nitrosyl anion (NO™),
nitrosyl cation (NO™), and nitrogen dioxide radical (NO-)
[4]. These RNS are able to induce nitration of proteins, thereby
changing their chemical properties and reforming their tertiary
structures. It has been reported that nitration can occur at
amino acid residues such as tyrosine [5] and tryptophan [6].
In addition to protein nitration, RNS can also lead to the for-
mation of protein S-nitrosylation by covalently attaching the
nitrosyl group to the sulfur atom of cysteine [7].

The addition of nitro or nitrosyl groups to certain amino
acid residues is an important mechanism for regulating the bio-
logical functions of specific cellular proteins by conferring par-
ticular physicochemical properties to the modified residues [§].
Recent reports have demonstrated that tyrosine nitration,
tryptophan nitration, and S-nitrosylation play critical roles
in multiple physiological and pathological processes, including
cell signaling [9], immune response [10], cell death [11], tran-
scriptional regulation [12], and protein activity [13]. The
abnormal abundance of these modifications may lead to dele-
terious consequences. Many chronic diseases such as diabetes
[14], atherosclerosis [15], chronic renal failure [16], cardiovas-
cular diseases [17], and neurological disorders [18] are
evidently linked to the aforementioned modifications. There-
fore, the identification of substrates that undergo nitration or
S-nitrosylation in a site-specific manner is important for
providing potential guidance for the development of new
therapeutic strategies and drugs.

At present, the large-scale identification of nitration or S-
nitrosylation sites mainly relies on mass spectrometry-based
methods [19]. However, because the level of endogenously
nitrated or nitrosylated proteins in the cell is usually very
low, highly efficient in vivo detection of individual nitrated or
nitrosylated proteins has long remained a major methodologi-
cal issue. Prior immunoprecipitation with specific antibodies is

helpful to improve efficiency, but the immunoprecipitation
step usually requires complicated procedures, resulting in a
laborious, inefficient, and expensive process. In this regard,
further efforts are needed to improve the efficiency of current
proteomic methodologies so that they can be applied in more
research cases and facilitate the investigation of RNS-induced
protein modifications.

In contrast to the time-consuming and expensive experi-
mental methods, computational approaches for discovering
PTM sites have attracted considerable attention because of
their convenience and efficiency. To date, several programs
have been developed for predicting the nitration and S-
nitrosylation site, such as GPS-YNO2 [20] and iNitro-tyr
[21] for tyrosine nitration, as well as GPS-SNO [22], iSNO-
PseAAc [23], and SNOSite [24] for S-nitrosylation site predic-
tion. However, many issues remain in these algorithms, leaving
a lot of room for improvement. First, the existing tools gener-
ally rely on traditional shallow machine learning methods for
prediction, which fail to learn the underlying biological fea-
tures of protein modifications lacking a consensus sequence,
such as nitration or nitrosylation, thus leading to inaccurate
predictions of potential modification sites. Second, feature
selection is critical for machine learning-based algorithms.
However, the current feature extraction methods used in the
methods above are unable to fully characterize the biological
properties of the potential sites, resulting in disappointing per-
formance. Third, up to now, there are no available tools for
the prediction of tryptophan nitration, which limit the compre-
hensive study of protein nitration and nitrosylation in mam-
malian. Therefore, the development of a novel tool that is
able to extract high-level features from the input sequences
and produce reliable prediction results with sufficient accuracy
remains an important problem to be solved.

Recently, the application of deep learning algorithm in
machine learning research has attracted more and more atten-
tion. By learning a suitable representation of the input data,
the raw vectors can be transformed into highly abstract fea-
tures through propagating the whole model. Theoretically,
superposition of sufficient level of neural network can increase
the ability of feature extraction, resulting in more accurate
interpretation of data. However, the so-called gradient diffu-
sion problem has greatly restricted the depth of neural network
model [25]. Until 2006, Hinton et al. proposed the layer-wise
training strategy [26] to solve this problem properly and the
deep neural network turned to practical account. Nowadays,
many new techniques have been developed for the training
of deep learning model, including Rectified Linear Unit
(ReLU) [27], dropout training [28], regularization [29], and


http://deepnitro.renlab.org
http://deepnitro.renlab.org

296 Genomics Proteomics Bioinformatics 16 (2018) 294-306

momentum method [30]. With these advantages, deep learning
has achieved state-of-the-art accuracy on many prediction
tasks, such as image classification [31], speech recognition
[32], and natural language processing [33]. Inspired by its
excellent performance, deep learning is most recently applied
in research field of computational biology. Typical applica-
tions include transcript factor binding site detection [34], pro-
tein structure prediction [35], RNA splicing prediction [36],
and pathogenic variant identification [37]. In view of this,
introducing deep learning algorithm into the prediction of
nitration and nitrosylation sites would be a promising move
to solve the current deficiencies in learning of in-depth biolog-
ical features and provide more meaningful candidates for fur-
ther experimental considerations.

In this work, by applying the deep learning algorithm
together with effective feature extraction methods, we devel-
oped a novel software called DeepNitro to predict protein
nitration and nitrosylation sites. For convenience, a webserver
has also been developed and is freely available at http://deep-
nitro.renlab.org.

Methods

Preparation of the dataset

To collect the training dataset, we first searched the scientific
literature published before Jun 30th, 2015 from PubMed using
the keywords “Nitration”, “Nitrated”, ”Nitrosylation”, or
“Nitrosylated”. By manually reading the retrieved articles,
we collected the exact locations of all the experimentally-
verified nitration and nitrosylation sites. After removing
redundant sites, we collected a total of 1518 tyrosine nitration
sites, 66 tryptophan nitration sites, and 4762 S-nitrosylation
sites in 3113 unique proteins. As previously described [20,22],
we treated the modified residues (Y for tyrosine nitration, W
for tryptophan nitration, and C for S-nitrosylation) that have
been reported in the published literature as positive data.
Accordingly, the same types of non-modified residues present
in the same sequence were considered as negative data. Gener-
ally speaking, if the modified residues included in the training
dataset are redundant with too many homologous sites, the
training process will carry a significant risk of model overfit-
ting, leading to spurious prediction. To avoid this possibility,
we first clustered the collected protein sequences using CD-
Hit with an identity threshold of 40%. For proteins clustered
in the same homologous group, we re-aligned them using the
Smith-Waterman algorithm and checked the results manually.
If two given positive sites or negative sites shared an identical
flanking sequence around the modified residues, only one item
was reserved for the model training. Finally, for tyrosine nitra-
tion, we constructed a training set of 1210 positive and 8043
negative sites. For tryptophan nitration, the training data
contained 66 positive sites and 155 negative sites. For
S-nitrosylation, we retained 3409 positive sites and 17,453
negative sites as the training set (Table S2).

Particularly, to evaluate the actual performance of our pre-
diction model and compare it with other existing tools, we also
constructed the independent test set for tyrosine nitration and
S-nitrosylation. To ensure a fair comparison, the independent

test set does not contain any nitration or nitrosylation sites that
are present in the training set of previously-published tools. To
meet this criterion, we constructed the test set by focusing on
the most recently collected data and removing duplicate sites
that had been used in training sets of other tools. In total,
189 positive sites and 1182 negative sites were selected for the
independent test set for tyrosine nitration. For the independent
test set for S-nitrosylation, another 485 positive sites and 4947
negative sites were included (Table S2). However, due to the
limited data availability, an additional test set for tryptophan
nitration was not constructed.

Feature encoding scheme

Before constructing the prediction model for protein nitration
and nitrosylation, we first transferred the known modification
sites into a set of feature vectors that can be directly recognized
by classification algorithms. As presented in our previously
published papers [20,22], the chemical properties and amino
acid composition around the modified residue may affect the
specificity of nitration and nitrosylation. Therefore, we con-
structed the encoding scheme by extracting sequence or bio-
chemical features from the flanking sequence of length L in
which the modified or non-modified site is located at the cen-
tral position. Here, we defined the aforementioned region as a
nitration or nitrosylation peptide. Specifically, the optimal
window size L can be selected by the subsequent 4-fold
cross-validation. A detailed description of the encoding
scheme is provided below.

One-hot encoding of the nitration or nitrosylation peptide

To precisely describe the amino acid distribution at each posi-
tion in the nitration or nitrosylation peptide, we transferred the
20 natural amino acid residues and a gap character filling the
sequence termini into a 21-dimensional binary array. Accord-
ingly, one-hot encoding for a peptide with a window size of L
would result in a binary feature vector of L x 21 dimensions.

The physical and chemical properties of the nitration or
nitrosylation peptide

The physiochemical environment is responsible for the forma-
tion of a covalent linkage between proteins and nitrogenous
groups [38,39]. Thus, measurement of the physiochemical
properties of the candidate residues may be particularly impor-
tant for the accurate prediction of nitration and nitrosylation
sites. Therefore, we introduced the property factor representa-
tion (PFR) [40] in our work and encoded the flanking regions
into a set of physiochemical features. Using the encoding table
(Table S3) from PFR, a given amino acid residue X can be
encoded into a physiochemical feature vector x of dimension-
ality in 10 as defined below.

¢ =[S Lo 1) (1)

where fi denotes the i-th property factor for amino acid residue
x. Accordingly, a nitration or nitrosylation peptide with length
of L can be represented as a 10 x L dimensional numeric vec-
tor. Similar to one-hot encoding, the gap characters filling the
sequence termini are encoded with vectors of zeros.
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k-Space spectrum encoding
To depict the sequence context of a nitration or nitrosylation
peptide, we calculated the k-space spectrum in our encoding
scheme. When denoting a flanking region, we first scanned
through the whole sequence with a sliding window of length
k and counted the number of all possible amino acid pairs
(e.g., LxxxE is a three-space amino acid pair) for subsequent
use. Specifically, for peptide with gap characters, we simply
ignored the gapped sequence and encoded k-space spectrum
only in meaningful regions. We represented a specific amino
acid pair as A4;4;. A total of 400 amino acid pairs can be
obtained for any given protein sequence. Then, the frequency
of a k-space amino acid pair was calculated as follows.
=TS @
And the amino acid spectrum can be constructed by calcu-
lating the frequency of all possible amino acid pairs.

7.]{20,20)400 (3)

The k values can be adjusted in a range of 0—4 to capture
more information about the sequence dependency. Finally
we obtained a 2000 dimensional vector for the amino acid
spectrum.

spectrum = (f]l afl,zaflja 3 Sio,000

Encoding with the position-specific scoring matrix

To depict the sequence conservation of nitration or nitrosyla-
tion sites, we developed the following position-specific scoring
matrix (PSSM) encoding scheme in our prediction algorithm.
Based on the model proposed by Vacic et al. [41], we first cal-
culated the statistical significance of the differences in the fre-
quencies of symbol occurrence between the positive and
negative datasets. Let P and Q be the positive and negative
samples, and |P| and |Q| be the numbers of sequences in the
corresponding sample, respectively; and P; be the i-th peptide
in the positive dataset and P; be the jth position in peptide
P,. For each position in P and for each symbol a from the
alphabet (including 20 natural amino acids and a gap charac-
ter), a binary vector X;;“can be generated as shown below.

X;‘;ﬂ - (117127"'51‘/)\) (4)
where /; can be calculated as follows.

1 P," =d
],' — Y (5)

The vector X’é" for the negative sample can be generated in
a similar way. Then, we constructed a null hypothesis that vec-
tors X;,” and X’é“ were sampled from the same distribution, or,
in other words, the occurrence probabilities for amino acid «
are identical at position j in both samples. According to this
hypothesis, we could compute the P value using a two-
sample z-test [41]. However, since nitration and nitrosylation
can only occur in specific amino acid residues, the central posi-
tion in both the positive and negative data set would be the
same. Therefore, when computing P value in such case, the
variance in vectors /\”l';“ and X’é" would be zero, thereby making
the ¢ statistics incalculable. To fix this issue, the central posi-
tion of the input peptide should be discarded. Accordingly,
the significant PSSM P values are constructed as shown below,

Py 0 Pik-1 Pik+1 0 PiL
P21 0 Pak-1 Pak+1 o PaL

Pessu = | .. . . .. (6)
P21 0 Pak-1 Pax+1 0 Par

where L is the length of the flanking region, p;; denotes the P
value of the ith amino acid in the jth position for a given set of
nitration or nitrosylation peptide, and k refers to the central
position. Notably, for the peptide sequence, the matrix above
would be in a dimension of 21 x (L — 1).

Although the significant PSSM can represent the differ-
ences in sequence conservation between positive and negative
sites, the positive and negative tendency, unfortunately, cannot
be inferred from such a matrix. To address this issue, we fur-
ther established the following computational process to mea-
sure the conservation tendency of a given set of nitration or
nitrosylation peptide. Specifically, we first calculated the
observed frequency of an amino acid a at position j and con-
structed a frequency PSSM as shown below,

fin - fixor fiker - fip
B - Lo by o0 B

Fpos = . . . . . . (7)
LSRRI LTS YRS R L TR

where Fp,, denotes the frequency PSSM for the positive pep-
tides, and f;; represents the observed frequency of the i-th sym-
bol from the alphabet in the j-th position. Accordingly, the
frequency PSSM for negative peptides (denoted as Fy,,) can
also be calculated following the same approach. Based on Fp,,
and Fy,., we next computed the final encoding PSSM as
shown below,

Eii -+ Ewx.1r Eixsyr - Eip
Exy -+ Eoxor Eaxyr oo Eap

Epssv = : : : : : : (8)
Exyg -+ Enk-r Engsr o0 Earp

where E;; is calculated as below.
os _ yNeg
0y =———1 f’\; )
Pij

i

(10)

1n(‘5,-:/-| + 1) 5[’/' > 0
In(]o;,;|+1) 8, <0

The final encoding PSSM represents the conservation ten-
dency of the nitration or nitrosylation peptides. If E; ; is greater
than zero, then the amino acid at this position is more likely to
be observed in the positive sites; conversely, the amino acid
would have a better chance of appearing in the negative sites.
Using Epgsas (Table S4), we encode a nitration or nitrosylation
peptide into a numeric vector of dimension L — 1.

Deep neural network for predicting potential nitration or
nitrosylation sites

For the detection of potential nitration or nitrosylation sites,
we introduced a deep neural network model in our prediction
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algorithm. By coarse grid search, we optimized the network as
an eight-layer architecture (Figure 1, Figure S1). Specifically,
the first layer provided a module for data input, and numeric
vectors were directly assigned to the neurons during training
and predicting steps. From the second to the seventh layer,
each layer was implemented as a fully connected dense layer
according to the equation below,

H
0;0’(2%’510§_1 +bj/.]) (11)

i=1

where H is the number of neurons in the (I - 1)™ layer, w%‘j’l
and b:_j'l are the weight and bias associated with the jth neu-
ron, respectively, and o(-) denotes a non-linear activation func-
tion in this neuron. We expected that high-level features might
be extracted from the input vector when propagating the signal
down these layers. The eighth layer is the output layer.

In probability theory, the output of a softmax function can
be used to represent a probability distribution over k different
possible outcomes. Therefore, it is widely used in various mul-
ticlass classification algorithms, such as softmax regression,
naive Bayes classifiers, and artificial neural networks. Specifi-
cally, in neural network, softmax function was first introduced
by Bridle and his colleagues [42]. Comparing to simple logistic
regression, deep neural network with a softmax classifier can
vastly improve the performance in the case of not being able

Input layer

i
70
%

P

‘4‘\

N
\!

to perform feature selection, which is important to find out
features that significantly affect the outcome of the classifica-
tion. In view of this, to achieve a classification of the extracted
features, we therefore introduced a softmax classifier in the
output layer,
evk

Ok ZIH: le)ﬁ (12)
where o, is the output of the k-th neuron, representing the
observed probability of class k; y is the associated linear out-
put from the previous hidden layers; and H is the total number
of output neurons in the softmax layer. Specifically, for all the
layers above, the ReLU function (Equation (13)) was adopted
as the activation function to avoid gradient diffusion during
the training process. The gradient diffusion, also known as
vanishing gradient problem, is a challenge in the training of
artificial neural network by gradient-based learning methods
and backpropagation [43]. In such method, the update of neu-
ron’s weights and biases requires to pass backwards the error
signal from the previous layers. When the network is deep
enough, the gradient of the loss function would be vanishingly
small, effectively preventing the change of the weight. In the
worst case, this may completely stop the neural network from
further training, which explains the hindered usage of deep
neural network in solving complex problems until recently
when ReLU [27] function was introduced as a solution. Since

Fully-connected
hidden layers

Softmax layer

Figure 1 The deep neural network model of DeepNitro

Dropout
Input Weight RelLU
xl
Activation
/ X, — function
2
\ X, —— — 01
Activation
Transfer y = max(0x)
function
x

A total of eight neural levels were implemented. To reduce overfitting, a dropout process was introduced in the first three hidden layers.
Additionally, for each dense layer (the fully-connected layer), ReLU was applied to avoid gradient diffusion. Blue circles indicate neurons
in the input layer, the green and orange circles are neurons in the output layer. Red circles refer to neurons that are blocked by the dropout

approach. ReLU, rectified linear unit.
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the derivative of ReLU is constant at 1 for any input value
greater than zero, the error signal would never attenuate when
propagating down the network. This makes ReL Us favorable
for the complex neural network model, and we can have very
deep neural networks with ReLUs without the vanishing gra-
dient problem.

f(x) = {0 for

x<0
x=0

x for (13)

Before using the deep neural network for prediction, we

must first optimize the network parameters for the training

dataset. To achieve this goal, the negative log-likelihood

(Equation (14)) was considered as a loss function in our opti-
mization steps,

1 & ~
L=-q ;oilog(i) (14)

where 0, represents the predicted label, while o; is the real label.
Again, H is the total number of output neurons in the final
layer. According to Equation (14), a mini-batch gradient des-
cent algorithm is used to update network weights and biases
during the back-propagating process. The gradients can then
be computed as shown below,

Wlhmxwl—n% (15)
b'—mxb — 8—El (16)
ob

where 7 is the learning rate. The batch size was optimized to be
30 for protein nitration and set at 50 for protein S-
nitrosylation, respectively. To reduce overfitting, the momen-
tum item was adopted for updating the weights and bias,
and both the L1 and L2 regularization were introduced in
the loss function (Equation (17)),

L=L+uy [0/+4h) 0 (17)

where L is the loss function; A; and A, are coefficients for L;
and L, regularization, respectively; and 6 is the weights and
biases in a given layer.

Additionally, the dropout method was also implemented
from the second to the fourth layer to improve the generaliza-
tion capacity for the unknown dataset. Detailed parameter set-
tings are also optimized by coarse grid search and are listed in
Table S5.

The aforementioned deep neural network was implemented
and trained by the deeplearning4j library in JAVA.

Evaluation of the feature abstraction ability in the deep neural
network

To further decipher the underlying mechanism of our con-
structed models, we have designed the following method to
evaluate the feature abstraction abilities in the deep neural net-
work. The abstracted features for each training and test data-
set from the second to the seventh layer were computed based
on the previously trained model. The abstracted features from
each layer were then input into a simple multilayer perceptron
(MLP) for training and testing. This simple MLP consisted of
four fully-connected layers, and the detailed parameters are
listed in Table S6. Using the training dataset, this MLP model

was retrained to classify the abstracted features. Next, the per-
formance of the retrained model was evaluated on the indepen-
dent test dataset, and the AUC value was calculated as criteria
for quantifying the abstraction ability of each layer. To com-
pare with other traditional feature selection approaches, the
principle component analysis (PCA) was also performed on
the raw features. Particularly, in order to avoid any bias, the
raw features were compressed to the same dimension as each
hidden layer from the deep neural network model. Similarly,
the abstraction ability of PCA method was evaluated using
the same procedure.

The abstraction ability per unit of feature is computed as
below,

_A-05
- =5

S (18)
where A, is the AUC value of the abstracted features from the
i-th layer, and D, is the number of abstracted features at this
layer. Theoretically, an AUC value of 0.5 indicates a random
classification model, and thus, AUC value greater than 0.5
would contribute to classification. Therefore, we subtract 0.5
from the calculated AUC value to quantify the real contribu-
tion, and further divided it by the feature’s dimensionality to
compute the abstraction ability per unit of feature.

Results

Construction of predictors

We first optimized the length of the flanking regions of a
potential nitration or nitrosylation site by traversing the win-
dow size L from 10 to 50 using a 4-fold cross validation. Then
various encoding schemes, including the one-hot binary encod-
ing, PFR, k-space spectrum, and PSSM encoding, were
applied to capture the sequence and physiochemical features
of the flanking regions. As shown in Figure S2, increases in
the window size improved the prediction performance of tyro-
sine nitration, tryptophan nitration, and S-nitrosylation. Tak-
ing into account both the prediction accuracy and
computational burden, we finally selected a peptide length of
41 aa for subsequent training and prediction. Accordingly, a
given nitration or nitrosylation site peptide could be encoded
into a 3311-dimensional feature vector, when all the four fea-
ture encoding schemes above were used.

To capture all available biological properties, we designed a
set of feature-encoding schemes for protein nitration and nitro-
sylation. However, we speculate that different types of features
might contribute divergently to the prediction performance,
and there might be a dependency relationship present among
different features. Thus, we first examined the prediction
capacities of the four encoding schemes by 4-fold cross-
validation. The evaluation results of tyrosine nitration, trypto-
phan nitration, and S-nitrosylation showed a high coincidence.
PSSM and k-space encoding were the two most effective fea-
ture capturing schemes for protein nitration and nitrosylation,
enabling better classification than the other two schemes
(Figure 2A). Although experimental evidence has shown that
the formation of protein nitration and nitrosylation is mainly
regulated by chemical side reactions produced via NO-
related pathways, herein, we unexpectedly observed a weak
contribution of physiochemical features to the prediction of
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Figure 2  Establishment of the optimal encoding scheme for DeepNitro

A. The prediction capabilities of the four different types of encoding schemes. B. The modified PSSM encoding features for protein
nitration and nitrosylation. The PSSM scores were calculated according to our modified methods (see Methods section). The amino acid
profiles were generated using seq2logo [49] based on the calculated PSSM scores. Position 0 denotes the nitrated or nitrosylated residue. C.
The evaluation results of different combination of feature-encoding schemes. Feature-encoding schemes were added sequentially

according to their prediction capabilities, and 4-fold cross-validation was applied to evaluate their prediction performance. PSSM,
position specific scoring matrix.
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potential nitrogen-containing modifications (Figure 2A).
Among all the feature-coding schemes, we found that our
modified PSSM scheme achieved an outstanding efficacy for
extracting underlying features of the protein modification sites
that were lack of consensus motifs. Instead of only calculating
the conservation degree for positive data, we also took into
account the contribution of negative data. In fact, by measur-
ing the subtle differences between positive modification sites
and negative residues, we could further extract the underlying
rules for classification in comparison to the traditional PSSM
method. For example, in our PSSM scheme, we observed that
adjacent basic amino acid residues, such as arginine and lysine,
were favorable for producing tyrosine nitration, while adjacent
aromatic amino acid residues, such as tyrosine, hindered tyro-
sine nitration (Figure 2B, Figure S2). Similar patterns were
also observed for cysteine S-nitrosylation. The proximal basic
amino acid (arginine or lysine) residues showed a striking pref-
erence for positive data. Additionally, the cysteine residues
located around the flanking region were deleterious to the
modification (Figure 2B, Figure S2). Interestingly, the amino
acid preference for tryptophan nitration seemed to be more
site-specific compared with the other two types of modifica-
tions. The aliphatic or basic amino acid residues at positions
-7, =2, +2, +4, and + 13 contributed positively to the mod-
ification of the nitro-group on tryptophan. In contrast, the ala-
nine residue at position + 8 and isoleucine residue at position
+9 contributed negatively to tryptophan nitration (Figure 2B,
Figure S2).

Based on the observations above, we next sought to test the
prediction performance for different combinations of the
feature-encoding schemes. We evaluated the prediction capac-
ities of the combined schemes using 4-fold cross-validation by
adding the schemes sequentially into the prediction model
based on the order of their contributions. As expected, using
a combination of schemes could improve the prediction
accuracy for tyrosine nitration and cysteine nitrosylation
(Figure 2C). In particular, incorporation of the PSSM and
k-space schemes exhibited optimal performance. Therefore,
herein we chose PSSM and k-space as the final feature-
encoding schemes and constructed a 2040-dimensional
numeric vector for both tyrosine nitration and cysteine nitrosy-
lation prediction. For the tryptophan nitration, there seems to
be a different trend between the scheme combinations and the
prediction performance. PSSM encoding showed the strongest
capacity for prediction, whereas the integration of other fea-
tures seemed to weaken its prediction capacity. Notably, the
prediction performance of the constructed model decreased
with increased number of integrated schemes (Figure 2C).
Due to the limited number of known nitration sites available
in our training dataset, the application of multiple features
during the encoding process will introduce extra noise for clas-
sification, which may hinder the improvement of the prediction
accuracy. Therefore, to obtain the most appropriate prediction
model, we selected only the PSSM as the final scheme for fea-
ture encoding of tryptophan nitration. A 40-dimension feature
vector was inputted to the deep neural network model for
training and prediction.

Based on the aforementioned feature selection strategies,
we introduced a deep neural network model to construct the
predictor called DeepNitro for the detection of potential nitra-
tion or nitrosylation sites (Figure 1).

Evaluation of the feature abstraction abilities in the constructed
predictors

In deep learning-based method, as a benefit of its hierarchical
architecture, input features can be precisely abstracted along
the successive levels and thereby discovering informative pat-
terns for subsequent classification or regression tasks. The fol-
lowing method was developed to evaluate the feature
abstraction abilities of our constructed predictors. Firstly, we
extracted the output signals from each hidden layer as the
abstracted features, and input them into a simple multilayer
perceptron (MLP) to test their classification performance.
Using our collected dataset, we retrained the MLP model
and calculated the AUC value under the independent testset.
To compare with other feature selection approaches, the prin-
ciple component analysis (PCA) was also performed on the
raw input data and the selected components were then propa-
gated forward the same MLP to compute its performance.
Expectedly, the abstracted features selected from the nitration
and nitrosylation models all outperformed those from the PCA
method, suggesting that our method have a better feature
abstraction abilities than the traditional approaches (Fig-
ure S3). We further computed the abstraction efficiency per
unit of feature for both the deep neural network and PCA
method. Obviously, the abstraction efficiencies in each hidden
layer showed that deep neural network is able to extract effec-
tive features by transforming signals through successive layers.
As the number of layers increased, more informative features
were obtained. Moreover, compared to PCA method, deep
neural network can preserve more information under the same
compression ratio.

Taken together with the observations above, the applica-
tion of a deep neural network in our study could automatically
extract high-level recognition patterns for protein post-
translational modifications, and help to eliminate irrelevant
features or reduce noise in the training process.

Evaluation of the prediction performance

To evaluate the prediction performance of DeepNitro, we per-
formed 4-, 6-, 8-, and 10-fold cross-validation of the training
dataset. As a result, DeepNitro showed an acceptable perfor-
mance in n-fold cross-validation with the area under the
ROC curve (AUC) close to 0.7 for tyrosine nitration
(Figure 3A). For tryptophan nitration, the AUC values were
mostly greater than 0.85, indicating a satisfactory prediction
performance (Figure 3B). For S-nitrosylation, all the tested
AUC values were greater than 0.7 (Figure 3C). Furthermore,
for both nitration and nitrosylation, the ROC curves of the
4-, 6-, 8-, and 10-fold cross-validations were very close to each
other, supporting the robustness of our constructed predictors.
Since the positive and negative datasets were highly imbal-
anced in our training dataset, we then calculated the
precision-recall curves to further evaluate the performance of
our prediction models (Figure S4). The results further indicate
that DeepNitro is accurate and robust in predicting novel
nitration and nitrosylation sites, even in the case of an imbal-
anced data dataset.

In our prediction models, we expect that application of
deep neural network may help to uncover the underlying
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Figure 3  Performance evaluations of the prediction models for tyrosine nitration, tryptophan nitration, and the S-nitrosylation

The 4, 6, 8, and 10-fold cross-validations were performed on the
nitrosylation (C) models.

sequence features of protein nitration and nitrosylation from
the training dataset. To prove this point, we further compared
our deep neural network models to other shallow machine
learning methods for their abilities to interpret the training
dataset. The two most widely-adopted algorithms, support
vector machine (SVM) and random forest (RF), were com-
pared and a 4-fold cross-validation was carried out to evaluate
their performance. As shown in Figure S5, applying the eight-
layer deep neural network substantially improved the predic-
tion capability for tyrosine nitration and S-nitrosylation over
SVM and RF, indicating that the deep neural network models
are more powerful in interpreting the underlying information
for training dataset. However, for tryptophan nitration, ran-
dom forest secemed to be the optimal algorithm. Generally
speaking, training deep neural network typically requires a cer-
tain amount of training dataset to maintain the robustness and
accuracy of the model. But in tryptophan nitration, the sample
size is quite small, and therefore, limiting the performance of
deep neural network. The advantage of deep neural network
can be further demonstrated as the training dataset expands
in the near future.

To rigorously evaluate the prediction performance of Deep-
Nitro, we next compared it with other state-of-art predictors
using an independent dataset. For tyrosine nitration, we
selected iNitro and our previous tool, GPS-YNO2, for compar-
ison. To ensure that the comparison was unbiased, all the dif-
ferent thresholds for these tools were used. The evaluation
results of DeepNitro in the independent dataset agreed well
with those from the n-fold cross-validation, indicating that
our model provides robust results for new data. In comparison
to other available tools, DeepNitro also showed superior pre-
diction performance (Figure 4A). For S-nitrosylation, iSNO-
AAPair, SNOsite, and GPS-SNO were selected to perform
the comparison. Since iISNO-AAPair and SNOsite did not pro-
vide prediction scores for all potential cysteine residues, we
could only compute the prediction performance under their
default thresholds. As presented in Figure 4B, our model
achieved the highest AUC value of 0.7437, outperforming other
prediction software. To our knowledge, our study is the first
attempt to establish a prediction model for tryptophan

tyrosine nitration (A), the tryptophan nitration (B), and the cysteine

nitration for the biology community, and therefore a perfor-
mance comparison was not performed for tryptophan nitration.

Development of the DeepNitro web server

To facilitate the use of our prediction models, we next devel-
oped an online predictor called DeepNitro for the community,
which is freely available at http://deepnitro.renlab.org. Deep-
Nitro only requires protein sequences to run a prediction.
The prediction of tyrosine nitration, tryptophan nitration,
and cysteine nitrosylation are well supported in our predictor,
and users can select the modification types of their interest in
the options panel. To balance the prediction accuracy of each
modification type, we selected three thresholds with high, med-
ium, and low stringencies based on the evaluation results
(Figure 5A). The detailed performance values under these three
thresholds are shown in Table S7.

After the query sequences are submitted to DeepNitro, users
can check its running status in the result panel in real time.
When the prediction is complete, a button that links out to
the result page automatically appears. Figure 5B provides a
snapshot for the result page of human dynamin-1-like
(DNMI1L) protein and heterogeneous nuclear ribonucleopro-
tein D-like (HNRNPDL) protein. The prediction position,
score, and modification type of the input proteins were first
listed in an interactive table, which allows the users to easily
search and sort the results. Remarkably, to facilitate a further
analysis of the protein function, we also implemented an auto-
matic pipeline for visualizing the prediction results. By integrat-
ing IBS [44] and InterProScan [45] into the web server,
DeepNitro can present the graphical representation of the input
proteins together with their predicted sites and domain organi-
zation in the visualization panel (Figure 5C). In order to allow a
mass prediction of protein nitration and nitrosylation sites, a
standalone package, which is available at http://deepnitro.ren-
lab.org, was also developed. Like the web server, the prediction
of multiple modification types and visualization of the pre-
dicted results was supported.

Besides the functionalities above, we also integrated a data-
base covering all the nitration and nitrosylation sites we
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Figure 4  Performance comparison of the tyrosine nitration and the S-nitrosylation prediction models for the independent benchmarking dataset
An independent test set was used to evaluate the prediction capability of DeepNitro and other existing tools on protein nitration (A) and
nitrosylation sites (B). The default prediction thresholds of each compared tool were also marked on the ROC curves. Since three
prediction thresholds with low, medium and high stringencies were provided in GPS-YNO2 and SNOSite, we separately marked them on
the corresponding ROC curves. ROC, receiver operating characteristic curve.

collected into the web server. By searching with annotation
keywords or protein sequences, users can easily get access to
the modification data of interest and perform further func-
tional analysis to uncover the potential role of protein nitra-
tion and nitrosylation.

Discussion

Protein nitration and nitrosylation are widespread modifica-
tions that modulate diverse aspects of cellular functions.
Unlike other PTMs, nitration and nitrosylation are induced
by a series of chemical reactions rather than enzymatic pro-
cesses. As a consequence, this kind of modification usually
lacks consensus motifs, making it difficult to predict the exact
sites using bioinformatics algorithms. To overcome this chal-
lenge, we present a novel computational tool, DeepNitro, for
predicting potential nitration and nitrosylation sites. First,
we constructed new schemes for encoding the potential modi-
fication sites based on primary sequence features. Then, the
deep learning algorithm was applied for model training and
prediction.

DeepNitro shows superior performance for both protein
nitration and nitrosylation compared with existing tools. Its
prediction capability is enhanced mainly by the new encoding
schemes adopted in this study, especially the PSSM method. In
contrast to the traditional process, our method not only mea-
sures the conservation in positive data, but also takes into
account the comparison of residue preference between positive
and negative data. The subtle differences between positive and
negative data may act as a key factor to improve the distin-
guishing capability of our model.

In addition to the encoding schemes, a new model training
method is also introduced in our study. Recently, the deep arti-
ficial neural network has received increasing attention in the
field of machine learning. By propagating raw data down the

deep networks, underlying features and highly complicated
functions can be effectively encapsulated, increasing the classi-
fication and regression capabilities for the input data. Cur-
rently, the deep neural network has been shown to improve
performance in image [46] and speech recognition [32], natural
language understanding [47], and most recently, in computa-
tional biology [34,35]. As we expected, the application of the
deep neural network in the current study has introduced
remarkable performance gains into our model. The deep neu-
ral network allows us to better handle high-dimensional encod-
ing vectors by training complex networks with multiple layers
that capture their internal relationship. Compared to other tra-
ditional machine learning algorithms, application of this new
method can discover high-level features and increase inter-
pretability of protein nitration and nitrosylation.

Although promising performance was obtained using
DeepNitro, there is still room for refinement. First, to reduce
the computational burden, we only considered the primary
sequence feature in the current algorithm. Recent studies have
indicated that the tertiary structure is another key feature for
determining the occurrence of protein nitration or nitrosyla-
tion [38]. Therefore, considering sequence features only will
introduce bias into the prediction model. Consequently, we
will further introduce a structural encoding scheme, such as
features for peptide secondary and three-dimensional struc-
tures, in our future versions. Second, novel deep learning
architectures will also be applied in the next version of Deep-
Nitro to improve its performance. We are currently working
to predict the potential nitration and nitrosylation sites
through a deep fully-connected network, which neglects the
contextual dependencies of a given residue [48]. To measure
the contextual dependencies in nitration and nitrosylation site
prediction, the recurrent neural network (RNN) will be inte-
grated in future developments. With the help of RNN model
in measuring sequence contextual dependency, we expect that
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such an advanced architecture can greatly improve the predic-
tion capability of non-consensus protein modifications such as
nitration and nitrosylation.
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