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Abstract
Gallbladder carcinoma (GBC) is a lethal biliary tract malignant neoplasm. Patient-derived primary cancer cell lines (PDPCs) 
are appropriate models to explore biological characteristics and potential therapeutics; however, there is a lack of PDPCs in 
GBC. In this study, we aimed to establish and characterize the GBC PDPCs, and further investigated the intra-tumor het-
erogeneity (ITH). Multi-region sampling (3–9 regions) of the operable tumor tissue samples was used to establish PDPCs. 
Short tandem repeat genotyping for cell authentication and karyotyping was performed, followed by whole-exome sequenc-
ing and RNA sequencing to assess the ITH at the genetic and transcriptional levels, respectively. Thirty-eight PDPCs were 
successfully established from seven GBC patients and characterized. ITH was observed with a median of 38.3% mutations 
being heterogeneous (range, 26.6–59.4%) across all patients. Similar with other tumor types, TP53 mutations were always 
truncal. In addition, there were three genes, KMT2C, CDKN2A, and ARID1A, with truncal mutations in at least two patients. 
A median of 370 differentially expressed genes (DEGs) was identified per patient. Distinct expression patterns were observed 
between major histocompatibility complex (MHC) class I and II genes. We found the expression of MHC class II genes in 
the PDPC samples was closely regulated by CIITA, while that of MHC class I genes were not correlated with CIITA expres-
sion. The PDPCs established from GBC patients can serve as novel in vitro models to identify the ITH, which may pave a 
crucial molecular foundation for enhanced understanding of tumorigenesis and progression.

Keywords Gallbladder carcinoma · Genomic profiling · Intra-tumor heterogeneity · Patient-derived primary cancer cell 
line · Transcriptome profiling

Introduction

Gallbladder carcinoma (GBC) is one of the lethal biliary 
tract cancers with limited therapeutic options and unsatis-
factory treatments [1, 2]. Surgical resection is the preferred 
treatment option, but many GBC patients are not suitable for 
curative surgery when they are detected [3, 4]. Patients with 
advanced or metastatic GBCs have a poor prognosis with a 
5-year survival rate of less than 10% [5, 6]. Among all the 
potential reasons, the lack of understanding regarding the 
tumorigenesis and progression has been proposed as a major 
obstacle to discovering a new strategy for more precise and 
effective treatment to improve GBC patients’ prognosis.

Several previous studies of GBCs have reported the 
results of mutational profiling [7–13]. The recurrently 
mutated actionable genes and the signaling pathways in 
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GBCs were described, which may be regarded as the poten-
tial candidates for personalized targeted therapy. Actually, 
treatment development and improvement may require not 
only appreciation of genetic alterations but also understand-
ing of intra-tumor heterogeneity (ITH) [14], which is a well-
established phenomenon and may foster tumor adaptation, 
and drug resistance to chemotherapy and molecularly tar-
geted agents [15]. Some studies have demonstrated the uni-
versal prevalence of ITH in many types of tumors including 
renal-cell carcinoma, lung adenocarcinomas and glioblas-
toma [16–18]. However, little is known about the ITH and 
its impact on the progression of GBC.

Patient-derived primary cancer cells (PDPCs) derived 
from tumor tissue samples are not only attractive for test-
ing drug sensitivity and exploring the biological functions, 
but also preferable for the tumor features using genomic 
sequencing [19]. Moreover, previous studies on hepatocel-
lular carcinoma and intrahepatic cholangiocarcinoma (ICC) 
have shown that PDPCs can enable an accurate assess-
ment of ITH [14, 19]. In the present study, we established 
thirty-eight PDPCs using multi-region sampling and took 
advantage of them combined with whole-exome sequenc-
ing (WES) and RNA sequencing (RNA-seq) to explore the 
ITH in GBC.

Materials and methods

Patients and clinical samples

Patients with GBCs were enrolled in this study from August 
2015 to March 2016. All patients provided fresh tumor tissue 
samples that were obtained from the clinical sample bank at 
the Department of Biliary I, Shanghai Eastern Hepatobiliary 
Surgery Hospital, Navy Military Medical University, and 
samples were collected. All the patient was diagnosed by 
surgical pathology. Clinical information of these patients 
is shown in Table 1. Based on the seventh edition of the 
American Joint Committee on Cancer (AJCC) staging sys-
tem for esophageal cancer [20], one patient was stage IIa, 

four patients were stage IIIa, and two patients were stage 
IIIb. All patients provided written informed consent for their 
samples to be examined and their clinical data to be utilized. 
This study was approved by the Institutional Review Board 
of Shanghai Eastern Hepatobiliary Surgery Hospital, Navy 
Military Medical University (No. EHBHKY2015-02-010).

Establishment and culture of PDPCs

The spatially distinct multi-regions of the operable GBC tis-
sue samples were collected from seven patients and PDPCs 
were established by following the standard procedures. In 
brief, fresh tissues were washed with sterile phosphate-
buffered saline (PBS) and cut into 1   mm3 pieces. Then, 
small pieces of the tissue were placed into 10  cm2 dishes 
and incubated with DMEM/F12 medium with 10% fetal 
bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Inc., 
Waltham, MA, USA), 1% non-essential amino acids, and 
1% penicillin/streptomycin (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). The cells were trypsinized with 0.25% 
trypsin (Gibco, Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) when they reached about 30% confluence and 
were transferred into 24-well plates for subculture. There-
after, all PDPCs were grown in a 37 °C incubator at 5%  CO2 
with DMEM/F12 medium supplemented with 10% FBS. The 
mycoplasma testing has been done for all PDPCs established 
in this study. The passage of each PDPC used in the follow-
ing experiment was different and the passage information for 
each PDPC in the assays ranged between 15 and 25.

Characterization of PDPCs

For short tandem repeat (STR) genotyping, genomic DNA 
was extracted from each GBC PDPC using a QIAamp 
DNA Mini Kit (QIAGEN Inc., Valencia, CA, USA). 
Nineteen STR loci (TH01, D12S391, D7S820, CSF1PO, 
FGA, D5S818, D2S1338, D21S11, D18S51, TPOX, vWA, 
D8S1179, D3S1358, D13S317, D6S1043, D16S539, Penta 
E, D19S433, and Penta D) and Amelogenin were amplified 
by PCR and analyzed using an Applied Biosystems 3730xl 

Table 1  Clinical characteristics 
of seven patients with 
gallbladder carcinoma

Patient_ID Pathological diagnosis Sex Age Site Size (cm) AJCC 
Tumor 
Stage

668 Gallbladder carcinoma Male 60 Gallbladder 3 IIIb
902 Gallbladder carcinoma Female 60 Gallbladder 10 IIIa
1279 Gallbladder carcinoma Male 49 Gallbladder 11 IIIa
1405 Gallbladder carcinoma Male 65 Gallbladder 4 IIIa
1436 Gallbladder carcinoma Male 65 Gallbladder 4.2 IIa
4160 Gallbladder carcinoma Female 46 Gallbladder 3.5 IIIb
4256 Gallbladder carcinoma Female 78 Gallbladder 6.3 IIIa
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DNA Analyzer (Applied Biosystems Inc., Foster City, CA, 
USA). For karyotyping, exponentially growing GBC PDPCs 
were exposed to colchicine (0.01 mg/ml) for 16 h and then 
to hypotonic treatment (0.075 mol/L KCl) for 20 min. After 
fixation in a methanol and acetic acid mixture (3:1 by vol-
ume), cell suspensions were dropped onto ice-cold slides. 
Slides were then treated in trypsin for 30–60 s and stained 
with Giemsa. Chromosomes from at least 20 metaphases per 
sample were analyzed under a microscope.

WES and RNA‑seq

All genomic DNA and total RNA samples were shipped on 
dry ice after extraction, and WES was performed as previ-
ously described [21]. DNA library preparation, and sequence 
capture and next-generation sequencing were performed at 
WuXi Next CODE (Shanghai, China). Deep sequencing 
of exome captured DNA was performed on an Illumina 
NovaSeq S4 PE150 instrument.

RNA-seq was performed as previously described [22]. 
Randomly interrupted mRNA and the first cDNA strand 
were synthesized, and then a second cDNA strand was 
synthesized. RNA-seq library construction and hybrid cap-
ture and sequencing were performed at WuXi Next CODE 
(Shanghai, China). RNA-seq was performed using an Illu-
mina HiSeq X Ten PE150 instrument.

Somatic single‑nucleotide variations (SNVs) 
and insertions and deletions (INDELs) calling

For DNA data, raw sequencing reads were aligned to the 
human reference genome hg19 using BWA-MEM [23] (ver-
sion: bwa-0.7.12) with default settings. Mapped reads in 
the SAM format were then sorted and converted to BAM 
format using Picard (version 2.0.1, https:// broad insti tute. 
github. io/ picard/), followed by the duplicate removal pro-
cess. Sequencing QC metrics, such as mean target cover-
age, duplication rate, on target rate and insert size, were 
calculated using an in-house script. SNVs and INDELs 
were detected using MuTect [24] (version: mutect-1.1.7) 
and Pindel [25] (version 0.2.5a8), respectively. The SNVs 
and INDELs were then combined together as the initial vari-
ant calls for each sample. The initial variant calls were then 
annotated using ANNOVAR [26] (Version Date: 2015-04-
24). Somatic variants were selected based on the following 
criteria: (1) sites with strand bias ≥ 0.9 were removed; (2) 
for a given site, the total coverage ≥ 20 and reads supported 
the alternative allele ≥ 8; (3) variant allele frequency ≥ 0.1; 
(4) common single-nucleotide polymorphisms (SNPs) and 
INDELs in dbSNP (AF ≥ 1%) were removed; (5) common 
SNPs from a Chinese population (CONVERGE, https:// 
www. biorx iv. org/ conte nt/ biorx iv/ early/ 2017/ 07/ 13/ 162982. 
full. pdf, https:// doi. org/ 10. 1101/ 162982) were removed; (6) 

INDELs from the 1000 Genome Project [21] gold standard 
indels were removed; (7) sites with AF larger than 0.015 
in any of the three databases (1000 Genome Project [27], 
ESP6500 [28], and ExAC [29]) were removed; and 8) exonic 
or splicing sites were selected. Known mutations in the latest 
COSMIC [30] database were marked using BEDTools [31] 
(version: 2.24.0).

Phylogenetic analysis and ITH estimation

In each individual, both non-silent and silent somatic muta-
tions occurred in at least one sample were used to construct 
the phylogenetic tree. A binary presence/absence matrix 
was generated according to the occurrence of mutations 
across all samples in each individual. Phylogenetic trees 
were built across all individuals based on the binary matrix 
using the Penny program in the PHYLIP package (version 
3.679, http:// evolu tion. genet ics. washi ngton. edu/ phylip. html) 
with the parsimony ratchet method. Trees were manually 
reconstructed; thus, making the trunk/branch lengths scaled 
in proportion to the number of mutations. For each indi-
vidual, variants were classified as trunk, shared and private 
mutations if they were identified ubiquitously across all the 
PDPC samples, in more than one but not all samples, and 
in only a single sample, respectively. For the convenience 
of description, shared and private mutations together were 
further classified as non-trunk mutations. To estimate the 
ITH for each individual, a percentage was calculated as the 
number of trunk mutations divided by the number of non-
trunk mutations.

Identification of putative driver mutations 
and analysis of mutational signatures

To identify driver mutations in GBC patients, a list of 573 
candidate genes was collected from the COSMIC cancer 
gene census (December 2018) and recent large-scale GBC 
and cholangiocarcinoma (CCA) sequencing studies [7, 
32–34]. Putative driver mutations were then identified from 
variants in these genes if they met one of the following cri-
teria: (1) predicted to be nonsense, splicing, or frameshift 
mutations and (2) predicted to be deleterious in at least 
one of the SIFT and PolyPhen programs (annotated using 
ANNOVAR) for missense mutations.

To extract the composition of mutational signatures in 
each PDPC, deconstructSigs [35] was performed on somatic 
SNVs (both synonymous and non-synonymous) for trunk 
and non-trunk mutations separately. Mutational signatures 
were based on the Wellcome Trust Sanger Institute Muta-
tional Signature Framework [36]. Overall distribution of 
mutational signatures was compared between trunk and 
non-trunk mutations within each individual.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://www.biorxiv.org/content/biorxiv/early/2017/07/13/162982.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2017/07/13/162982.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2017/07/13/162982.full.pdf
https://doi.org/10.1101/162982
http://evolution.genetics.washington.edu/phylip.html
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Identification of somatic copy number variations 
(CNVs)

To identify CNVs in each PDPC, CNVkit [37] (version: 
v0.8.5) with default parameters was run on the mapped 
reads. A Panel of Normal (PON) was built as a normal con-
trol using a set of 10 blood samples from other individu-
als with the same library method. The initial copy number 
profile of each PDPC was derived using log2 ratio of read 
coverage between the tumor and the PON by each segment. 
Segments located on chromosomes X and Y were excluded 
from further analysis. Segment results in log2 ratio of all 
samples were combined together to identify regions that 
were significantly amplified or deleted across our cohort 
using GISTIC2.0 [38]. The GISTIC2.0 command line was 
as follows: gistic2 -b output –seg samples.seg –mk samples.
marker -refgene hg19.mat -genegistic 1 -smallmem 1 -broad 
1 -brlen 0.8 -conf 0.99 -ta 0.3 -td 0.3 -qvt 0.01 -armpeel 1 
-savegene 1 -gcm extreme. The GISTIC2.0 peak regions at 
the cytoband level were then selected to examine ITH in 
CNVs.

Gene expression profiling

Raw reads from RNA-seq were mapped to the human refer-
ence genome hg19 using STAR [39] (version: v2.5.2b) with 
default parameters. RSeQC [40] (version 2.4) was run on the 
mapped reads to visualize the read distribution over genome 
features, such as CDS exon, 5′UTR exon, 3′ UTR exon, 
Intron, and Intergenic regions. Raw counts of each gene in 
RefSeq (February 2017) for each sample were calculated 
using featureCounts [41] (version 1.5.2). The expression pro-
file of each sample at the count level was normalized to reads 
per kilo base per million mapped reads (RPKM) using an 
in-house R script. All profiles were combined together as an 
integrated expression matrix for further analysis. To inves-
tigate the ITH at the gene expression level for each GBC 
patient, lowly expressed genes (average  log2RPKM < 1) 

were first removed within each patient. Next, the most varied 
genes (median absolute deviation  log2RPKM >  = 1) across 
all samples in each patient were selected for further analy-
sis. A hierarchical cluster analysis was performed on these 
genes and samples were classified into two groups based on 
the hierarchical tree. Differentially expressed genes (DEGs) 
were then identified as fold change >  = 2 or <  = 0.5 between 
the two groups. To visualize ITH in the expression profiles 
for each patient, a heat map was drawn on these DEGs. To 
explore the potential biological relevance of these DEGs, 
Gene Ontology (GO) enrichment analyses were performed 
using R package ClusterProfiler [42].

Statistical analysis

The differences between trunk and non-trunk mutations were 
evaluated using proportions test with continuity correction. 
P < 0.05 was considered statistically significant. Statistical 
analysis was performed using R software, version 3.5.0 (R 
Foundation for Statistical Computing).

Results

Establishment and characterization of PDPCs

In this study, we successfully established thirty-eight PDPCs 
derived from spatially distinct multi-regions of the operable 
tumor tissue samples of seven GBC patients (Table 1), rang-
ing from three to nine PDPC samples each patient (Fig. 1). 
To characterize the 38 PDPCs, morphology, karyotype 
examination and short tandem repeats (STRs) were per-
formed (Supplementary Fig. 1, Supplementary Table 1 and 
Supplementary Table 2). Furthermore, comparison analyses 
of STRs of these GBC PDPCs with those from American 
Type Culture Collection (ATCC) and Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ) suggested 
that GBC PDPCs did not match those in existing databases, 

Fig. 1  Flowchart of study design. Multiple spatially separated tumor 
tissue regions (ranging of 3–9 regions) from seven patients with GBC 
were sampled for primary culture. After the characterization, the 

established PDPCs were then subjected to WES and RNA-seq analy-
sis for the ITH of GBC at the genetic and transcriptional levels
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devoid of cross contamination with other known cancer cell 
lines. In addition, the results of single-nucleotide polymor-
phisms (SNPs) showed that PDPCs from the same patient 
were clustered together (Supplementary Fig. 2), which con-
firmed the origin of these PDPC samples.

Genomic architecture and ITH of mutations in GBC

WES was performed on the genomic DNA from 38 PDPCs. 
A total of thirty-eight PDPCs (range, 3–9 per patient) were 
sequenced, achieving a median target depth of 136X. A 
total of 809 non-silent mutations (affecting 734 genes) and 
291 silent mutations were identified in these 38 PDPCs. To 
assess the ITH and clonal evolution in GBC patients, a phy-
logenetic tree was constructed based on the occurrence of 
mutations in multiple PDPCs derived from each patients 
(Fig. 2). The phylogenetic trees exhibited different evolution 

models across different patients, with a median of 38.3% of 
variants having spatial heterogeneity (range, 26.6–59.4%). 
The phylogenetic tree structure varied across GBC patients. 
For example, the phylogenetic tree of patient 902 had a 
longer branch than its trunk, whereas the one of patient 
4160 displayed a much more homogenous mutational pat-
tern. Notably, patient 902 had the highest ITH in our cohort 
and two PDPCs (R3 and R5) showed huge big difference 
compared to the other seven PDPCs. The patients harbored 
mutations in different candidate driver genes (displayed near 
the trunk of each phylogenetic tree) in the trunk branch, 
exhibiting distinct driven patterns across these patients.

Mutation status of putative driver genes

To better understand the cancer genome evolution of GBC, 
a list of 573 manually curated genes was further inspected 

Fig. 2  ITH of mutations in seven patients with GBC. Phylogenetic 
trees were generated from somatic mutations using the parsimony 
ratchet method, and the branch lengths were scaled in proportion to 
the number of variants. Heat map nearby each tree showed the occur-
rence (presence in blue and absence in grey) of each mutation in each 
patient-derived primary cancer cell line. Genes with putative driver 

mutations were displayed beside the trunk branch of each individual. 
The number of mutations and the ITH score were listed on the top of 
each individual panel. Branches were colored according to the muta-
tion classification: blue: trunk mutations, yellow: shared mutations, 
red: private mutations
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to identify the potential driver mutations. There were 24 
(24/573) genes with putative driver mutations in at least one 
sample of our cohort, and the majority mutations in these 
genes were truncal (Fig. 3). Notably, most of these genes (19 
out of 24 genes, except TP53, KMT2C, CDKN2A, ARID1B, 
and ARID1A) were exclusively mutated in patients, indi-
cating diverse driver events during tumorigenesis in each 
patient. Consistent with previous studies in other cancer 
types, TP53 was the most recurrently mutated gene (4 out 
of 7 patients) in our cohort and mutations of this gene were 
always truncal despite distinct mutation types across differ-
ent individuals. Similarly, KMT2C (MLL3) had the same 
mutation frequency as TP53 and mutations in this gene were 
also truncal across different patients. There were two genes, 
CDKN2A and ARID1A, with truncal driver mutations in two 
out of seven patients.

Although most mutations were homogeneous across dif-
ferent PDPCs, a few mutations showed heterogeneity. The 
ARID1B mutation was truncal in patient 902 while only 
one PDPC from patient 1405 harbored the ARID1B muta-
tion. A nonsense mutation of MUTYH was found in 5 out 
of 9 PDPCs from patient 902, while a missense mutation 
of FGFR4 was identified in 2 out of 4 PDPCs from patient 
1405. Meanwhile, a frameshift deletion of PTEN and NF2 
was discovered in 3 out of 4 PDPCs from patient 668 and in 
2 out of 3 PDPCs from patient 4256, respectively.

Dissecting mutational spectra and signatures

Next, we analyzed the mutational spectra of mutations on 
both trunk and non-trunk to determine the dynamics of 
mutagenic processes in GBC. The C > T transition was 

the most dominant change in GBC, which was consist-
ent with a previous study of GBC [7]. The C > A transi-
tion and the T > C transition were the second and the third 
dominant changes in GBC (Fig. 4a). The C > T transition 
is prevalent in many tumors [16, 17], while the C > A and 
T > C changes are considered the characteristic signatures 
of GBC genome [7]. These results demonstrated that these 
established PDPCs inherited the mutation patterns from the 
source GBC tissues. The distribution of the six mutation 
classes in trunk and non-trunk mutations varied from patient 
to patient. The overall distribution was significantly differ-
ent (P < 0.001, proportion test) between trunk and non-trunk 
mutations for patients 1279, 4160, 4256, 668 and 902, while 
no statistical differences were detected for patients 1405 and 
1436 (Fig. 4a). In addition to the different distribution in 
the six mutation classes, differences in the 96 trinucleotide 
mutational signatures were also observed (Fig. 4b). We 
next deconstructed contributions of individual mutational 
signatures to each patient, and identified several dominant 
signatures in these tumors, including Signature 1 (associated 
with age), Signature 2 (associated with APOBEC), Signature 
4 (associated with smoking), Signatures 6 and 15 (associ-
ated with DNA mismatch repair), and Signatures 7 and 17 
(Fig. 4c). Moreover, the number of contributed signatures in 
non-trunk mutations was higher than that in trunk mutations 
for most of the patients, except patient 1436. Signature 1 
was always dominant for trunk mutations across all patients, 
while signature compositions were quite complex for non-
trunk mutations in most patients. For example, signature 6 
was dominant in patient 902, signature 15 was dominant in 
patient 1405, and signatures 1 and 4 were almost equivalent 
in patient 668.

Fig. 3  Mutation status of putative driver genes. A heat map displayed the putative driver mutations in each PDPC sample of the patients with 
gallbladder carcinoma. Mutations were colored according to the variant classifications
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ITH of CNVs in GBC

We next analyzed the ITH at the CNV level in GBC, focus-
ing on the cytoband level regions. The 23 and 22 CNV 
peaks were identified as amplifications and deletions in our 

cohort using GISTIC2.0, respectively (Fig. 5a, b). Notably, 
six oncogenes were ubiquitously amplified in at least one 
patient, including PTK6, HRAS, NOTCH1, CCND1, FGFR3, 
and TERT. CDKN2A deletion was ubiquitously identified 
in 4 patients. ITH varied at the CNV level across different 

Fig. 4  Dissecting mutational spectra and signatures. a The dis-
tribution of variant changes between trunk and non-trunk muta-
tions. The differences between trunk and non-trunk mutations were 
evaluated using proportions test with continuity correction. * < 0.05, 
0.001 < ** < 0.01, *** < 0.001, n.s., no significance. b Mutational sig-
natures of all trunk and non-trunk mutations was inferred by decon-

structSigs. Signatures were displayed according to the 96-substitution 
classification defined by the change class and sequence context. c Pie 
chart showed contributions of mutational signatures to each patient. 
Signatures were based on the Wellcome Trust Sanger Institute Muta-
tional Signature Framework
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patients. For example, most CNVs (both amplifications and 
deletions) were ubiquitously identified across different sam-
ples of patient 1279, while the CNVs in patient 902 showed 
much more heterogeneity (especially for deletions) in patient 
902.

ITH of the gene expression profile in GBC

Gene expression profiling is a powerful technique widely 
used in cancer research. To investigate the ITH at the 

gene expression level in GBC, RNA-seq was performed 
on an Illumina X Ten instrument for all the 38 PDPCs. 
A median of 25.7 M read pairs was obtained per sample. 
To explore the ITH in each GBC patient, candidate DEGs 
were used for visualization and analysis. A median of 
370 DEGs (range, 114–693) was identified per patient 
according to our method (Fig. 6). Various degrees of ITH 
were observed in out cohort. There were 114 DEGs iden-
tified across samples from patient 1436, which indicated 
the lowest ITH; while patient 668 exhibited the highest 

Fig. 5  ITH of CNVs in seven GBC patients. a, b Heat map of cytoband level copy number gain and copy number loss in each sample of the 
GBC patients. Tumor related genes were shown nearby the corresponding cytobands
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ITH (693 DEGs). Notably, the expression profiles of two 
PDPCs (R3 and R5) in patient 902 varied from those in 
the remaining seven samples, which was the same situa-
tion as the mutations.

Heterogeneous expression profile of human 
leukocyte antigen (HLA) genes

To explore the potential biological relevance underlying 
these DEGs, we performed a GO enrichment analysis on 

Fig. 6  ITH of gene expression profile in seven GBC patients. Unsu-
pervised hierarchical clustering of selected gene expression profil-
ing of seven GBC patients. Rows denoted variably expressed genes 
across different PDPCs and columns represent samples. Expression 

was scaled to mean 0 and sd 1 across samples within each patient. 
The number of genes displayed was shown on the top of each indi-
vidual panel
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these DEGs for each patient. It was found these DEGs 
were involved in cancer-related biological processes, such 
as cell motility, cell migration and cell proliferation, in 
several patients (Supplementary Fig. 3). Interestingly, 
DEGs identified from patient 902 and patient 1436 were 
enriched in biological processes related to the innate 
immune response and immune system process. Further 
investigation revealed that DEGs involved in these pro-
cesses included several MHC class II genes, such as 
HLADG (CD74), HLA-DPA1, HLA-DRA, HLA-DRB1, 
and HLA-DRB5. We then extended to all the HLA genes 
(including 9 MHC class I and 16 MHC class II genes) to 
investigate the expression profile across all our patients. 
Notably, distinct expression patterns were observed in 
these genes across different patients (Fig. 7a). Most of 
the MHC class I genes (6 out of 9 genes, except HLA-G, 
HLA-L, and HLA-J, which were always lowly expressed) 
were always highly expressed across all patients, while 
the expression patterns of MHC class II genes were 
quite complex across different patients. In general, 
expression of MHC class II genes was much lower 
than that of MHC class I genes. Several genes (such as 
HLA − DPB2, HLA − DRB6, HLA − DOA, HLA − DQA2, 
and HLA − DQB2) were barely expressed across all sam-
ples, while some other genes, such as HLADG (CD74), 
HLA-DPA1, HLA-DRA, HLA-DRB1, and HLA-DRB5, 
were found to be expressed in a part of PDPCs in some of 
the patients. For example, two PDPCs (R3 and R5) from 
patient 902 did not express these genes, while the remain-
ing PDPCs from this patient had a relatively high expres-
sion. Moreover, these genes were ubiquitously expressed 
across all PDPCs from patient 1405 and patient 4160. In 
summary, expression of these MHC class II genes varied 
across different PDPC samples and GBC patients, indicat-
ing the transcriptional ITH in GBC.

To investigate which gene may regulate the expression 
of these MHC class II genes, we next performed a paired 
association analysis using these MHC class II genes and the 
other genes in the profiling across all 38 PDPCs. The expres-
sion of CIITA was most correlated to MHC class II genes 
(HLA − DRA, HLA − DRB5, and HLA − DRB1, R2 = 0.87, 
0.82 and 0.79, respectively; Fig. 7b), while its expression 
was not correlated to MHC class I genes (Supplementary 
Fig. 4).

Discussion

GBC is an aggressive carcinoma with poor prognosis. Due 
to relatively low frequency compared to other cancers, the 
mutation spectrum of this cancer is limited [7, 8]. Rare study 
assessing ITH of GBC has been reported. To our knowledge, 
this is the first time to integrate PDPC model, multiregional 
WES, and RNA-seq to investigate the genomic and tran-
scriptomic ITH of GBC.

Most previous studies have adopt the sampling in dif-
ferent regions of tumor tissue to assess the ITH of various 
carcinomas [16, 17]. However, low tumor purity of sam-
pling the tumor tissue samples resulted in the impacts on 
the accuracy of ITH assessment [14]. PDPCs were derived 
from tumor tissue samples with their high purity and cell 
population representativeness [43]. Using PDPC models, 
previous studies identified a median of 60.3% ITH index 
in ICC [14] and a mean 39.7% ITH index in hepatocellular 
carcinomas [19]. Several previous studies have reported the 
PDPCs of GBC [44–49], but none of them explored the ITH 
of GBC. In this study, we successfully constructed 38 GBC 
PDPCs, which is the most in all the GBC reports, from the 
tumor tissue samples of seven patients. Overall, a median 
38.3% ITH score of GBC was identified in the PDPC model 
for the first time.

A limited number of putative driver mutations were 
identified in each GBC patient, and majority of the muta-
tions were exclusive to patients. TP53 mutation was ubiq-
uitously truncal across the PDPCs of four out of seven 
GBC patients. In addition, there were three genes, KMT2C, 
CDKN2A, and ARID1A, with truncal mutations in at least 
two GBC patients. Besides that, we found that 12 CCA 
PDPCs derived from three patients were identified to carry 
the mutations of recurrently putative driver genes includ-
ing TP53, KMT2C, ERBB2, and JAK3 (Supplementary 
Fig. 5). The mutational results suggested that our GBC 
and CCA PDPCs recaptured some genomic characteristics 
of the tumor tissue samples of patients [7–9]. Therefore, 
in addition to describing ITH features, these PDPCs have 
the potential to be powerful tools for the studies on drug 
sensitivity or resistance as well as functional researches.

Transcriptomic analysis has been widely used in cancer 
studies through a single-sampling approach [50, 51]. How-
ever, little is known about the intra-tumoral diversity at the 
expression level. Herein, we identified transcriptional ITH 
in GBC. GO enrichment analysis with heterogeneously 
expressed genes across different samples revealed several 
biological processes related to tumor development. Nota-
bly, the expression patterns of HLA genes were found to be 
highly diverse from patient to patient. As already known, 
MHC class II genes are constitutively expressed in antigen-
presenting cells (APCs). However, the expression of these 

Fig. 7  Heterogeneous expression profile of HLA genes. a Unsuper-
vised hierarchical clustering of 25 HLA genes including 9 MHC class 
I and 16 MHC class II genes of seven GBC patients. b Scatterplot of 
three MHC class II genes against CIITA. A linear regression formula 
and Pearson correlation were listed on the top left of each panel
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genes is undetectable or very low in tumor cells. As pre-
viously reported [52], the expression of these genes was 
highly correlated to CIITA in our cohort, which confirmed 
the regulatory role of CIITA in these genes. CIITA is solely 
expressed on professional APCs; however, its expression can 
be induced by interferon-γ. In a previous study, HLA class 
II gene expression was identified as a favorable prognostic 
marker in colorectal carcinoma [53]. Thus, our study pro-
vides a clue for the prediction of prognosis in GBC patients.

Although the GBC PDPCs were successfully established 
and were used to clarify the genomic and transcriptomic 
ITH, the epigenetics and metabolic ITH were not figured 
out in this study. In addition, there are several studies on 
ITH and the drug sensitivity [14, 19, 54]. The relationship 
between these ITH of GBC and drug sensitivities was not 
explored. Moreover, we could not explore the association 
between these ITH and the prognosis of GBC patients due to 
the lack of therapeutic and prognostic information. Several 
studies have reported that ITH was considered to be associ-
ated with other tumor prognosis [55–57]. Thus, treatment 
and prognosis information is required to create a compre-
hensive picture between GBC ITH and prognosis.

Conclusion

Collectively, we have established and characterized the 38 
PDPCs from seven Chinese patients who were diagnosed 
with gallbladder carcinoma. In addition, we integrated 
GBC PDPC model, WES, and RNA-seq to reveal the ITH 
at the gene mutation and transcription levels, which may 
provide an important molecular foundation for enhanced 
understanding of tumorigenesis and progression in GBC. 
These established PDPCs derived from GBC patients can 
serve as new in vitro models for investigating ITH.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13577- 021- 00492-5.
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