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ABSTRACT
Background: Human milk is a rich source of human milk oligosaccharides (HMOs) and bacteria. It is unclear how these

components interact within the breast microenvironment.

Objectives: The objectives were first, to investigate the association between maternal characteristics and HMOs, and

second, to assess the association between HMOs and microbial community composition and predicted function in milk

from women with high rates of gestational glucose intolerance.

Methods: This was an exploratory analysis of a previously completed prospective cohort study (NCT01405547) where

milk samples (n = 107) were collected at 3 mo postpartum. Milk microbiota composition was analyzed by V4-16S

ribosomal RNA gene sequencing and HMOs by rapid high-throughput HPLC. Data were stratified and analyzed by

maternal secretor status phenotype and associations between HMOs and microbiota were determined using linear

regression models (ɑ-diversity), Adonis (B-diversity), Poisson regression models (differential abundance), and general

linear models (predicted microbial function).

Results: Prepregnancy BMI, race, and frequency of direct breastfeeding, but not gestational glucose intolerance,

were found to be significantly associated with a number of HMOs among secretors and non-secretors. Fucosyllacto-

N-hexaose was negatively associated with microbial richness (Chao1) among secretors [B-estimate (SE): −9.3 × 102

(3.4 × 102); P = 0.0082] and difucosyllacto-N-hexaose was negatively associated with microbiota diversity (Shannon

index) [−1.7 (0.78); P = 0.029] among secretors. Lacto-N-neotetraose (LNnT) was associated with both microbial B-

diversity (weighted UniFrac R2 = 0.040, P = 0.036) and KEGG ortholog B-diversity (Bray-Curtis R2 = 0.039, P = 0.043)

in secretors. Additionally, difucosyllactose in secretors and disialyllacto-N-hexaose and LNnT in non-secretors were

associated with enrichment of predicted microbial genes encoding for metabolism- and infection-related pathways (P-

false discovery rate < 0.1).

Conclusions: HMOs are associated with the microbial composition and predicted microbial functions in human milk

at 3 mo postpartum. Further research is needed to investigate the role these relations play in maternal and infant health.
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Introduction

Human milk is home to a myriad of microorganisms, including
bacteria. The bacteria in human milk, termed the human milk
microbiota, are believed to play a role in the colonization of
the infant’s gastrointestinal (GI) microbiota and may contribute
to both short- and long-term health outcomes (1, 2). In
addition to these microbes, human milk is also a rich source
of biologically active components, including growth factors,
antibodies, oligosaccharides, hormones, cytokines, chemokines,
and antimicrobial compounds (3). Previous studies have focused
on potential external modifiers of the milk microbiota, such as
maternal diet, antibiotic exposure, and mode of delivery (4–
8); however, very few reports have examined how components
within human milk may act as potential internal modifiers by
interacting with the milk microbiota and vice versa.

One of the bioactive components of interest are human
milk oligosaccharides (HMOs). HMOs are unconjugated,
structurally diverse carbohydrates, which are the third most
abundant solid component in human milk after lactose and
lipids (9). HMO composition is dictated in large part by
the expression of a single gene, fucosyltransferase-2 (FUT2),
and mothers with an active allele of this gene are known as
“secretors,” whereas those lacking an active copy (homozygous
for the inactive allele) are “non-secretors” (9). Emerging
literature has reported that maternal secretor status is associated
with a number of parameters of human health, from maternal
risk of infection and chronic disease to her child’s GI micro-
biota composition (10, 11). Maternal characteristics including
secretor status, parity, lactation period, race, breastfeeding
exclusivity, geographical region, maternal BMI, and mode of
delivery have been shown to be associated with specific HMOs
(12–14). Only 1 group has examined the association between
gestational glucose metabolism in metabolically healthy women
and specific HMOs in milk, but none have investigated the
association between gestational diabetes mellitus (GDM) and
individual HMOs, along with the interplay with the milk
microbiota (15–17). GDM has been found to be associated
with altered activities of cellular glycosyltransferases, but its
impact on individual HMOs is unknown (16). Due to the risk
of maternal glucose intolerance impacting the HMOs present
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in milk, further investigation into this association is necessary
(16).

When consumed by an infant, HMOs can act as prebiotics,
or fermentable fibers, and act as a carbon source for specific
bacteria in the infant GI tract (9). Within the infant GI tract,
HMOs have been shown to be utilized by Bifidobacterium and
Bacteroides species, while in vitro, they have also been shown
to interact with other bacteria, such as Staphylococcus (18–
21). While it has been hypothesized that bacteria in human
milk may interact with HMOs within the mammary gland in
a similar manner as to how they interact within the GI tract,
this has not been systematically investigated. Only 4 studies to
date have examined the association between HMOs and milk
microbiota in mature human milk (22–25). These 4 studies
have shown varying associations between specific HMOs and
particular taxa within the milk microbiota; however, 3 of these
4 studies were limited by small sample sizes (n = 16, n = 25,
n = 30, n = 393) and homogeneous cohorts in terms of
race and metabolically healthy women. Additionally, none of
these 4 studies examined the associations between HMOs and
predicted microbial functions of the milk microbiota (22–25).

To address these gaps in the literature, the objective of this
current study was to determine the association between HMOs
and the human milk microbiota (microbial community structure
and predicted functions) in a racially diverse prospective
cohort of women with high rates of gestational glucose
intolerance. Additionally, we aimed to determine how maternal
demographic, metabolic, and obstetrical clinical parameters
were associated with HMO composition. To the best of our
knowledge, this is the first study to assess the relation between
the milk microbiota, HMOs, and gestational impaired glucose
tolerance (IGT).

Methods
Study participants and design
This was an exploratory analysis of bio-banked human milk samples
and maternal demographic, metabolic, and obstetrical health data from
a previously completed prospective cohort study (ClinicalTrials.gov:
NCT01405547) (26, 27). The study protocol and findings of asso-
ciations between these maternal clinical variables and the microbial
composition of human milk have been previously published (7, 8,
26). Pregnant participants (n = 216) were recruited from Sinai Health
(formerly, Mount Sinai Hospital) in Toronto, Canada, and in late
pregnancy completed a 3-h 100-g oral-glucose-tolerance test (OGTT)
between March 2009 and July 2010. For this present analysis, women
were included if sufficient volumes of their mature milk sample from
3 mo postpartum was available for both HMO and milk microbiota
analyses. The study protocol was approved by the Sinai Health Human
Research Ethics Board and consent was obtained from all participants
(26). A total of 117 women with term-born infants provided a mature
milk sample at 3 mo postpartum, with 111 samples available for the
present study (Supplemental Figure 1).

Maternal demographic, metabolic, and obstetrical
data collection
A standardized self-report questionnaire was given during the first study
visit (occurring at 30 wk of gestation; 95% CI: 25, 33 wk) to gather
demographic, anthropometric, and obstetrical data. Prepregnancy BMI
(kg/m2) was calculated and categorized as normal weight (18.5–
24.9), overweight (25.0–29.9), and obese (≥30). Maternal race was
categorized as White, Asian, or other (pooled Black, South Asian, other);
the latter was combined due to low frequency of these races in the
cohort. Mode of delivery was categorized as vaginal, scheduled cesarean
delivery, unscheduled cesarean delivery). Glucose tolerance status was
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categorized as GDM, gestational IGT, or normoglycemia, and was
diagnosed based on the results of the OGTT (26).

Collection of human milk samples
Mothers were asked to pump a complete breast expression of milk using
a double electric breast pump (Medela, Inc.) with a sterile pumping
kit at their 3-mo postpartum visit. No pumping or breastfeeding was
to take place 2 h prior to the study visit. The collected mature whole-
milk samples were placed in aliquots and stored at –80◦C. Information
regarding frequency of direct breastfeeding per day and human milk
exclusivity (yes/no) was also collected at this visit.

HMO analysis
HPLC was used to characterize HMOs in human milk as pre-
viously described (28). Briefly, oligosaccharides were extracted by
high-throughput solid-phase extraction over C18 and Carbograph
microcolumns and fluorescently labeled with 2-aminobenzamide.
Labelled oligosaccharides were analyzed by HPLC on an amide-
80 column (Tosoh Bioscience) with online fluorescence detection.
Absolute concentrations were calculated based on standard response
curves for each of the annotated HMOs. Total concentration of
HMOs was calculated as the sum of the annotated oligosaccharides
(milligrams per milliliter). HMO-bound fucose and HMO-bound sialic
acid were calculated on a molar basis (nanomoles per milliliter). HMO
Simpson’s diversity index was calculated based on relative abundances
of all annotated HMOs. Maternal secretor status was determined
by the high abundance (secretor) or near absence (non-secretor) of
the HMO 2′-fucosyllactose (2′FL) in the respective milk samples.
The 19 HMOs examined in these analyses included the following:
2′FL, 3-fucosyllactose (3FL), 3′-sialyllactose (3′SL), 6′-sialyllactose
(6′SL), difucosyllactose (DFLac), difucosyllacto-N-hexaose (DFLNH),
difucosyllacto-N-tetrose (DFLNT), disialyllacto-N-hexaose (DSLNH),
disialyllacto-N-tetraose (DSLNT), fucodisialyllacto-N-hexaose (FD-
SLNH), fucosyllacto-N-hexaose (FLNH), lacto-N-fucopentaose-I/II/III
(LNFP I/II/III), lacto-N-hexaose (LNH), lacto-N-neotetraose (LNnT),
lacto-N-tetrose (LNT), sialyl-lacto-N-tetraose-b/c (LSTb/c).

DNA extraction, amplification, and sequencing of
human milk microbiota
DNA from the human milk samples that had never been previously
thawed was extracted using the NucleoSpin Food DNA isolation kit
(Macherey-Nagel), as described previously (7, 8, 29). Briefly, the 515F
and 806R primers were used during PCR (28 cycles) to amplify the
V4 hypervariable region (30, 31). To confirm amplification quality,
a negative control (sterile water), positive control (Pseudomonas
aeruginosa), and mock community were also run alongside the
DNA samples. An Illumina MiSeq instrument (MiSeq-V2-300 cycle
chemistry) was used to sequence the quantified library to produce 150-
bp paired end reads.

Bioinformatic and data analyses of the milk
microbiota
Raw paired end sequences have been deposited in the NCBI Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the BioProject
accession number PRJNA516669. The UPARSE pipeline in USEARCH
processed the sequencing reads. The Ribosomal Database Project (RDP)
16S gold database (USEARCH) was used to detect and discard chimeric
sequences (32). Sequences were grouped together into operational
taxonomic units (OTUs) at 97% similarity using de novo clustering and
the RDP 16S gold database was used to assign taxonomy to these OTUs.
A FastTree QIIME python script was run to produce a phylogenetic tree
(33).

A specialized package in R (version 3.6.1; R Foundation for
Statistical Computing) intended for microbiome analysis, Phyloseq
(1.25.2), was used to analyze microbiota composition (34). Singleton
and doubleton OTUs were removed, as were OTUs that mapped
to cyanobacteria/chloroplasts. Samples with low read counts were
removed (n = 4) and data were rarefied to 20,000 reads per sample.
Phyloseq was subsequently used to calculate and visualize relative

abundances of predominant taxa (phylum and genus levels), ɑ-diversity
(Chao1 and Shannon indices), and B-diversity (weighted UniFrac
distance, Bray-Curtis dissimilarity) of the milk microbiota.

Statistical analyses

Associations between maternal characteristics, secretor

status, and HMO composition.
Chi-square tests (R version 3.6.1) were used to examine associations
between categorical maternal clinical data and secretor status (secretor
vs. non-secretor), whereas Wilcoxon rank-sum tests were run to
determine associations between continuous maternal clinical data and
secretor status. The categorical maternal data of interest included
prepregnancy BMI (healthy, overweight, obese), glucose tolerance status
(normoglycemic, IGT, GDM), mode of delivery (vaginal, scheduled
cesarean delivery, unscheduled cesarean delivery), race (White, Asian,
other), and human milk exclusivity [exclusive vs. nonexclusive (mixed
formula feeding)]. The continuous maternal data included frequency of
direct breastfeeding per day (n/day) and BMI (kg/m2). Wilcoxon rank-
sum tests were also run to determine the relation between secretor status
and total HMO concentration (milligrams per milliliter), HMO-bound
sialic acid concentration (nanomoles per milliliter), and HMO-bound
fucose concentration (nanomoles per milliliter). The significance level
for these tests was set at P < 0.05.

After assessing relations between secretor status and HMO
composition patterns, data were stratified by secretor status (secretor,
n = 78; non-secretor, n = 29) and univariable linear regression models
(SAS version 9.4; SAS Institute) were run to determine associations
between maternal clinical data and each of the 19 HMOs within each
secretor status stratum. Clinical data included the following: categorical
prepregnancy BMI (healthy, overweight, obese), prepregnancy BMI as a
continuous variable (kg/m2), glucose tolerance status (normoglycemic,
IGT, GDM), mode of delivery (vaginal, scheduled cesarean delivery,
unscheduled cesarean delivery), race (White, Asian, other), human milk
exclusivity (vs. nonexclusive), and frequency of direct breastfeeding
(n/day). To avoid skewing the data in the analyses, FUT2-dependent
HMOs (2′FL, LNFPI, DFLac, DFLNH), known to be almost exclusively
found in secretor milk, were not examined within the non-secretor strata
for the present, and all subsequent, analyses.

HMO composition and milk microbiota.
Using the total cohort for this present study (n = 107), associations
between secretor status and microbial ɑ-diversities (Chao1 and Shannon
indices) were determined by multivariable linear regression models
(PROC MIXED) in SAS version 9.4, while adjusting for microbial
DNA extraction batch and PCR sequencing batch. The data were
then stratified by secretor status and models were built to assess the
association between the top 19 HMOs (milligrams per milliliter), HMO
diversity (Simpson’s index), total HMO concentration (milligrams
per milliliter), HMO-bound sialic acid concentration (nanomoles per
milliliter), and HMO-bound fucose concentration (nanomoles per
milliliter) and ɑ-diversity (Chao1 and Shannon indices). All models
were adjusted by microbial DNA extraction and PCR batch effects.
Due to sample size constraints from stratifying on the basis of
secretor status, we were not able to adjust for any additional maternal
covariates of interest. The significance level for these analyses was set at
P < 0.05.

B-Diversities (weighted UniFrac distance, Bray-Curtis dissimilarity)
of the human milk microbiota were calculated and visualized using
principal coordinate analysis. All HMO concentrations were made
categorical (Bisect 1 or 2) and run grouped as Bisect 1 (concentrations
below the median) and Bisect 2 (concentrations above the median) for
B-diversity analyses. Associations within the overall cohort (n = 107)
between secretor status and microbial B-diversities (weighted UniFrac
distance, Bray-Curtis dissimilarity) were determined by Adonis (vegan
package version 2.5-3 in R) (30) while adjusting for microbial DNA
extraction batch and PCR sequencing batch. Data were then stratified
by secretor status and associations between HMOs and B-diversity
measures were ascertained using Adonis (vegan package version 2.5-
3 in R), as previously described (7, 8, 30). All HMO models were first
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TABLE 1 Summary of maternal demographic, metabolic, and obstetric characteristics stratified by
secretor status phenotype1

Baseline characteristics Cohort Secretors Non-secretors

Race
White 60 (56) 47 (60) 13 (45)
Asian 26 (24) 16 (21) 10 (34)
Other 21 (20) 15 (19) 6 (21)

Prepregnancy BMI, kg/m2

Mean ± SD 24.4 ± 4.6 24.1 ± 4.5 25.4 ± 5.0
Healthy (18.5–24.9) 67 (63) 51 (65) 16 (55)
Overweight (25–29.9) 29 (27) 21 (27) 8 (28)
Obese (>30) 11 (10) 6 (8) 5 (17)

Gestational glucose tolerance status
Normoglycemia 65 (61) 50 (64) 15 (52)
Impaired glucose tolerance 18 (17) 13 (17) 5 (17)
Gestational diabetes 24 (22) 15 (19) 9 (31)

Mode of delivery2

Unscheduled cesarean delivery 27 (25) 13 (17) 14 (48)
Scheduled cesarean delivery 21 (20) 18 (23) 3 (10)
Vaginal 59 (55) 47 (60) 12 (41)

Human milk exclusivity
Exclusive 54 (50.5) 39 (50) 15 (52)
Nonexclusive 53 (49.5) 39 (50) 14 (48)

Frequency of direct breastfeeding,3 n/d 7.0 (5.5, 8.5) 7.0 (5.5, 8.0) 7.0 (4.9, 8.1)

1Values are n (%) unless otherwise specified. Maternal race was categorized as white, Asian, or other (pooled Black, South Asian,
other); the latter was combined due to low frequency of these races. Cohort n = 107; secretors, n = 78; non-secretors, n = 29.
2A statistically significant association was observed between mode of delivery and secretor status phenotype following a chi-square
test (P = 0.0032) of categorical data (vaginal vs. scheduled cesarean delivery vs. unscheduled cesarean delivery) (P < 0.05).
3Frequency of direct breastfeeding is expressed as median (IQR).

run unadjusted in the Adonis model and then run adjusted for microbial
DNA extraction and PCR batch effects. The significance level was set at
P < 0.05.

Relative abundances of the top 5 phyla and top 8 genera of milk
microbiota were explored as these were the predominant taxa consistent
in both secretor and non-secretor milk samples. Using the overall cohort
(n = 107), Poisson regression models (PROC GENMOD) were built in
SAS (version 9.4) to evaluate the association between secretor status
as a covariate and the relative abundance of predominant microbial
taxa as outcomes, while adjusting for microbial DNA extraction and
PCR batch effects. Data were then stratified by secretor status and
the associations between HMOs and predominant microbial taxa were
assessed. All models were adjusted for microbial DNA extraction
and PCR batch effects. To address overdispersion, the SEs of these
models were adjusted using Pearson scaling. To account for multiple
comparisons, the Benjamini-Yekutieli cut-point approach was used (35);
based on 5 phyla (5 tests), significance was set at P ≤ 0.022 for the
phylum models, and for 8 genera (8 tests), significance was set at
P ≤ 0.018 for the genus models.

HMO composition and predicted microbial functions
Microbial functions were inferred using Piphillin (https://piphillin.seco
ndgenome.com/) (36). The Kyoto Encyclopedia of Genes and Genomes
(KEGG; https://www.genome.jp/kegg/) was used as a reference database
to create a gene feature table from the 16S ribosomal RNA (rRNA)
sequence data. A random subset of samples was used to accommodate
the Piphillin analysis (n <100 samples required), resulting in 93
samples available for statistical analyses. KEGG pathways not expressed
in bacteria were subsequently removed. All KEGG analyses were
run stratified by secretor status (secretor, n = 67; non-secretor,
n = 26). Statistically significant associations between HMOs and KEGG
pathways were assessed in 2 ways: first, examining the association
between HMOs and B-diversity of predicted KEGG orthologs (Bray-
Curtis dissimilarity) using Adonis models in R adjusted for microbial
DNA extraction and PCR sequencing batch effects (P < 0.05); second,
individual HMOs associated with differentially expressed predicted

functional KEGG pathways were assessed using MaAsLin2 in R [false
discovery rate (FDR) adjusted, P < 0.1], while adjusting for microbial
DNA extraction and PCR sequencing batch effects.

Results
Participant description

Human milk samples were expressed and collected at 3 ± 1 mo
postpartum (mean ± SD). Maternal clinical data, including
prepregnancy BMI, gestational glucose tolerance, mode of
delivery, race, frequency of direct breastfeeding, and human
milk exclusivity (vs. nonexclusive) are described in Table 1
according to secretor status. Mode of delivery was significantly
associated with secretor status following chi-square analyses
(P = 0.0032; Table 1); no other statistically significant
differences were identified between maternal clinical data and
secretor status.

Secretor status is a predictor of HMO composition at
3 mo postpartum

Among secretor mothers, the top 3 most abundant HMOs by
concentration (milligrams per milliter) included 2’FL, DFLNT,
and LNFPII (Figure 1; Supplemental Table 1). Among non-
secretor mothers, the most abundant HMOs by concentration
(milligrams per milliter) included LNFPII, FDSLNH, and LNT.
Secretor mothers expressed significantly higher concentrations
(milligrams per milliter) of total HMOs in their milk compared
with non-secretor mothers [median (IQR): 11.4 (10.9, 12.0) vs.
8.13 (7.91, 8.22) mg/mL; P < 0.0001], mainly due to the higher
quantities of 2’FL. Secretor mothers also expressed over double
the concentration (nanomoles per milliliter) of HMO-bound
fucose in their milk compared with non-secretors [1.5 × 104
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FIGURE 1 (A) HMO concentrations (mg/mL) and (B) HMO-
bound sialic acid and fucose concentrations (nmol/mL) in mature
human milk by secretor status phenotype (secretor, n = 78;
non-secretor, n = 29). HMOs measured were 2′FL, 3FL, 3′SL,
6′SL, DFLac, DFLNH, DFLNT, DSLNH, DSLNT, FDSLNH, FLNH,
LNFP I/II/III, LNH, LNnT, LNT, and LSTb/c. DFLac, difucosyllactose;
DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose;
DSLNH, disialyllacto-N-hexaose; DSLNT, disialyllacto-N-tetraose; FD-
SLNH, fucodisialyllacto-N-hexaose; FLNH, fucosyllacto-N-hexaose;
HMO, human milk oligosaccharide; LNFP I/II/III, lacto-N-fucopentaose-
I/II/III; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-
N-tetrose; LSTb/c, sialyl-lacto-N-tetraose-b/c; 2′FL, 2′-fucosyllactose;
3FL, 3-fucosyllactose; 3′SL, 3′-sialyllactose; 6′SL, 6′-sialyllactose.

(1.4 × 104, 1.6 × 104) vs. 5.7 × 103 (4.8 × 103, 6.5 × 103);
P < 0.0001] (Figure 1; Supplemental Table 1).

Maternal prepregnancy BMI, race, and frequency of
direct breastfeeding are associated with the HMO
profiles of human milk

Relations between maternal clinical data and HMO composi-
tion were examined separately for secretors and non-secretors.
Within the secretor strata, prepregnancy BMI (kg/m2) was
found to be positively associated with DFLac (P = 0.011),
while higher concentrations of DSLNT were observed in the
milk of Asian mothers compared with other races (P = 0.045)
(Table 2). Negative dose-dependent relations were also observed
for secretor mothers with frequency of direct breastfeeding
(n/day) for LNFPI (P = 0.0034), LSTb (P = 0.043), DSLNT
(P = 0.0088), and total HMO (P = 0.021) concentrations.

Among non-secretors, race was a strong predictor of indi-
vidual HMO concentrations (Table 2). Lower concentrations
of LNT were observed among both White (P = 0.021) and
Asian (P = 0.032) mothers; in addition, reduced concentrations
of 6’SL, LNnT, and DSLNT were observed in White and
Asian mothers compared with other races. Conversely, a

higher concentration of LNFPII was observed among White
(vs. other) mothers (P = 0.0009) and Asian (vs. other)
mothers (P = 0.013), along with a greater concentration of
HMO-bound fucose compared with other races (Table 2).
Additionally, dose-dependent relations were again observed
with frequency of direct breastfeeding among the non-secretor
strata; lower concentrations of 3FL (P = 0.049) and increased
concentrations of FDSLNH (P = 0.015) were observed
with each additional time an infant was fed directly at the
breast.

Individual HMOs are associated with microbial
diversity in human milk

No statistically significant associations were found between
secretor status as a variable and microbial ɑ-diversity as an
outcome measure when examining the overall cohort (n = 107)
[Chao1 index, B-estimate (SE): −12.7 (35.8), P = 0.72; Shannon
index: 0.07 (0.12), P = 0.55]. However, within the secretor
strata, 3’SL and FLNH were negatively associated with milk
microbiota richness (Chao1 index; P = 0.049 and P = 0.0082,
respectively) and DFLNH was negatively associated with milk
microbiota diversity (Shannon index; P = 0.029) (Supplemental
Figure 2; Supplemental Table 2). Among non-secretor samples,
LNT was also negatively associated with milk microbiota
richness (P = 0.025).

No statistically significant associations were found between
secretor status as a variable and microbial B-diversity as
an outcome measure when examining the overall cohort
(n = 107; weighted UniFrac distance: R2 = 0.018, P = 0.11;
Bray-Cutis dissimilarity: R2 = 0.013, P = 0.19). Among
secretors, LNnT was associated with milk microbiota B-
diversity (adjusted Weighted UniFrac distance: R2 = 0.040,
P = 0.036) (Supplemental Figure 3, Supplemental Table 3);
however, among the non-secretor strata, no individual HMOs
were associated with milk microbiota B-diversity (Supplemental
Table 4).

Individual HMOs are associated with microbial taxa in
human milk

Milk microbiota composition stratified by secretor strata is
outlined in Supplemental Table 5 and visualized in Supple-
mental Figure 4. Milk microbiota composition was found
to be relatively consistent with minor statistically significant
differences between the 2 secretor strata. When looking at
the overall cohort, secretor status (secretor vs. non-secretor)
was associated with a reduced incidence of Actinobacteria
(P = 0.016) (Supplemental Table 6); however, no associations
were observed between secretor status and predominant genera
within the overall cohort.

Within the secretor strata, DFLNH concentration was
associated with a significantly reduced incidence of Proteobac-
teria (P = 0.013) and an increased incidence of Firmicutes
(P = 0.017), while LNFPII (P = 0.001), FDSLNH (P = 0.0064),
and HMO-bound sialic acid concentration (nanomoles per
milliliter) (P = 0.019) were all associated with a significantly
reduced incidence of Bacteroidetes (Figure 2, Supplemental
Table 6). Total HMO concentration was associated with a
significantly increased incidence of Staphylococcus (P = 0.0054)
and Corynebacterium (P = 0.012). LNFPI was associated with a
significantly reduced incidence of Rothia (P = 0.0057) (Figure 2,
Supplemental Table 6).

Among the non-secretor strata, total HMO concentration
was associated with a significantly reduced incidence of
Actinobacteria (P = 0.0029), Fusobacteria (P = 0.002), and
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TABLE 2 Significant associations between maternal characteristics and individual HMOs stratified
by secretor status1

HMOs and maternal characteristics B-Estimate (SE) P

Secretors
DFLac, mg/mL

Prepregnancy BMI (kg/m2) 0.0099 (0.0038) 0.011
DSLNT, mg/mL

Race 0.0312

White vs. other − 0.0076 (0.060) 0.903

Asian vs. other 0.15 (0.073) 0.0453

LNFPI, mg/mL
Frequency of direct breastfeeding (n/d) − 0.072 (0.024) 0.0034

LSTb, mg/mL
Frequency of direct breastfeeding (n/d) − 0.0051 (0.0025) 0.043

DSLNT, mg/mL
Frequency of direct breastfeeding (n/d) − 0.025 (0.0091) 0.0088

Total HMOs, mg/mL
Frequency of direct breastfeeding (n/d) − 0.075 (0.032) 0.021

Non-secretors
FLNH, mg/mL

Prepregnancy BMI (kg/m2) − 0.0030 (0.0012) 0.024
LNT, mg/mL

Race 0.0292

White vs. other − 0.67 (0.27) 0.0213

Asian vs. other − 0.65 (0.29) 0.0323

LNFPII, mg/mL
Race 0.00222

White vs. other 1.04 (0.28) 0.00093

Asian vs. other 0.77 (0.29) 0.0133

DFLNT, mg/mL
Race 0.00472

White vs. other 0.43 (0.13) 0.00253

Asian vs. other 0.36 (0.13) 0.0133

LNnT, mg/mL
Race 0.00242

White vs. other − 0.46 (0.15) 0.00443

Asian vs. other − 0.52 (0.15) 0.00243

6’SL, mg/mL
Race 0.0412

White vs. other − 0.16 (0.072) 0.0353

Asian vs. other − 0.17 (0.075) 0.0363

DSLNT, mg/mL
Race 0.0122

White vs. other − 0.35 (0.12) 0.00793

Asian vs. other − 0.32 (0.13) 0.0203

HMO-bound fucose, nmol/mL
Race 0.00022

White vs. other 2.4 × 103(5.4 × 102) 0.00013

Asian vs. other 2.1 × 103 (5.7 × 102) 0.00083

FDSLNH, mg/mL
Frequency of direct breastfeeding (n/d) 0.10 (0.040) 0.015

3FL, mg/mL
Frequency of direct breastfeeding (n/d) − 0.014 (0.0067) 0.049

3’SL, mg/mL
Frequency of direct breastfeeding (n/d) − 0.020 (0.0091) 0.042

1Secretors n = 78; non-secretors, n = 29. P values less than 0.05 were significant. DFLac, difucosyllactose; DFLNH,
difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNT, disialyllacto-N-tetraose; FDSLNH, fucodisialyllacto-N-hexaose;
FLNH, fucosyllacto-N-hexaose; HMO, human milk oligosaccharide; LNFP I/II, lacto-N-fucopentaose-I/II; LNH, lacto-N-hexaose; LNnT,
lacto-N-neotetraose; LNT, lacto-N-tetrose; LSTb, sialyl-lacto-N-tetraose-b; 3FL, 3-fucosyllactose; 3′SL, 3′-sialyllactose; 6′SL,
6′-sialyllactose.
2Values are overall group-effect P value. Associations between maternal clinical data and HMOs stratified by secretor status were
assessed via univariable linear regression models (PROC MIXED; SAS Institute). Maternal race was categorized as White, Asian, or
other (pooled Black, South Asian, other); the latter was combined due to low frequency of these races.
3Values are the pairwise comparison P-value.
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FIGURE 2 Differential abundance of the top 5 most abundant phyla and top 8 most abundant genera in human milk microbiota according
to HMO composition by secretor strata. (A) Phylum secretor strata, (B) genus secretor strata, (C) phylum non-secretor strata, (D) genus non-
secretor strata. Secretor, n = 78; non-secretor, n = 29. ∗Sialic acid and ∗Fucose denote that these HMO-bound molecules were run in the
Poisson regression model as nmol/mL; all other HMOs were run as mg/mL, as indicated in the y-axis label. Heatmaps represent the results
from multivariable Poisson regression models (PROC GENMOD; SAS Institute), adjusted for microbial DNA extraction and PCR sequencing
batches with the top 5 phyla and top 8 genera as the outcome variables; the colored boxes refer to the incidence rate ratio on a log scale,
while asterisks refer to statistically significant results. ∗P ≤ 0.022 for phylum, P ≤ 0.018 for genus. To account for multiple comparisons, the
Benjamini-Yekutieli cut-point approach was used. DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose;
DSLNH, disialyllacto-N-hexaose; DSLNT, disialyllacto-N-tetraose; FDSLNH, fucodisialyllacto-N-hexaose; FLNH, fucosyllacto-N-hexaose; HMO,
human milk oligosaccharide; LNFP I/II/III, lacto-N-fucopentaose-I/II/III; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetrose;
LSTb/c, sialyl-lacto-N-tetraose-b/c; 2′FL, 2′-fucosyllactose; 3FL, 3-fucosyllactose; 3′SL, 3′-sialyllactose; 6′SL, 6′-sialyllactose.

Corynebacterium (P < 0.0001) (Figure 2, Supplemental Table
6). 3’SL was associated with a significantly increased incidence
of Streptococcus (P = 0.006), while LNnT was associated
with a reduced incidence of Streptococcus (P = 0.010). LNnT

was associated with a significantly increased incidence of
Acinetobacter (P = 0.017), while DSLNT and LNFPIII were
associated with reduced incidences of Veillonella (P = 0.010)
and Corynebacterium (P = 0.014), respectively.
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Individual HMOs are associated with the predicted
functional capabilities of microbiota in human milk

A number of changes were observed in the abundance of
predicted KEGG pathways in relation to individual HMOs.
Among the secretor strata, DFLac was significantly associated
with an enrichment of predicted pathways encoding for
metabolism and infection, including lipoic acid metabolism,
bacterial invasion of epithelial cells, and Staphylococcus aureus
infection (P-FDR < 0.1) (Table 3). When examining the non-
secretor strata, LNnT and DSLNH were associated with an
enrichment in microbial pathways involved in the degradation
of aromatic hydrocarbons and biosynthesis of antibiotics (P-
FDR < 0.1).

In addition to KEGG pathways, associations between HMOs
and KEGG ortholog (KO) B-diversity (Bray-Curtis dissimilarity)
were also explored. Similar to our findings with microbial B-
diversity, LNnT was significantly associated with KO B-diversity
among secretors (R2 = 0.039, P = 0.043) (Supplemental Table
7). Within the non-secretor strata, DFLNT was also found to be
significantly associated with KO B-diversity in adjusted models
(R2 = 0.14, P = 0.007) (Supplemental Table 8).

Discussion

Maternal glucose intolerance during pregnancy increases a
mother’s risk of developing type 2 diabetes post-pregnancy as
well as increases the risk of morbidities in her neonate, such
as hypoglycemia (37–40). Little is known about the role of
perturbed glucose metabolism on human milk components;
however, our results are the first to show that 1) not GDM
but prepregnancy BMI, race, frequency of direct breastfeeding
(n/day), and secretor status are associated with specific HMOs
in mature human milk and 2) that HMOs are associated
with microbial diversity, abundance of predominant taxa, and
predicted microbial functions, regardless of glucose tolerance
status.

Of the maternal characteristics we examined, race (White,
Asian, other) appeared to be the most consistent determinant of
HMO composition in our cohort, and this association has also
been reported by others (13). Although there does appear to be
a relation between race and FUT2 status, associations appear
to differ geographically, perhaps reflecting different single
nucleotide polymorphisms in the FUT2 gene (41–43). We also
found maternal prepregnancy BMI to be positively associated
with DFLac, an HMO that has previously been shown to be
positively correlated with increased weight gain, weight velocity,
and length gain in infants at 5 mo postpartum (44). Despite
associations with prepregnancy BMI, it is interesting that no
associations were observed between glucose tolerance status
and HMO composition, given the potential for altered glucose
tolerance to modify glycosylation patterns of human milk
glycoproteins (16, 45). Interestingly, the 1 study to date (n = 24,
milk collected 2 wk postpartum, United States) to examine
associations between GDM and total HMO abundances also
observed no differences in total HMO concentrations in milk
from mothers with or without GDM; however, the authors did
not examine individual HMOs (16). Recently, third-trimester
glucose homeostasis in normoglycemic women (n = 136, United
States) was found to be associated with secretor status, with
non-secretors displaying significantly greater fasting insulin and
HOMA-IR values than secretors; however, these values were
still within a healthy range for pregnant women in their third
trimester (17). The non-secretor group was also shown to

have a significantly higher BMI than secretors. It is unknown
why these different associations were observed compared with
our study findings, but it is important to emphasize that the
women in the study by Saben et al. (17) were metabolically
healthy and did not meet the diagnostic criteria for either
gestational IGT or GDM. Finally, Azad et al. (13) also found
associations between frequency of direct breastfeeding and
HMO composition, hypothesizing that the regularity of milk
removal and the volume of milk production both have the
potential to alter the quantities and types of HMOs in human
milk (13, 46, 47). This hypothesis continues to hold true for
our study, as we also found a number of associations with
this variable, regardless of secretor strata, indicating that the
frequency of direct breastfeeding is a probable modulator of
HMO composition.

Minor variations in microbiota composition were observed
based on secretor status, a finding that is in line with previous
investigations (48, 49); however, we did identify differences in
milk microbiota diversity according to specific HMOs. FLNH
was associated with milk microbiota richness as previously
reported by Moossavi et al. (22), although our directionality
was opposite. LNnT was also found to be associated with
human milk microbiota B-diversity, although the magnitude
was quite small; however, this finding may suggest that the
microbial communities as a whole may differ depending on
the HMO concentrations that a mother expresses in her milk.
Differences in the B-diversity of the overall composition of
predicted KEGG orthologs were also observed with LNnT.
LNnT has been previously studied for its role in infant nutrition,
especially as a supplemental addition to infant formula, as well
as its inverse association with weight and height in children at
5 y of age (50, 51). For this reason, this observed association
between LNnT and human milk microbiota B-diversity at both
the taxonomic and predicted functional levels requires further
investigation due to its potential implications in infant and child
health.

Overall, the associations between HMOs and differentially
abundant taxa in the milk microbiota were modest. Previous
research has found total HMO content of human milk to be
positively associated with Staphylococcus relative abundance
(21). This supports our findings showing a positive association
between overall HMO concentration and Staphylococcus genus
relative abundance among secretor mothers. Intriguingly, a
previous in vitro analysis reported that HMOs can stimulate
the growth of Staphylococcus in a variety of media (21). Future
directions validating this mechanism in vitro are warranted to
determine whether HMOs are able to stimulate the growth of
Staphylococcus.

No other study to our knowledge has investigated beyond
taxa associations with HMOs and evaluated how predicted
microbial functions differ depending on HMO composition.
DFLac was found within the secretor strata to be associated
with a number of predicted pathways encoding for bacterial
invasion of epithelial cells and S. aureus infection. Fascinatingly,
previous work examining secretor status and the risk of
infection has shown a differing susceptibility for risk of a
number of infections (i.e., mumps, measles, and norovirus), with
either an increased or decreased risk based on secretor genotype
and the illness in question (10, 52, 53). S. aureus is one of the
causative agents of mastitis, and interestingly, previous work
has shown an increased abundance of infection-related genes
in the milk microbiota of women with a confirmed diagnosis of
mastitis (54, 55). Although we were unable to assess if secretor
status was associated with the risk of mastitis in our cohort,
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TABLE 3 Significant relations between individual HMOs and predicted microbial KEGG pathways in human milk stratified by
secretor status1

HMO and KEGG pathway Coefficient (SD)2 P3

Secretors
DFLac

Bacterial invasion of epithelial cells 1.97 × 10
∧ − 5 (5.06 × 10

∧−6) 0.056
Staphylococcus aureus infection 0.00041 (0.00012) 0.095
Lipoic acid metabolism 4.66 × 10

∧ − 5 (1.18 × 10
∧−5) 0.056

Pyruvate metabolism 0.00018 (4.71 × 10
∧−5) 0.059

Secondary bile acid biosynthesis 1.31 × 10
∧ − 5 (3.55 × 10

∧−6) 0.065
Tuberculosis − 3.31 × 10

∧ − 5 (8.32 × 10
∧−6) 0.056

Biosynthesis of secondary metabolites 0.00056 (0.00016) 0.077
Biosynthesis of vancomycin group antibiotics − 1.34 × 10

∧ − 5 (3.83 × 10
∧−6) 0.077

Carbon fixation pathways in prokaryotes 0.00014 (3.89 × 10
∧−5) 0.077

Vibrio cholerae infection 4.52 × 10
∧ − 6 (1.31 × 10

∧−6) 0.077
Carbon metabolism 0.00025 (7.73 × 10

∧−5) 0.095
D-Arginine and D-ornithine metabolism 1.43 × 10

∧ − 5 (4.29 × 10
∧−6) 0.095

Non-secretors
LNnT

Toluene degradation 0.00017 (3.51 × 10
∧−5) 0.015

Chlorocyclohexane and chlorobenzene
degradation

0.00012 (3.06 × 10
∧−5) 0.094

DSLNH
Biosynthesis of enediyne antibiotics 9.38 × 10

∧ − 7 (1.93 × 10
∧−7) 0.019

1Associations between individual HMOs and secretor status stratified differentially expressed predicted functional KEGG pathways were assessed using MaAsLin2. All models
were adjusted for microbial DNA extraction batch and PCR sequencing batch. Secretors, n = 67; non-secretors, n = 26. DFLac, difucosyllactose; DSLNH,
disialyllacto-N-hexaose, HMO, human milk oligosaccharide; KEGG, Kyoto Encyclopedia of Genes and Genomes; LNnT, lacto-N-neotetraose.
2Values are shown as coefficient (SD) from MaAsLin2 models that were adjusted for microbial DNA extraction and PCR batch effects.
3P values are false discovery rate (FDR) adjusted. A cutoff of PFDR < 0.1 was deemed statistically significant.

assessing this relation in future studies may be warranted given
that the HMO glycosylation pattern may directly impact the
development of mastitis.

The present study had many strengths, including a metabol-
ically heterogenous population, along with secretor phenotype
stratification to help us better understand HMO composition.
Our cohort was also enriched with mothers diagnosed with
altered gestational glucose tolerance, allowing us to investigate
the role (or lack thereof) this metabolic variant plays in HMO
composition. We recognize there are also limitations to the
present study. First, we were unable to assess for the FUT3
genotype in our cohort, which would have provided further
resolution into the genetic components of HMO composition by
classifying mothers based on Lewis blood group, which is not
as straightforward to determine based on HMO composition
alone. Future research integrating the genetic heterozygosity
and classifications of all 4 potential milk subgroups of
FUT2/FUT3 would provide a deeper understanding of how
maternal demographic, metabolic, and obstetrical factors are
associated with HMO composition, when accounting for
known genetic factors. Second, although a large proportion of
our cohort had gestational IGT (∼40%), there is the potential
that this sample size of women, especially when stratified by
secretor status, was inadequate to detect some differences for
some comparisons. Third, our use of 16S rRNA gene sequencing
data to infer microbial functions using Piphillin may not reflect
the true microbiota function and requires confirmation with
shotgun metagenomic sequencing. In addition, our milk samples
were stored at –80◦C for approximately 6 y before 16S rRNA
gene sequencing was conducted; although the literature suggests
this does not result in a substantial change to the microbiota
or HMO compositions, this is a potential limitation of our
study (56, 57). Last, our study was cross-sectional, meaning we

were not able to investigate longitudinal changes in HMOs over
time, or how their relation with maternal clinical variables or
microbiota may change over the postpartum period.

Our study is the first to analyze the interplay between HMOs
and the human milk microbiota composition in a cohort of
women with varying degrees of gestational glucose intolerance,
a metabolic profile that deserves greater attention given its
potential association with altered glycosylation patterns of
HMOs. Our microbial predicted function results may point to
the need to investigate risk of infections, such as mastitis, during
lactation, and to determine whether secretor status may confer
protection from risk of additional postpartum morbidities in
both the mother and infant.
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