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Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease
(HFMD). However, there are currently no specific antiviral drugs or vaccines for treating
infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green
monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were
used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD
monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and
genotyped, and the biological characteristics of the representative CVA6 strains were
analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells,
all of which belonged to the epidemic strains in mainland China. Using the adaptive culture
method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted
strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused
disease or partial death in suckling mice, and its virulence was stronger than its RD cell-
adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle
tissue and led to pathological changes, including muscle necrosis and nuclear
fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the
KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation.
Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and
could be used as an experimental CVA6 vaccine candidate.

Keywords: Coxsackievirus A6, HFMD, KMB17 cell-adapted strain, biological characteristic, vaccine
INTRODUCTION

Hand, foot and mouth disease (HFMD) is an infectious childhood illness predominantly caused by
enteroviruses (EVs) (Solomon et al., 2010; Weng et al., 2017; Fujimoto, 2018; Zhang H. et al., 2019).
EVs have been divided into 15 species, namely EV-A – L and rhinovirus A – C, comprising more
than 100 serotypes [http://www.picornaviridae.com]. Notably, EV-A71 and Coxsackievirus A16
(CVA16) are recognized as the key pathogens causing HFMD. The former is almost exclusively
associated with severe disease (Xing et al., 2014; Liu et al., 2015). However, since 2008,
Coxsackievirus A6 (CVA6), belonging to the EV-A group, has gradually become one of the main
gy | www.frontiersin.org August 2021 | Volume 11 | Article 7001911
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viruses causing HFMD outbreaks in Europe, the Americas, and
Asia (Lott et al., 2013; Montes et al., 2013; Hayman et al., 2014;
Ang et al., 2015; Bian et al., 2015; Mirand et al., 2016; Anh et al.,
2018). Since 2013, the HFMD etiology monitoring system in
many cities in China identified that the CVA6 positivity rate
suddenly increased, demonstrating that the virus is one of the key
pathogens causing HFMD (Yang et al., 2014; He et al., 2018;
Zeng et al., 2018). It has been determined that CVA6 is
associated with serious diseases, such as aseptic meningitis,
encephalitis and acute flaccid paralysis (Fujimoto, 2018). Li
et al. (2018) found that CVA6 accounted for 15.2% and 16.9%
of severe HFMD cases in China in 2013 and 2015, respectively.
Since then, CVA6 has spread throughout mainland China,
leading to serious public concern.

CVA6 strains are segregated into 4 genotypes designated as A,
B, C, and D and further subdivided into B1–B2, C1–C2, and D1–
D3 sub-genotypes. The Gdula prototype strain isolated in the
United States in 1949 is classified as genotype A. Genotype B and
C strains circulated in mainland China between 1992 and 2007
and in Shandong province of China in 1996 and India in 2008,
respectively. Genotype D circulated from 1999 to 2015 in
mainland China, Japan, Finland, Spain, and France. B, C, and
D Genotypes are further subdivided into B1-2, C1-2, and D1-3
sub-genotypes, respectively. B1 were detected in 1992 in
Shandong, China. B2 circulated from 2004 to 2007 in
Guangdong, China; D1 and D2 circulated in Japan in 1999 and
in France and Spain from 2008 to 2010 and in Japan and
mainland of China from 2006 to 2011, respectively. Since 2008,
D3 strains gradually become the predominant strains in Finland,
Spain, France, Japan, and China (Song et al., 2017; Hoa-Tran
et al., 2020).

Intriguingly, it has also been reported that CVA6 is associated
with adult HFMD, which has increased in incidence (Broccolo
et al., 2019). It has been identified as an important herpes causing
pathogen (Shin et al., 2010; Ramirez-Fort et al., 2014); however,
the herpes infection is not reported in China’s disease
monitoring and reporting system. Furthermore, the CVA6
infection differs from typical HFMD (Drago et al., 2017;
Balestri et al., 2018). Hence, it has been speculated that the
disease burden caused by CVA6 might be significantly
underestimated. Unfortunately, at present, no antiviral drugs
or vaccines targeting CVA6 are available. Thus, the development
of a CVA6 vaccine is essential.

Previous studies demonstrated that CVA6 was difficult to
propagate in African green monkey kidney (Vero) and human
embryo lung diploid fibroblasts (KMB17, MRC-5) cells (Woods
and Young 1988; Prim et al., 2013). The majority of studies
utilize human rhabdomyosarcoma (RD) cells to isolate and
culture CVA6. Hence, the current research on the CVA6
vaccine primarily focuses on the development of an inactivated
vaccine using RD cells as the cell matrix or a virus-like particle
(VLP) vaccine, both of which are retained in mouse model (Yang
et al., 2016; Zhou et al., 2016). Unfortunately, the existing
formalin-inactivated EV-A71 vaccine shows no cross-
protection against CVA6 or other EV infections (Zhu et al.,
2014; Yi et al., 2017).
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In the present study, the biological characteristics, such as
genotype, nucleotide and amino acid differences, one-step
growth curve, pathogenicity and immunogenicity of different
cell-adapted CVA6 strains were preliminarily investigated to
guide future research on the CVA6 vaccine.
MATERIALS AND METHODS

Virus Isolation and Adaptive Culture
The stool sample collected from the child was treated using the
standard procedure, and adaptively cultured in human
rhabdomyosarcoma (RD) cells, African green monkey kidney
(Vero) and human embryonic lung diploid fibroblast (KMB17)
cells for virus isolation (Prim et al., 2013; Xu and Zhang 2016).
When the cells grew into a dense monolayer, the cell monolayer
was washed with PBS three times and the filtered and sterilized
samples were inoculated on the cell surface. After adsorption for
2 h, an appropriate amount of maintenance solution and
mycoplasma removal agent was added, and the cells were
moved to 37°C incubator containing 5% CO2 for continuous
culture for 7 days. Samples of inducing cytopathic effects (CPE)
were considered as positive and were stored at -20°C. After three
cycles of freeze-thaw, the next round of passage was carried out.
This blind passage was performed for three generations. All of
the above operations were performed in a BSL-2 biosafety
cabinet. The flow chart of the study is provided in Figure 1.

Reverse Transcription Polymerase
Chain Reaction (RT-PCR), Sequencing,
and Typing
RT-PCR, sequencing and typing were performed according to a
previously described procedure (Liu et al., 2020a). Briefly, the
QIAamp Viral RNA Mini Kit (Qiagen, USA) was used to extract
the viral RNA from infected cell supernatants. The PrimeScript
One Step RT-PCR Kit Ver. 2 (Takara, Dalian, China) was
employed to perform RT-PCR. Primers 224 and 222 were used
to amplify the partial VP1 sequences. Complete genome
fragments were amplified and sequenced using multiple pairs
of primers, and the amplification and sequencing primers are
summarized in Table S1. The positive amplification products
were sequenced by Kunming Qingke Biological Technology Co.,
Ltd. (Kunming, China). The Enterovirus Genotyping Tool was
used for EV classification. The VP1-encoding sequences and
complete genomes were compared with sequences available in
GenBank using the Basic Local Alignment Search Tool (BLAST)
[http://www.ncbi.nlm.nih.gov/BLAST]. The VP1 sequences of 37
CVA6 strains characterized in this study were deposited in the
GenBank database (accession numbers: MN514784–MN514822).

Phylogenetic Analysis and
Sequence Alignments
The Molecular Evolutionary Genetic Analysis (MEGA) version
7.0 software with the maximum likelihood (ML) method with
1000 bootstrap replications was used to perform the phylogenetic
August 2021 | Volume 11 | Article 700191
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analysis of 127 CVA6 strains (i.e., 90 strains from the GenBank
database and 37 strains isolated in this work) and CVA10
prototype strain CVA10/Kowali/AF081300 based on the
complete VP1 sequence (915 nucleotides) (Fu et al., 2020).
CVA6 was genotyped according to previous studies (Song
et al., 2017). CVA6 lineage was defined as forming a
monophyletic clade and according to a difference of
approximately 15% in the complete VP1 nucleotide sequences
was assigned for different genotypes. However, genotypes can be
further subdivided into different sub-genotypes, with a difference
of over 8% in VP1 nucleotide sequences (Brown et al., 1999). The
Geneious 9.0.2 software was employed for pairwise alignment of
these sequences.

Virus Titration
The virus titres were measured using a microtissue culture
technique (MCT) according to a previously described protocol
(Zhang et al., 2019). Briefly, serially diluted virus samples were
inoculated into RD cells in 96-well plates, which were incubated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
at 37°C in the presence of 5% CO2 for 7 days. Subsequently, the
50% cell culture infectious dose (CCID50) values were calculated
using the Karber method.

Virus Purification
The CVA6 strains were purified by plaque cloning in RD and
KMB17 cells. Briefly, CVA6 strain diluted using a 10-fold
gradient (10−1–10−5) was added to the cell monolayer and
incubated at 37°C with 5% CO2 for 2 h. Subsequently, the
medium was removed and the cell surface was rinsed three
times with phosphate-buffered saline (PBS). The cell surface was
then covered with 2 mL of MEM containing 0.9% agarose.
Following solidification, the inverted culture was incubated at
37°C with 5% CO2. When a single plaque was observed under a
microscope, it was absorbed with a pipette and dissolved in
500 mL of PBS. The mixture was frozen three times at -20°C and
centrifuged at 5,000 × g for 30 min. The supernatant was used to
inoculate cells in 24-well plates. When the cells demonstrated
CPE, the viral RNA was extracted and identified according to the
FIGURE 1 | The flow chart of the study.
August 2021 | Volume 11 | Article 700191
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method described above. The virus identified as CVA6 was
subjected to next-generation plaque purification. Each strain
was purified three times using the same approach.

One-Step Growth Curve of CVA6 Isolates
in RD and KMB17 Cells
Ten CVA6 RD cell-adapted strains and KMB17 cell-adapted
strains were inoculated into RD and KMB17 cells with MOI = 1.
Three replicates were performed at each time point. After
inoculation, the virus solution was harvested every 24 h for 8
days. The virus titres were determined according to the method
described above. The one-step growth curve of the virus was
plotted as the sample collection time (abscissa) vs. virus infection
titres (ordinate).

Experimental Animal Infections
Seven CVA6 RD cell-adapted strains with highly infectious titres
and their KMB17 cell-adapted strains were selected and
inoculated into the cranial cavity of one-day-old BALB/c
suckling mice at a dose of 6.5 lgCCID50, and the mice were
monitored for 15 days. Specific pathogen-free BALB/c suckling
mice were purchased from Hunan Slack Jingda Experimental
Animal Co., Ltd., Hunan, China. The experimental mice were
infected with the viral stock supernatant by intracranial
injection, while the negative control mice were mock infected
with uninfected cell supernatant via the same route (30 mL/per
mouse, 6–10 mice in each group). The pathogenicity of the strain
was evaluated based on the clinical characteristics of neonatal
mice. The pathogenic strain was selected and inoculated into the
cranial cavity of the neonatal mice at 6.5, 5.5, and 4.5 lgCCID50.
The pathogenicity of the strain before and after KMB17 cell
adaptation was compared based on the average body weight,
clinical score, survival rate, hematoxylin and eosin (HE) staining,
immunohistochemistry results and viral load in each tissue.

Histopathological and
Immunohistochemistry (IHC) Analyses
The histopathological and immunohistochemistry (IHC) analyses
were performed according to previously reported methods. Briefly,
the tissues of the neonatal mice were dissected and placed in 4%
formalin for a week. Following fixation, the tissue sections were
embedded in paraffin and stained with HE. After dehydration, the
tissue samples were mounted with neutral gum. For IHC analysis,
mouse anti-CVA6 antibody (1:1,000 dilution)was incubated at 4°C
overnight. Peroxidase-conjugated secondary antibody was added
for 50 min at room temperature and then developed using the
diaminobenzidine tetrahydrochloride developer solution. All
sections were examined under a microscope slide scanner (3D
HISTECH Pannoramic 250, Hungary). The acquired images were
collected and analyzed.

Tissue Sampling and RT-qPCR
The heart, liver, spleen, lung, kidney, small intestine and brain
tissues of the suckling mice were weighed and ground with a high
speed grinder (KZ-II, Servicebio, Wuhan, China). The total RNA
was extracted using the TRIzol reagent (Invitrogen, USA).
Subsequently, real-time PCR was performed utilizing the One
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Step PrimeScript™ RT-PCR Kit (Takara) according to the
manufacturer ’s protocol . Pr imers CVA6-qP-F (5 ’-
TACCACCGGGARAAACGTCCACG-3’) and CVA6-qP-R (5’-
CGGTCAGYTGCAGTGTTAGT-3’) as well as CVA6-probe
(FAM-ACGTGAGAGCTTGGGTACMTAGACCCCTTC-
BHQ) were used. A sequence of 1468 bp including
VP1 fragments amplified by RT-PCR with the primers CVA6-
VP1-F (5’-TAATACGACTCACTATAGGGGGTCAGAT
CTGCAGGTATTAC-3’) and CVA6-VP1-R (5’-GAGGACACC
AGAAGATCTCG-3’) was inserted into the pMD18-T plasmid.
The recombinant plasmid was further linearized. VP1 RNA
obtained from the in vitro transcription was then used to
evaluate the copies of CVA6.

Neutralization Assays
The neutralization assays were conducted according to
previously described methods. The RD cells (1 × 105/mL) were
seeded in 96-well microplates. The serum was serially diluted
two-fold by mixing with equal volumes of the CVA6 strains (100
CCID50) at 37°C for 1 h. The RD cells were inoculated with the
virus-serum mixtures and incubated at 37°C for 7 days.
RESULTS

Primary Characterisation of the
Virus Isolates
The RD, Vero and KMB17 cells were used to isolate viruses from
clinical samples. The virus serotype identification was conducted
according to a previously reported approach (Du et al., 2019). A
total of 37 CVA6 strains were only isolated from RD cells between
2009 and2017duringHFMDmonitoring in theYunnan andHubei
provinces, China, but failed to fromKMB17 andVero cells. And by
ten adaptive cultures, noCVA6 strainwas recovered fromVero and
KMB17 cell culture, respectively. 37 CVA6 strains isolated from
clinical samples were provided in Table S2. The complete VP1
sequences of the 37 strains described in this study had be deposited
in the GenBank database under the accession numbers MN514784
to 514822. All isolates belonged to the D3 gene subtype (Figure 2).
The nucleotide and amino acid homologies of the VP1 sequences
were 95.8–100% and 97.0–100%, respectively. After the Vero and
KMB17 cells were independently adapted, 10 CVA6 KMB17 cell-
adapted strains were obtained and denoted as KYN-A5, KYN-
A110, KYN-A1205, KYN-N15, KXY4051, KYN-A13, KYN-A100,
KYN-A129, KYN-A68, and KYN-A2. However, no CVA6 Vero
cell-adapted strains were acquired. The polyclonal anti-KYN-
A1205 antiserum completely neutralized nine CVA6 KMB17 cell-
adapted strains (the highest neutralization titre reached 1:1024),
indicating that the strains exhibited good immunogenicity.

One-Step Growth Curve of Different
Cell-Adapted Strains
The one-step growth curve of these high titre RD cell-adapted
strains and their KMB17 cell-adapted strains, were plotted
(Figure 3). It is noteworthy that at each time point, the virus
titres of the YN-A129, YN-A68 and YN-A2 strains in the two
studied cell lines were lower than the titres of the other seven
August 2021 | Volume 11 | Article 700191
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FIGURE 2 | Phylogenetic analysis based on full-length VP1 of CVA6. The 37 CVA6 isolates from this study and 90 representative strains of CVA6 from GenBank and CVA10
prototype strain CVA10/Kowali/AF081300 were used to construct phylogenetic trees based on the full-length VP1 sequence (915 nucleotides) (Test of Phylogeny: Bootstrap
method, number of Bootstrap Replications: 1,000 Mode: Kimura 2-parameter model), showing a bootstrap value of > 70%. ▲ indicates the CVA6 strain isolated in this study.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org August 2021 | Volume 11 | Article 7001915
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strains. By pairwise comparisons of the nucleotide and amino
acid sequences of the three whole genomes, no specific mutations
were found. Thus, the seven strains with higher titres (> 6.0
logCCID50) were used in the subsequent investigations.

Pathogenicity Analysis
Among the seven selected CVA6 RD cell-adapted strains, the
RYN-A1205, RYN-N15, RYN-A13 and RXY4051 strains were
pathogenic to suckling mice, with the RXY4051 strain exhibiting
the strongest virulence (Figure S1). The course of morbidity was
comparable. Decreased vitality, limb weakness and paralysis of
the forelimb or hindlimb muscles were observed. Moreover,
among the CVA6 KMB17 cell-adapted strains, only KYN-
A1205 caused clinical symptoms in suckling mice (Figure S2).
Hence, the RYN-A1205 strain and its KMB17 cell-adapted strain
were inoculated into the cranial cavities of 1-day-old BALB/c
suckling mice. The results demonstrated that the RYN-A1205
strain had an increase in virulence after the KMB17-
adaption (Figure 4).

Immunohistochemical and
Histopathological Analyses
When the clinical score reached grades 4–5, the newborn mice
were sacrificed and their heart, liver, spleen, lung, kidney,
intestine, brain, forelimb muscle and hindlimb muscle tissues
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
were taken for IHC and HE staining. The results revealed that
after infection with the RYN-A1205 and KYN-A1205 strains, the
number of leukocytes in the liver sinus increased and minor
infiltration of neutrophils was noted (Figure 5). Moreover, large
extramedullary hematopoietic foci in the red pulp and
multinucleated giant cells were detected. The alveolar wall was
considerably thicker due to infiltration of numerous lymphocytes
and neutrophils. The number of large areas of muscle fibres in
the forelimb muscle and hindlimb tissues decreased. The muscle
fibres appeared necrotic, mitotic or dissolved, which was
accompanied by increased lymphocyte and neutrophil
infiltration. Additionally, a large number of fibroblasts and
some hyperplastic connective tissues were observed. Other
tissues showed no significant pathological changes. The kidney,
lung, small intestine, forelimb muscle and hindlimb muscle
tissues displayed distinct CVA6 antigen distribution, which
was evidenced by dark brown staining color. In contrast, the
remaining tissues exhibited no antigen distribution.

Tissue Viral Loads in CVA6-Infected Mice
Both RYN-A1205 and KYN-A1205 strains were inoculated into
the brains of suckling mice at a dose of 5.5 lg CCID50. The viral
loads of the heart, liver, spleen, lung, kidney, intestine, brain,
forelimb muscles, hindlimb muscles of the suckling mice were
measured on the 4th, 8th and 12th days after infection. The
A

B

FIGURE 3 | The one-step growth curve of these high-titre RD cell-adapted strains and their KMB17 cell-adapted strains. Panel (A) (RD cell lines) and Panel
(B) (KMB17 cell lines).
August 2021 | Volume 11 | Article 700191
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results showed that there was no significant difference in the viral
load of this strain before and after the KMB17 cell adaptation,
and all of the suckling mouse tissues showed strong muscle
phagocytosis (Figure 6). The virus load of the front and hind
limbs of the suckling mouse was the highest on the 8th day post
infection (dpi) among all tissues.

Sequence Analysis of Different
Cell-Adapted Strains
The complete genome of the RXY4051, KXY4051, RYN-A1205,
and KYN-A1205 strains were obtained by Sanger sequencing
(accession numbers: MT364500, MT364501, MN184852,
MN184852, respectively). The full-length genomes of these four
strains are 7351 nt, 7352 nt, 7442 nt, and 7397 nt, the 5’UTR is 696
nt, 697 nt, 748 nt, and 748 nt, and the 3 ‘UTR is 49 nt, 50 nt, 91 nt,
and 46 nt, respectively. All contain an open reading frame of 6606
nucleotides, encoding a polyprotein containing 2201 amino acids.
P1 structural protein has 870 amino acids, and P2 and P3 non-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
structural proteins encode 578 and 753 amino acids, respectively.
Among them, the complete genome nucleotide and amino acid
homology of the RXY4051 and KXY051 strains were 94.2% and
97.9%, respectively (Table S3). There are 48 amino acid differences
between these two strains (Table S4), five amino acid differences in
the VP2 region; four amino acid mutations in the VP3 region; and
ten amino acid differences in theVP1 region. There are three, three,
two, two, eighteen amino aciddifferences in 2A, 2B, 3A, 3C, and 3D,
respectively. In addition, the NCBI BLAST tool was used to
compare the strains with the most homologous nucleotide
sequences to the respective gene regions of the RXY4051 and
KXY4051 strains (Table S5). The results showed that the
complete genomes of RXY4051 and KXY4051 strains were the
most homologous to CVA6/XS45/MH536772 (98.30%) and
CVA6/S2792/BJ/CHN/2014/MF285648 (98.35%), respectively,
and other gene regions were most homologous to the CVA6
strains, suggesting that the two strains have not recombined with
other serotype viruses. In addition, the complete genomenucleotide
A B

C D

E F

FIGURE 4 | Comparison of virulence of the RYN-A1205 and KYN-A1205 strains. The body weight, mean clinical score and percent survival of neonatal mice
injected with the RYN-A1205 strain (A, C, E). The mean clinical score and percent survival of neonatal mice injected with the KYN-A1205 strain (B, D, F). Negative
control mice were administered an equal volume of an uninfected cell supernatant instead of the virus.
August 2021 | Volume 11 | Article 700191
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and amino acid sequence homology of the RYN-A1205 and KYN-
A1205 strains were 99.80% and 99.40%, respectively. Compared
with the RYN-A1205 strain, a total of 15 nucleotide mutations
occurred in the strain KYN-A1205, resulting in 12 amino acid
substitutions (Table S6).
DISCUSSION

Following the adoption of the EV-A71 vaccine, the virus
spectrum of HFMD has gradually changed. Recently, CVA6
has become the main pathogenic serotype in several regions.
CVA6 strains have been segregated into A, B, C, and D, and B1–
B2, C1–C2, and D1–D3 subgenotypes. Since 2008, genotype D3
strain gradually becomes the main epidemic strain worldwide. In
addition, although sporadic substitutions were found among a
few CVA6 epidemic strains, the amino acid sequences were
highly conservative by predicted putative functional loops located
in the VP4, VP2, VP3, and VP1 of CVA6 (Hoa-Tran et al., 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
And Loop prediction is consistent with neutralizing linear epitopes
fromprevious report (Xu et al., 2017). Thus,D3 strain is a candidate
for developing a CVA6 vaccine (Hoa-Tran et al., 2020).

The CVA6 D3 subtype epidemic strains exhibit stronger
transmission ability, infectivity and virulence, which might be
associated with a CVA6 epidemic (Song et al., 2017). Based on
the nucleotide sequence alignment and phylogenetic analysis of
the VP1 sequences, all CVA6 isolates evaluated in the present
study were of the D3 subtype, which is consistent with the
epidemic strains from mainland China and most international
isolates. Hence, it was hypothesized that in-depth research into
the known CVA6 isolates would provide crucial guidance for the
rational design of effective vaccines against CVA6 infection.

The use of cell lines is necessary for the isolation, proliferation
and detection of viruses as well as for the production of viral
vaccines. Previous studies demonstrated that proliferation of
CVA6 on cell matrices produced by Vero, MRC-5 and other
cell lines commonly used during vaccine development was
challenging (Woods and Young 1988; Prim et al., 2013). At
FIGURE 5 | Histopathological (×200) and immunohistopathological analyses of tissues isolated from CVA6-infected neonatal mice (×400). One-day-old BALB/c mice
were intracranially injected with 5.5 lgCCID50 of the KYN-A1205 strain or an equal volume of uninfected cell supernatant. Obvious histological changes in the liver,
spleen, lung, forelimb muscle and hindlimb muscle tissues of the experimental group (B, F, J, N, R, black arrow) were noted. No histological changes were observed
in the liver, spleen, lung, forelimb muscle and hindlimb muscle tissues of the negative control group (A, E, I, M, Q). The CVA6 antigen was detected in the liver, lung,
intestine, forelimb muscle and hindlimb muscle tissues of the experimental group (D, H, L, P, T, black arrow). No antigen was detected in the liver, lung, intestine,
forelimb muscle and hindlimb muscle tissues of the negative control group (C, G, K, O, S).
August 2021 | Volume 11 | Article 700191
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present, the majority of studies use RD cells to isolate and culture
CVA6, which has hindered the development of effective CVA6
inactivated vaccines. Continuous passage is a traditional adaptive
screening method, which has been widely employed to screen
various viral adaptive strains (e.g. EV-A71, rabies virus,
rotavirus, poliovirus and hepatitis A virus). In this work, 37
CVA6 strains were isolated from RD cells, while, isolation from
Vero and KMB17 cells was unsuccessful. Following adaptive
culture, only 10 CVA6 KMB17 cell-adapted strains were
acquired. This was attributed to the changes in the living
environment of the virus after infecting different hosts.
Moreover, it is known that CVA6, CVA10, EV-A71 and
CVA16 are characterized by high amino acid homology
(~67%) (Xu et al., 2017). As for CVA6, it is problematic to
adapt to Vero and KMB17 cells, which may be related to the
inefficient internal ribosome entry site (IRES) in directing
translation, its inability to induce the cellular protein synthesis
shutoff, and its deviated codon usage with respect to the cell
codon usage. Altogether, this may result in competition for the
translational machinery and tRNAs, which additionally may not
be well adapted to the virus requirements, contributing to the
modest productive growth of CVA6 in cell culture (Chavarria-
Miró et al., 2021). In addition, host cell receptors are critical for
virus invasion and adherence. Previous studies revealed that
scavenger receptor class B, member 2 (SCARB2) and P-selectin
glycoprotein ligand-1 (PSGL-1) are the specific receptors for EV-
A71 and CVA16, whereas KREMEN1 is a host cell receptor for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
CVA6 and CVA10 (Nishimura et al., 2009; Yamayoshi et al.,
2009; Zhu et al., 2018). The surface loops of VP1 (i.e., BC, DE, EF
and HI loops) are the preferred binding sites for numerous small
RNA virus receptors. The significant differences in the capsid
protein structures in these four loops have been previously
reported for CVA6, EV-A71 and CVA16. Hence, the varying
arrangement of these four loops could result in many unique
capsid surfaces, which might explain why CVA6, EV-A71 and
CVA16 do not share the same receptors.

It is recognized that animal models are crucial for vaccine
research. Yang et al. found that the RD cell-adapted strain CA6/
141 showed a strong tendency towards skeletal muscle and skin
(Yang et al., 2016). Large antigen distribution was detected in the
skeletal muscles of the hindlimbs and spine. In addition, Zhang
et al. reported that the CVA6 RD cell-adapted strain WF057R
caused significant pathological changes in the brain, hind skeletal
muscles and lungs of infected neonates (Zhang et al., 2017). In
the current study, three representative strains exhibiting high
pathogenicity caused obvious damage to the forelimb and
hindlimb muscles. Furthermore, RYN-A1205 and KYN-A1205
caused damage to the liver, spleen and lungs of the infected mice.
These outcomes demonstrated that the CVA6 strain showed
strong tropism to the muscles of suckling mice, which might lead
to paralysis of the newborn animals and an inability to obtain
breast milk, thereby accelerating their death. Other pathological
changes might be related to the age of the experimental mice, virus
strain, inoculation route and dose. Compared with EV-A71 and
A

B

FIGURE 6 | Viral loads of all tissues of suckling mice on the 4th, 8th and 12th dpi with the RYN-A1205 (A) and KYN-A1205 (B) strains.
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CVA16, CVA6 showed weaker tropism to the nervous system and
myocardium of suckling mice, which was consistent with the
previously reported clinical findings. EV-A71 and CVA16 are
typically associated with severe HFMD and nervous system
complications; however, severe HFMD caused by CVA6 is rare.

VP1 plays an important role in the virulence and
immunogenicity of EVs. The change of the VP1 protein may
be related to the symptoms seen in the nervous system caused by
EV-A71 infection (Zhang et al., 2014). Similarly, through
KMB17 cell adaptation, the 90th, 140th, 240th and 305th
amino acids of the VP1 coding region of the RYN-A1205
strain were mutated, and the 305th amino acid substitution
was located in the epitope of the CVA6 antigen. The effect of
the change at this amino acid position on the immunogenicity of
the RYN-A1205 strain requires further examination.

Evaluation of virus strain immunogenicity is critical to
vaccine research. The results of the present study revealed that
the maximum neutralizing titre of a polyclonal antiserum of the
KYN-A1205 strain reached 1:1024, which completely neutralized
nine other KMB17 cell-adapted strains. This indicated that
KYN-A1205 displayed good and stable immunogenicity.
Moreover, in our previous research, KYN-A1205 was passed to
the 15th generation in KMB17 cells. The nucleotide and amino
acid sequence homology of the P1, P5, P10 and P15 generation
subviruses was established at 99.97%–100% and 99.90–100%,
respectively, indicating good genetic stability (Liu et al., 2020b).
In summary, we identified a CVA6 KMB17 cell-adapted strain
KYN-A1205 with good pathogenicity and immunogenicity.
KYN-A1205 could be a promising candidate strain for the
development of a CVA6 vaccine.
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