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Abstract

Background: Recent successes in biotechnological application of birds are based on their unique physiological
traits such as unlimited manipulability onto developing embryos and simple protein constituents of the eggs.
However it is not likely that target protein is produced as kinetically expected because various factors affect target
gene expression. Although there have been various attempts to minimize the silencing of transgenes, a
generalized study that uses multiple cis-acting elements in chicken has not been made. The aim of the present
study was to analyze whether various cis-acting elements can help to sustain transgene expression in chicken
fibroblasts.

Results: We investigated the optimal transcriptional regulatory elements for enhancing stable transgene expression
in chicken cells. We generated eight constructs that encode enhanced green fluorescent protein (eGFP) driven by
either CMV or CAG promoters (including the control), containing three types of key regulatory elements: a chicken
lysozyme matrix attachment region (cMAR), 5′-DNase I-hypersensitive sites 4 (cHS4), and the woodchuck hepatitis
virus posttranscriptional regulatory element (WPRE). Then we transformed immortalized chicken embryonic
fibroblasts with these constructs by electroporation, and after cells were expanded under G418 selection, analyzed
mRNA levels and mean fluorescence intensity (MFI) by quantitative real-time PCR and flow cytometry, respectively.
We found that the copy number of each construct significantly decreased as the size of the construct increased (R2

= 0.701). A significant model effect was found in the expression level among various constructs in both mRNA and
protein (P < 0.0001). Transcription with the CAG promoter was 1.6-fold higher than the CMV promoter (P = 0.027)
and the level of eGFP expression activity in cMAR- or cHS4-flanked constructs increased by two- to three-fold
compared to the control CMV or CAG promoter constructs. In addition, flow cytometry analysis showed that
constructs having cis-acting elements decreased the level of gene silencing as well as the coefficient of variance of
eGFP-expressing cells (P < 0.0001).

Conclusions: Our current data show that an optimal combination of cis-acting elements and promoters/enhancers
for sustaining gene expression in chicken cells is suggested. These results provide important information for avian
transgenesis and gene function studies in poultry.

Background
The delivery of gene constructs into animal cells is an
indispensible tool for conducting various biomedical stu-
dies and producing transgenic animals. However, several
aspects should be taken into consideration for successful

transgene expression in target cells. The extent of trans-
gene expression largely depends on multiple aspects,
such as gene delivery method, cellular physicochemical
properties, and the traits of the construct [1]. Although
methods for gene transfer into the host cells are cur-
rently standarized in several cell types, the transfection
efficiency remains unsatisfactory in many cases and
efforts to devise an optimal construct that can induce
constant expression have not been very promising. In
addition, many obstacles, such as transgene silencing
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and variegation, have yet to be overcome to enhance
transgene expression [2].
To date, various strong enhancers/promoters have

been used for stable expression of transgenes in animal
cells. Among these, the cytomegalovirus (CMV) immedi-
ate-early enhancer/promoter and CAG (CMV enhancer
with a chicken beta-actin transcription start site and a
rabbit beta-globin intron) promoters have been used in
a variety of cells due to their ability to induce immediate
and strong transcription [3,4]. However, the two promo-
ters exhibit different transcriptional activities, presum-
ably due to distinctive constituents [5-7]. Other studies
have also shown transcriptional variation among differ-
ent tissues or developmental stages [8-11].
Other transcription regulator elements have also

been used to sustain transcription activity. Chicken 5′-
DNase I-hypersensitive sites 4 (cHS4), derived from
the chicken beta-globin locus, contains GC-rich DNA
sequences and a CTCF-dependent element linked to
the nuclear matrix [12,13]. It enhances transgene
expression in cultured cells [14] and transgenic animal
cells [15], and prevents silencing of viral vectors
[16,17]. The woodchuck hepatitis virus posttranscrip-
tional regulatory element (WPRE) is derived from the
3′ untranslated region (3′ UTR) of viral RNA [18] and
acts as a posttranscriptional enhancer by stimulating
the cytoplasmic import of mRNAs [19,20]. The matrix
attachment region (cMAR) from the 5′ regulatory
region of the chicken lysozyme gene contains AT-rich
sequences and enhances transgene expression in var-
ious immortalized cells [21,22], transgenic animals
[23,24], and plants [25].

Birds serve as excellent models of disease and bioreac-
tor production due to the ease of embryo manipulation
and the availability of various transgenic technologies
using primordial germ cells and testicular cells [26].
However, only a limited number of recently refined con-
structs carrying transcription activators have been used
for inducing stable gene expression in transgenic birds.
Therefore, we evaluated whether these multiple tran-
scription regulators can help maintain stable gene
expression in chicken cells, and propose an optimal con-
struct with an optimal combination of promoter/enhan-
cer and transcription regulatory units.

Results
Correlation between size and copy number of the
delivered plasmids
Given that each vector contained different promoters
and cis-acting elements, their sizes were variable (Fig. 1).
Therefore, we examined the relationship between vector
size and the integrated vector copy numbers. Relative
vector copy numbers were generally reduced as vector
size increased (R2 = 0.701; Fig. 2).

CMV and CAG promoter transcription activities differ in
chicken embryonic fibroblasts
To compare the strength of the CMV and CAG pro-
moters, mRNA levels were measured by real-time PCR.
MFI was analyzed by flow cytometry to study trans-
gene expression levels induced by the CMV and CAG
promoters in DF-1 cells. The difference in mRNA
expression levels between the CMV and CAG promo-
ters was not significant (P = 0.35), whereas the MFI of

Figure 1 Construction of the vectors containing different cis-regulatory elements. CMV, human cytomegalovirus immediate-early
enhancer/promoter; CAG, CMV enhancer + chicken beta-actin promoter + rabbit beta-globin intron; eGFP, enhanced green fluorescent protein;
pA, bovine growth hormone polyadenylation signal; cMAR, chicken lysozyme matrix attachment region (BamHI-PvuI fragment); cHS4, the core
region of chicken beta-globin insulator (250bp); WPRE, woodchuck hepatitis virus posttranscriptional regulatory element.
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the CAG promoter (pAeG) was 1.6-fold higher than
that of the CMV promoter (pCeG) (P = 0.027; Fig. 3a,
b). When HS4 was juxtaposed to the 5′ and 3′ regions
of the transgene cassette, the difference in mRNA
levels and MFI values between the two promoters was
not significant (P > 0.05; Fig. 3a, b). However, the
transcript level generated by the CAG promoter was
1.5-fold higher than that generated by CMV in MAR-
flanked plasmids (pCeGM versus pAeGM, P = 0.0439;
Fig. 3a).

cMAR and cHS4 enhance transgene expression
Both cMAR and cHS4 increased eGFP expression in
mRNA and protein (Fig. 3a, b). The CMV promoter led
to increases of 2.9-fold and more than 3.0-fold in
mRNA (P = 0.0052) and MFI (P < 0.0001), respectively,
in pCeGIN compared to those of the control pCeG.
Adding cMAR (pCeGM) yielded an approximately 2.6-
fold increase in mRNA expression level (P = 0.018) and
3.5-fold increase in MFI value (P < 0.0001) relative to
pCeG. The CAG promoter led to increases of 2.1-fold
(P = 0.0086) and 1.9-fold (P = 0.0001), respectively, in
the HS4-flanked plasmid (pAeGIN) compared to the
control pAeG. Likewise, cMAR led to increases of 2.5-
fold (P = 0.0014) and 2.1-fold (P < 0.0001), respectively,
in pAeGM compared to pAeG. To investigate the effects
of cHS4 and cMAR on eGFP expression at the single-
cell level, flow cytometry was performed. A considerable
proportion of the cells with transgene suppression were
noted in control plasmids (Fig. 4a, arrows); however,
adding cHS4 or cMAR clearly reduced the level of such
heterogeneity. Furthermore, the coefficient of variation
(CV) of eGFP-expressing cells was reduced in the vector
with cHS4 and cMAR (P < 1 × 10-5; Fig. 4b).

The effect of WPRE is promoter-dependent
pCeGMW increased eGFP expression in both mRNA
(2.4-fold, P < 0.0001) and MFI (1.7-fold, P < 0.0001)
compared to the control pCeGM (Fig. 3a, b). With the
CAG promoter, pAeGMW did not induce a dramatic
increase in mRNA level (P = 0.1482), whereas an
increase was noted in the MFI compared to pAeGM

Figure 2 Correlation between relative copy number and vector
size. Relative vector copy number, analyzed by real-time PCR,
decreased exponentially as vector size increased. The graph and R2

were created with Microsoft Office Excel.

Figure 3 Analysis of eGFP expression driven by CMV or CAG promoter in DF-1 cells. The effect of various cis-acting elements on eGFP
expression were analyzed in both mRNA (a) and protein (b) levels. A significant model effect was found on both mRNA and MFI (both P <
0.0001). Means with different superscripts (a, b, c, d, e, f) differ significantly (P < 0.05; F values = 15.80 and 67.51 in mRNA and protein level
analysis, respectively; total degree of freedom = 23). Data represent the mean of three replicates, and error bars indicate ± S.D. (n = 3 in each
plasmid).
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(1.2 folds, P = 0.0238). The level of transcription silen-
cing in each construct was then analyzed by flow cyto-
metry, which revealed an increase in the proportion of
eGFP-positive cells in HS4-, MAR-, and MAR+WPRE-
inserted constructs compared to those transfected with
control plasmids (pCeG and pAeG). However, in
pAeGMW, the eGFP-positive population decreased
compared to those of pAeGM and pAeGIN. A signifi-
cant model effect was found on the CV of eight con-
structs that were tested (P < 0.0001). Generally, the
CAG promoter constituted less heterogeneity in eGFP
expression compared to CMV, except in the construct

with MAR and WPRE, for which the CV of CAG
(pAeGMW) was higher than that of CMV (pCeGMW,
Fig. 4b).

Discussion
Birds are an excellent model for studying transgenic ani-
mals and disease because of their physiological unique-
ness during embryogenesis [26-29]. Various methods for
producing transgenic birds have been developed over
the last two decades [30-33] however, optimized gene
constructs are lacking. Therefore, to develop an efficient
non-viral vector system in chicken, we examined three
regulatory elements for high transgene expression: (1)
promoter/enhancer elements, (2) cis-acting elements for
blocking the position effect, and (3) posttranscriptional
elements associated with RNA processing.
We described and compared the role of the various

cis-acting elements as well as the efficacy of combinator-
ial regulatory elements to allow for enhanced regulation
of transfected genes. To identify optimal combinations
of cis-acting elements for efficient transgene expression,
we constructed eight non-viral vectors containing var-
ious cis-regulatory elements. Furthermore, we compared
the CMV and CAG promoters to identify the most
appropriate promoter for enhancing transgene expres-
sion. Considering the position effects caused by the
chromosomal environment in the host cells, cMAR and
cHS4 derived from chicken genomic sequences were
tested. In addition, WPRE was inserted into the down-
stream region of the open reading frame of the eGFP
gene to increase transgene expression levels via post-
transcriptional regulation of transcripts.
The relative vector copy numbers decreased as vector

size increased, which has also been reported in previous
studies. For example, the gene-transfer capacity of plas-
mid DNA has been shown to be inversely related to the
vector size, and furthermore, gene expression decreases
as the size of DNA increases [34,35]. Given that the
electroporation performed in the present study contrib-
uted to the delivery of plasmid DNA into the cytoplasm,
our results may be due to a decrease in DNA diffusion
mobility from the cytoplasm to the nucleus as the vector
size increased [36,37].
The CAG promoter was more effective than the CMV

promoter for transgene expression in DF-1 cells, possi-
bly due to differences in the promoter constituents. The
CMV promoter originated from the immediate-early
gene of human CMV did not contain the intron
sequence [38], whereas the CAG promoter consisted of
the same CMV immediate-early enhancer with a
chicken beta-actin promoter and rabbit beta-globin
intron [5]. The presence of an intron in the promoter
affects transgene expression in mammalian cells [5], and
inserting a large CMV intron and beta-actin intron into

Figure 4 Flow cytometry analysis of electroporated DF-1 cells.
(a) The proportion of eGFP-expressing cells are indicated. Arrows
denote cells of the non-expressing population. (b) The effect of
cis-acting elements on the coefficient of variation (CV) in eGFP
expression driven by CMV and CAG promoters. A significant model
effect was found on CV among the eight constructs (P < 0.0001).
Means with different letters (a, b, c, d, e, f, g) differ significantly (P <
0.05; F value = 2927.53; total degree of freedom = 23). Data
represent the mean of three replicates, and error bars indicate ±
S.D.(n = 3 in each plasmid).
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plasmids with the same promoter increases luciferase
activity [6]. Therefore, our results support previous stu-
dies showing the roles of the chicken beta-actin promo-
ter and rabbit beta-globin introns in the CAG promoter
in improving the efficiency of transgene expression [5].
The chicken HS4 insulator, which contains a CTCF-

binding site, enters the nuclear matrix and forms
nucleosome gaps by binding with CTCF [39]. The
expression of the transgene cassette flanked by the HS4
insulator is not affected by other neighboring chromoso-
mal elements such as enhancers [40]. The MAR ele-
ment, which consists of AT-rich DNA, makes an
independent loop or domain in the chromatin by bind-
ing to nuclear matrix proteins such as topoisomerase II,
histone H1, lamins, SP120, ARBP, and SATB1. Using
this mechanism, interferences with chromosomal struc-
tures surrounding the gene cassettes are blocked,
thereby enhancing the binding of the transcription fac-
tor to the regulatory region [41]. In the present study,
we also found that cHS4 and cMAR increased the num-
ber of transfected cells and reduced variation in eGFP
expression. Therefore, our data indicate that 2× cHS4
and cMAR prevent position effects that exert an inhibi-
tory effect on transgene expression in chicken cells.
WPRE, which is associated with RNA processing, has

a pivotal regulatory element for efficient transgene
expression. It can enhance transgene expression related
to splicing and polyadenylation, export it into the cyto-
plasm, and stabilize the mRNA transcript [18]. When
combined with the appropriate regulatory elements,
WPRE promotes the cytoplasmic export of nuclear
mRNA without introns [42,43]. In addition, when
inserted into the 3′ UTR of non-viral vectors, it
increases transgene expression in mammalian cells [44].
Our current results showed that WPRE improves eGFP
expression driven by CMV and CAG promoters in DF-1
cells. However, this effect is promoter-dependent. When
WPRE was added, the increase in eGFP expression was
higher in the vector combined with the CMV promoter
than with CAG. These results support the idea that the
effect of WPRE depends on what constitutes the promo-
ter [45].
We have produced germline chimeric chicken [46-49]

and quail [50,51] using various types of germ cells to
establish avian transgenesis. Among various donor cells
that generate chimeras, the potential of primordial germ
cells (PGCs) is limitless based on their ability to migrate
towards the sex cord in the recipient embryo, and sub-
sequent testcross analyses allows the production of
donor-derived offspring. However, there are several
obstacles to this process because germ cells are relatively
transcriptionally quiescent and prone to switching off
transgene expression [52,53]. Our results can be directly
applied to genetic and cellular manipulation systems for

transgenesis via an increase in transcription activity,
thus preventing position effects provoked by nearby
enhancers/suppressors and increasing cytoplasmic
export of transcripts by stabilizing mRNA.

Conclusions
The purpose of this research was to develop a non-viral
vector system with minimized transgene silencing in
chicken cells. The application of cHS4 and cMAR effec-
tively reduced the silencing of transgene expression,
while WPRE enhanced the expression level. Our data
constitute optimized regulatory elements that can be
used to induce stable gene expression and study gene
function in chicken. The present research also provides
new insights to establish the bioreactor and model bird
production system using avian transgenic technology.

Methods
Vector construction
To construct pCeG, the EcoR I-Xba I fragment of eGFP
from pEGFP-1 (Clontech, Mountain View, CA) was
inserted into pcDNA3 (Invitrogen, Carlsbad, CA) con-
taining the CMV promoter (Fig. 1). To construct pAeG,
the Spe I-EcoR I fragment of the CAG promoter from
pCAGGS [5] was inserted into pCeG. The BP-MAR
fragment [54] was derived from the PCR product of
chicken genomic DNA using the primer set P1 (5′-CGC
TCT AGA ACT AGT GGG ATC CAT-3′) and P2 (5′-
ATG CCT GTT GCA GCT GTT TAC G-3′), which
was then inserted into Bgl II and Dra III sites of pCeG
and pAeG, thus constructing pCeGM and pAeGM,
respectively. pCeGIN and pAeGIN were constructed
inserting the tandem-duplicated cHS4 (2×HS4) frag-
ment, which was amplified from chicken genomic DNA
using P3 (5′-GCA GGT TTC CTG GAA GGT-3′) and
P4 (5′-AGC TAA AGC TTT TTC CGT-3′) primers,
into Bgl II and Dra III sites of pCeG and pAeG, respec-
tively [55]. To construct pCeGMW and pAeGMW, the
WPRE fragment was amplified from pWPI by PCR
using P5 (5′-GCG GCC GCG ACC TCG AGG GAA
TTC CGA T-3′) and P6 (5′-GCG GCC GCT TCG AAG
CTT GAC GAA TTC C-3′) primers. The PCR product
was then inserted into a Not I site of pCeGM and
pAeGM. A schematic diagram of the vectors is illu-
strated in Figure 1.

Cell culture and transfection
DF-1 (ATCC, Manassas, VA, Cat. No. CRL-12203) cells
were cultured in Dulbecco’s Modified Eagle medium
(Invitrogen, Carlsbad, CA) supplemented with 10% fetal
bovine serum (FBS, Invitrogen) and 1× antibiotic-anti-
mycotics (Invitrogen) in an incubator at 37°C and 5%
CO2 in an air atmosphere with 60-70% relative humid-
ity. Transfection was performed as described previously
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[56]. Briefly, a total of 1×106 of cells were suspended in
serum-free OPTIMEM-I (Invitrogen) with the same
molar ratio of linearized plasmid DNAs in a 0.4-cm cuv-
ette (Bio-Rad, Hercules, CA) and electroporation was
performed using Gene Pulser Xcell™ (Bio-Rad). The
transfected cells were selected with 400 μg/ml G418
(Invitrogen) for 21 days and cultured at least 90 days
before further analysis. Three cell lines in each plasmid
were subjected to analysis of eGFP expression.

Quantitative real-time PCR
Total RNA was isolated from G418-selected cells using
TRIZOL® Reagent (Invitrogen). cDNA was synthesized
using the SuperScript® III First-Strand Synthesis kit
(Invitrogen) according to the manufacturer’s protocol.
Genomic DNA was extracted from cells using Wizard®
SV Genomic DNA purification system (Promega, Madi-
son, WI) according to the manufacturer’s instructions.
The expression level of mRNA from the cells electropo-
rated with various constructs were compared to those
with pCeG and measured in triplicate using real-time
PCR (ABI 7300 Real-Time PCR system, Applied Biosys-
tems, Foster City, CA) and SYBR® Green (Sigma, St.
Louis, MO). To measure and compare relative mRNA
expression levels, the measured values were divided by
the copy numbers of their relative vectors [45,54]. The
primers used for quantitative PCR were eGFP-forward
(5′-TCA AGG ACG ACG GCA ACT ACA A-3′), eGFP-
reverse (5′-GAT GGG GGT GTT CTG CTG GT-3′),
GAPDH-forward (5′-TCA CAG CCA CAC AGA AGA
CGG-3′), and GAPDH-reverse (5′-CAG ACG GCA
GGT CAG GTC AA-3′). Relative quantification of
mRNA expression was calculated using the 2-ΔΔCt

method [57].

Flow cytometry
Flow cytometry was performed using a FACS Calibur™
flow cytometer (BD Biosciences, San Jose, CA) and Cell-
Quest software (BD Biosciences) equipped with a stan-
dard fluorescence filter set. Trypsinized cells were
resuspended in phosphate buffered saline (PBS, Invitro-
gen) supplemented with 3% FBS. The mean fluorescence
intensity (MFI) and coefficient of variation (CV) were
also obtained by flow cytometry.

Statistical analysis
Data were subjected to analysis of variance (ANOVA)
according to the general linear model (PROC-GLM) of
the SAS program (SAS Institute, Cary, NC). If the main
effect was significant, treatment effects were compared
by the least squares method. P-values of less than 0.05
were considered statistically significant.
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