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Abstract

Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in our

societies. But recent studies show that the present pathology tests to detect CVD are inef-

fectual as they do not consider different stages of platelet activation or the molecular dynam-

ics involved in platelet interactions and are incapable to consider inter-individual variability.

Here we propose a stochastic platelet deposition model and an inferential scheme to esti-

mate the biologically meaningful model parameters using approximate Bayesian computa-

tion with a summary statistic that maximally discriminates between different types of

patients. Inferred parameters from data collected on healthy volunteers and different patient

types help us to identify specific biological parameters and hence biological reasoning

behind the dysfunction for each type of patients. This work opens up an unprecedented

opportunity of personalized pathology test for CVD detection and medical treatment.

Author summary

Cardiovascular accidents often result from blood deficiencies, such as platelets dysfunc-

tion. Current diagnosis techniques to detect such dysfunctions are not sufficiently accu-

rate and unable to determine which platelet properties are affected. We develop a novel

approach to describe in-vitro platelets deposition patterns in terms of clinically meaning-

ful patient specific bio-physical quantities that allow for personalized clinical diagnostics.

This approach combines mathematical modeling, statistical inference techniques,

machine learning and high performance computation to estimate the values of these clini-

cally relevant platelet properties. We demonstrate our approach on three classes of donors,

healthy volunteers, patients subject to dialysis and patients with chronic obstructive
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pulmonary disease. We claim that our approach opens a paradigm shift for the treatment

and diagnosis of cardiovascular diseases, leading to personalized medicine.

Introduction

Cardio/cerebrovascular diseases (CVD) were the first cause of mortality worldwide in 2015,

causing 31% of deaths according to World Health Organization [1]. Pathology tests for detec-

tion of CVD rely on testing functionality of blood platelets, which play a key role in the occur-

rence of these cardio/cerebrovascular accidents in addition to complex process of blood

coagulation, involving adhesion, aggregation on the vascular wall to stop a hemorrhage while

avoiding the vessel occlusion. In a comprehensive bio-medical evaluation study [2], the corre-

lation between the clinical biological measures using platelet function tests and the occurrence

of a cardiovascular event was found to be null for half of the techniques and rather modest for

others, indicating the evident need for a more efficient tool or method to monitor patient

platelet functionalities. The inadequacy of these tests can be explained by the fact that no cur-

rent test allows for the analysis of the different stages of platelet activation or the prediction of

the in-vivo behavior of those platelets [3, 4]. In addition, the current clinical tests do not take

into account the dynamic aspect of the process of platelet aggregation and the role that red

blood cells can have in this process. To address these issues, we extend here the stochastic

model proposed in [5] that simulates numerically the deposition pattern of platelets observed

in the Impact-R device [6], namely the sizes and number of aggregates as a function of time for

a layer of whole blood subject to a controlled shear rate. This model is characterised by bio-

physically meaningful parameters the adhesion rate pAd, the aggregation rates pAg (of deposit-

ing on an already deposited platelet) and pT (of depositing on an existing cluster of platelets),

the deposition rate of albumin pF, the attenuation factor aT, and the flux of activated (AP) and

non-activated platelets (NAP) obtained from their characteristics velocities (vAP
z and vNAP

z ). The

value of these parameters can be inferred by matching the simulation output with the corre-

sponding in-vitro deposition pattern.

Our main claim here is that the values of some of these model parameters (eg. adhesion

and aggregation rates) are precisely the information needed to assess various possible patho-

logical conditions and to quantify their severity with reference to CVD.

To support this claim, we develop a methodology to identify medically interpretable param-

eters differentiating between patients and healthy volunteers. To infer the estimates of the bio-

logically interpretable parameters of the stochastic platelet deposition model from the

deposition patterns observed in the Impact-R device of platelet collected for a patient, we use

approximate Bayesian computation (ABC) [7, 8] and report the estimated mode of the approx-

imate posterior learned by ABC as the estimates, which can also be interpreted as approximate

maximum likelihood estimates (MLE) when non-informative uniform priors are considered

on the parameters. We note that ABC inferential algorithms depend on the choice of the sum-

mary statistics extracted from the datasets [7], which can be inferred via metric learning [9, 10]

—a methodology that can provide the summary statistics able to maximally discriminate dif-

ferent patient groups. Leveraging on this crucial link between ABC and metric learning [11],

we are able to identify medically meaningful parameters, which can distinguish between differ-

ent types of patients and, at the same time, to estimate those parameters for each patient with

the aim of developing a test for the pathology. We further notice that the proposed approach

can be applied on each patient, in a systematic way. This reduces the bias of a human operator.
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Finally, to verify our proposed methodology, we perform a four stage experiment: 1) Collect

blood or platelet from 32 patients (16 patients needing dialysis and 16 patients with Chronic

Obstructive Pulmonary Disease—COPD) and 16 healthy volunteers; 2) Study the deposition

patterns observed in the Impact-R of platelet collected for each patient; 3) Learn the summary

statistics from this dataset which is able to maximally distinguish between the 3 types of

patients; 4) Estimate the model parameters for each of the patients, using ABC with the use of

the learned discriminatory summary statistics from Stage 3. Studying the inferred parameters

from each of the patients, we were able to identify medically meaningful parameters which are

able to distinguish between patients of different types.

This study relies only on a small data set and is meant as a proof of concept. A forthcoming

clinical study will provide a much larger data set on which we plan to demonstrate the poten-

tial of our approach convincingly.

Results and discussion

Dataset

The collected dataset (characterizing the deposition pattern in the Impact-R) can be divided

into three groups: healthy volunteers (Group 1), patients needing dialysis (Group 2) and

patients affected by Chronic Obstructive Pulmonary Disease (COPD) (Group 3). We collected

blood samples from 16 volunteers or patients from each of the three groups. Half of the 16

patients having dialysis were also affected by diabetes and all the volunteers and patients were

chosen from a broad age group.

Summary statistics learning and inference of parameters

Using Large Margin Nearest Neighbor Metric Learning (LMNN) [10], we first learn a

2-dimensional projection of the collected dataset, which maximally discriminates between dif-

ferent types of patients. We notice that the two features defining this two-dimensional space

do not have a meaningful biological representation as they are just weighted non-linear combi-

nations of the observed time-series of the platelet deposition pattern. We use these two features

as summary statistics for ABC and thus the fact that they have no biological interpretation is

not relevant since they are only used to facilitate the estimation process of biologically mean-

ingful model parameters that are, in turn, used to define the clinical tests. Next we use the

Euclidean distance on this projection space for ABC to infer the parameters of the stochastic

platelets depositions model for each of the volunteers (or patients), using the corresponding

deposition and aggregation pattern of the platelets in their blood displayed in Impact-R

machine. This provides us with a posterior distribution of the parameters given the data from

each individual volunteer (patient). After learning the posterior distribution, to provide an

estimate of the parameters for each of the patients, we calculate the maximum a posteriori

(MAP) estimate of the parameters. Here we note that the Bayesian point estimates are mini-

mizers of posterior loss (eg. posterior mean minimizing squared error loss or MAP minimiz-

ing 0–1 loss) [12]. These ABC inferred parameters provide valuable biological interpretation.

In Fig 1, we illustrate the inferred posterior distribution for a patient with COPD and the cor-

responding maximum a posteriori (MAP) estimate of the parameters.

Uncertainty in MAP estimation

We illustrate the uncertainty of the MAP estimates in each patient group through the boxplots

of MAP estimates for each patient in each of the three groups in Fig 2 for the three most
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discriminative parameters. The average observed standard deviation across the three groups

are s�pAg
: 17:79;s�aT : 1:64;s�vNAP

z
: 1:6e � 04.

One of our main assumption to build the test for pathology is that the parameter values for

each of the patients in a specific group are centered around a true value of the parameters with

Fig 1. Posterior distribution of the model parameters for a COPD patient. The green cross indicates the maximum a posteriori (MAP) estimate of the

parameters pAd [s−1], pAg [s−1], pT [s−1], pF [s−1], aT [μm2s−1], vAP
z ½ms� 1�, vNAP

z ½ms� 1�.

https://doi.org/10.1371/journal.pcbi.1009910.g001
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a small variance. Under this assumption, using consistency theorem for MAP estimates [13]

we can argue that the MAP estimates for each patient in that group would converge to the true

value if we have increasingly many samples (eg. repeated measurements using Impact-R

machine) for each of the patients. Given we only have one sample from each of the patient, we

can argue that the distribution of the MAP estimates of the patients in a group would be cen-

tered around the true value. To justify the standard deviation observed in the MAP estimates

of the patients in a group, we simulated 10 dataset using a true parameter value and computed

the standard deviation of the MAP estimates for each of the simulated dataset

(ŝpAg
: 23:4; ŝaT

: 0:95; ŝvNAP
z

: 2:71e � 05). We notice that the variance in the MAP estimates

of the real data in a group [Fig 2] is similar, in its order of magnitude, to the one observed in

our simulation study.

Finally, we notice that the mean/median of the MAP estimates in each group of patients are

significantly different among the three groups for the parameters pAg; aT; vNAP
z , possibly indicat-

ing a discriminative behaviour among the three groups, which helped us to identify the most

discriminative parameters and devise a test for pathology.

Kruskal-Wallis H-test

Our main claim is based on the assumption that the median of the MAP estimates of the three

patient groups are different among the groups for some of the parameters. We notice that the

distribution of the MAP estimates of patients from different groups can still overlap due to the

uncertainty in MAP estimation. To test whether the patient specific estimated parameters of

the model can distinguish patients from healthy volunteers and furthermore discriminate

between different types of the patients, we use the Kruskal-Wallis H-test [15] which tests the
null hypothesis that the median of the MAP estimates of the different types of patients are equal
versus a bilateral alternative. The computed test statistics and P-values between all the three

groups (healthy volunteers, patients needing dialysis and patients with COPD) are reported in

the first column of Table 1. Considering a cutoff for significance of 0.05, the null hypothesis

gets rejected for the parameters pAg and vNAP
z indicating that the values of these parameters sig-

nificantly differ between the groups.

Fig 2. Boxplot of the MAP estimates of the biologically meaningful discriminating parameters grouped according to patient types.

Healthy: Healthy volunteers (16 patients); Dialysis: All Patients undergoing dialysis (16 patients); COPD: Patients with COPD (16

patients). The box in the plot extends from the first quartile (Q1) to third quartile (Q3) of the estimated parameters for each type of

patients, with an orange horizontal line at the median. The upper whisker extends to the largest value less than Q3 + 1.5 � IQR and the

lower whisker extends to the lowest value greater than Q1 − 1.5 � IQR, where IQR is the interquartile range (Q3-Q1). Beyond the

whiskers, any values are considered outliers and are plotted as individual points.

https://doi.org/10.1371/journal.pcbi.1009910.g002
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We notice that the rejection of the null hypothesis does not indicate which of these groups

differ. Hence, we perform post-hoc Kruskal-Wallis H-test between healthy volunteers and

patients needing dialysis, healthy volunteers and patients with COPD and between patients

needing dialysis and patients with COPD [columns 2, 3 and 4 of Table 1 respectively]. This

indicates that pAg can clearly differentiate patients with COPD from both healthy volunteers

and patients having dialysis. Further aT and vNAP
z being able to discriminate patients needing

dialysis correspondingly from healthy volunteers and patients with COPD. We list these

parameters which are capable to distinguish between the corresponding groups in Table 2.

Discriminating parameters and pathology test

According to our analysis, the biologically meaningful parameters which are able to discrimi-

nate between different patient types up to some accuracy are pAg, aT and vNAP
z , as shown in

Table 2 and Fig 2. Further, these parameters can be divided into two distinct types of patholo-

gies related to biochemical and conformational changes correspondingly in platelets and red

blood cells (RBCs).

Pathological changes in platelets. The first group of parameters (pAg, aT) represent

explicit intrinsic changes in platelets associated with the presence of pathology, which causes a

change in their patterns of adhesion and aggregation. The common thread between dialysis

patients and COPD patients is the existence of chronic systemic inflammation implicated in

the development of cardiovascular disease. In response to inflammation, it is well known that

platelets in COPD and dialysis patients are activated in the bloodstream, altering their hemo-

static properties [16–19] and therefore the process of adhesion and aggregation.

Biochemical and conformational changes in RBCs. vNAP
z reflects another aspect of the

presence of pathology, where changes in the velocity of platelets are caused via their interaction

with red blood cells (RBCs), which may have undergone biochemical and conformational

changes altering blood rheology [20] under pathological situations. These changes in RBCs are

known as spherization and have been observed in sepsis, dialysis patients, COPD patients and

Table 2. Biologically meaningful discriminating parameters. The parameters which are significantly different

between the corresponding two groups of patients (volunteers).

Discriminating parameters

Healthy vs Dialysis aT

Healthy vs COPD pAg

Dialysis vs COPD pAg, vNAP
z

https://doi.org/10.1371/journal.pcbi.1009910.t002

Table 1. Statistics (P-values, P-values corrected for multiple testing) of Kruskal-Wallis test using maximum a posteriori (MAP) estimates of the parameters. A

higher value of the statistics and P-values smaller than 0.05 (bold) indicates that the medians of the estimated parameters of the corresponding groups are statistically differ-

ent with a significance cutoff of 0.05. Healthy indicates healthy volunteers, Dialysis indicates patients under dialysis, and COPD stands for patients with COPD. The correc-

tion of P-values for multiple testing has been done using the Benjamini-Hochberg procedure [14].

Parameters All three classes Healthy vs Dialysis Healthy vs COPD Dialysis vs COPD

pAd 2.7 (2.5e-1, 3.5e-1) 2.2 (1.3e-1, 2.3e-1) 3.5e-2 (8.5e-1, 9.1e-1) 1.7 (1.8e-1, 2.4e-1)

pAg 9.3 (9.5e-3, 4.9e-2) 2.4e-1 (6.2e-1, 7.9e-1) 7.3 (6.6e-3, 4.6e-2) 6.3 (1.1e-2, 4e-2)

pT 2.3e-2 (9.8e-1, 9.8e-1) 1.4e-3 (9.7e-1, 9.7e-1) 2.2e-2 (8.8e-1, 9.1e-1) 1.3e-2 (9.1e-1, 9.1e-1)

pF 1.4 (4.9e-1, 5.7e-1) 1.7e-1 (6.7e-1, 7.9e-1) 4.1e-1 (5.2e-1, 9.1e-1) 1.5 (2.1e-1, 2.4e-1)

aT 4.9 (8.2e-2, 1.9e-1) 3.8 (5.0e-2, 2.2e-1) 1.2e-2 (9.1e-1, 9.1e-1) 3.5 (5.9e-2, 1.3e-1)

vAP
z 3.7 (1.5e-1, 2.7e-1) 2.7 (9.7e-2, 2.2e-1) 3.5e-2 (8.5e-1, 9.1e-1) 2.7 (9.7e-2, 1.7e-1)

vNAP
z 8.5 (1.4e-2, 4.9e-2) 2.8 (8.9e-2, 2.2e-1) 2.5 (1.1e-1, 3.9e-1) 7.3 (6.6e-3,4e-2)

https://doi.org/10.1371/journal.pcbi.1009910.t001
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other pathologies causing chronic or acute systemic inflammation [21]. Recently, [22] reported

that the RBC spherization induces an increase in platelet adhesion and aggregation processes

and an increase in platelet transport to the wall. Hence, the changes observed in platelets veloc-

ities under pathologies may indicate medical conditions which causes biochemical and confor-

mational changes to RBCs.

Pathology test. Based on the most discriminative parameters (aT and pAg) identified by

our analysis, we devise a test for pathology to identify diseased patients (correspondingly for

patients with COPD and patients having dialysis). An individual is identified as healthy or

belonging to COPD group (similarly to dialysis patients) if the MAP estimate of the parameter

aT (correspondingly pAg) is closer to the median of the MAP estimates of the healthy volun-

teers or closer to the corresponding value estimated on patients in the COPD group (respec-

tively dialysis patients). The sensitivity and specificity [23] of our two tests are reported in the

Table 3. This shows that we can identify patients having COPD with higher degree of accuracy

given that our analysis only depends on a relatively small number of patients/volunteers.

Materials and methods

Ethics statement

Volunteers were recruited at the nephrology and pneumology units of the CHU-Charleroi,

ISPPC Hôpital Vésale in Belgium. Written informed consent was obtained from each patient

and healthy donor included in the study. The protocol of the study was in conformity with the

ethical guidelines of the Helsinki Declaration of 1975 (revised in 2000) and was approved by

the institution’s ethics committee (No: OM008; P17/49_27/09). Informed Consent Statement:

Informed consent was obtained from all subjects involved in the study.

Based on detailed in vitro experiments using the Impact-R device mimicking platelet adhe-

sion-aggregation in blood vessels, first we provide a model which is an in silico counterpart for

an in-depth description and understanding of the phenomenon and the underlying

mechanisms.

Impact-R experiment

Impact-R [6], a well-known platelet function analyzer, is a cylindrical device whose bottom

wall is a fixed disc (deposition substrate), while the upper wall is a rotating disc (shaped as a

cone with a small angle). The height of the device is 0.82 mm and due to the motion of the

upper wall a pure shear flow is created. A controlled shear rate _g is produced in a given obser-

vation window of 1 × 1 mm2, where we track the formation of clusters resulting from the depo-

sition and aggregation of platelets. Blood was drawn from both healthy and diseased donors

with different hematocrit (volume fraction of red blood cells (RBC)). Before starting the tests,

a sample is recovered and analysed, to determine the concentration of activated (AP) and non-

activated (NAP) platelets. Serum albumin, the most abundant protein in human blood plasma,

antagonises with the platelets, preventing them from adhering to the substrate. The quantities

Table 3. Sensitivity and specificity of the proposed test using the most discriminative parameters to identify dis-

eased patients compared to healthy volunteers.

Healthy vs COPD Healthy vs Dialysis

Discriminating parameter pAg aT
Sensitivity 0.75 0.56

Specificity 0.75 0.62

https://doi.org/10.1371/journal.pcbi.1009910.t003
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of interest are the number of clusters and their size formed in the substrate, and the number of

AP still in suspension. Our goal is to explain the observed (in vitro experiments) time evolution

of these three quantities, which is illustrated for a healthy volunteer in Fig 3.

Stochastic model of platelet deposition

The deposition process in Impact-R was successfully described with a mathematical model for

the first time in [24, 25] accounting for the following observations: (i) AP adhere to the deposi-

tion surface, forming a seed for a new cluster, (ii) NAP and AP can deposit at the periphery or

on top of an existing cluster and (iii) Albumin (Al) deposits on the surface, thus reducing

locally the adhesion and aggregation rates of platelets. A sketch of the situation shown in Fig 4.

In [25], the platelets reach the bottom layer due to a RBC-enhanced shear-induced 1D diffu-

sion. In the present work, we propose a fully stochastic model of platelet deposition, by substi-

tuting the 1D diffusion systems with a 3D random walk, while keeping the deposition

dynamics the same. The reason of this new approach is to avoid the introduction of a bound-

ary layer (denoted by Δz in [25]) when coupling platelet transport with platelet deposition.

With this particle based approach, a platelet becomes a candidate for deposition whenever it

hits the deposition surface. In [25] the diffusion coefficient D and the thickness of the bound-

ary layer Δz where determined independently of the other model parameters, precisely by

assuming a random motion of the platelets. Now, we keep the same level of description every-

where and, instead of D and Δz, two new parameters are considered, namely the characteristic

velocities of activated and non-activated platelets. They will be inferred from the data, together

with the adhesion and aggregation rates, and other quantities defined below.

The random walk of the platelets can be described by their jump (Δz(t), Δx(t), Δy(t)) at each

iteration t:

DzðtÞ ¼ l vz jszj dt; ð1Þ

DxðtÞ ¼ vxy jsxyj cosð2prÞ dt; ð2Þ

DyðtÞ ¼ vxy jsxyj sinð2prÞ dt; ð3Þ

Fig 3. Data from Impact-R device. The data collected from Impact-R for a healthy volunteer containing three observed quantities Nagg� clustðtÞ, Sagg� clustðtÞ and

NplateletðtÞ are correspondingly average size of the aggregation clusters, their number per mm2 and the number of non-activated platelets per μℓ still in suspension at

time t.

https://doi.org/10.1371/journal.pcbi.1009910.g003
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where vz,xy is a speed unit, r is a random variable uniformly distributed in [0, 1], sz,xy 2 (−1,

1) is a random variable distributed as a standard normal distribution, λ 2 {−1, 1} with proba-

bility 1/2 for each outcome, and dt is the time step of the simulation. Superimposing the sto-

chastic motion with the velocity field of the pure shear flow, the positions of the platelets are

updated as

ziðt þ dtÞ ¼ ziðtÞ þ DziðtÞ; ð4Þ

xiðt þ dtÞ ¼ xiðtÞ þ DxiðtÞ þ _g zi dt; ð5Þ

yiðt þ dtÞ ¼ yiðtÞ þ DyiðtÞ: ð6Þ

It should be noted that this stochastic model is physically equivalent to the shear-induced

diffusion model used in [25]. From the random motion of particles, diffusion constants

emerge both along the flow direction and perpendicular to it. The equivalence of random walk

Fig 4. Window of Impact-R device. The bottom wall is a fixed boundary of dimensions 1 × 1 mm2, the wall-bounded direction is 0.82 mm. The bulk contains whole

blood at different hematocrit. The discretization of the substrate is such that in every cell can fit just one platelet. The initial densities of the blood particles are

determined by the in vitro experiment and usually are about: 172 200 (μl)−1 for NAP, 4808 (μl)−1 for AP, 2.69 × 1013 (μl)−1 for Al. The image next to the discretised

substrate corresponds to the in vitro experiment.

https://doi.org/10.1371/journal.pcbi.1009910.g004
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and diffusion is a well known result, see for instance [26]. It has been checked that the platelet

deposition pattern obtained with this new model is the same, up to statistical fluctuations, as

with the model used in [25], when the physical properties are the same. The present model is

computationally more costly than that of [25], but provides more flexibility for parameter

inference, in particular to infer, from in vitro data, the transport properties of platelets towards

the deposition surface. Additionally the present transport model no longer assumes the same

transport properties for activated and non-activated platelets. Actually, this feature allows us to

better explain the Impact-R data as activated platelets turn out to move faster, probably due to

their increased effective hydrodynamic size. As a consequence, the final results of both models

cannot be compared.

Our interest here is to model the transport of platelets in the direction perpendicular to the

blood flow so as to obtain the flux of platelets that will reach the so-called Cell Free Layer (the

layer without red blood cells near a wall), at the bottom of the Impact-R device and be candi-

date for deposition. The stochastic transport along the blood flow direction is not expected to

have an impact on the deposition, due to the fast mixing of platelet in the horizontal plan. This

assumption made in [25] is confirmed by the present model which includes explicitly this hori-

zontal transport. Note finally that here we can exclude any drift in the vertical direction due to

the up-down symmetry in the Impact-R setting. This absence of a drift, sometimes proposed

to describe platelet transport in a tube, has been confirmed by full resolved blood flow simula-

tions, in which deformable red blood cells and platelets are in suspension in a plasma subject

to a shear flow [27].

Owing to the different dynamics and physics governing the activated and non-activated

platelets, they have in principle different speed units (vAP
z;xy; v

NAP
z;xy ). Regarding the motion of albu-

min, its abundance allows us to neglect the small density gradients due to its deposition, and

thus albumin can deposit at any time at a maximum value of deposition rate.

The AP and NAP that cross the lower boundary of the computational domain are removed

from the bulk if the deposition is successful, or get trapped at the Cell Free Layer (CFL) for a

future deposition attempt (they never get re-injected into the bulk). Further, periodic condi-

tions are applied at the x, y directions, and bounce back boundary condition for the platelets

that cross the upper boundary. Assuming a good horizontal mixing in the xy-plane due to the

rotating flow, and given its low impact on the deposition process, the stochastic part of the

motion in the x, y directions can be fixed to the same order of magnitude as the z direction

velocity. Therefore, we consider vAP
xy ¼ vAP

z , vNAP
xy ¼ vNAP

z and sxy = sz.
Next we describe the deposition rates. Let us denote by Ni,j(t) the number of candidate par-

ticles for deposition above the cell at position i, j of the discretised substrate. The deposition of

the platelets and albumin on the substrate follow the stochastic rules described in [25], i.e.,

based on the Ni,j(t) and on the occupancy of the i, j-th cell at time t. Albumin that reaches the

substrate at time t deposits with a probability P(t) which depends on the local density ρal(t) of

already deposited albumin. We assume that P is proportional to the remaining free space in

the cell,

PðtÞ ¼ pFðrmax � ralðtÞÞdt; ð7Þ

where pF is a parameter to be determined and ρmax is given by the constraint that at most

100,000 albumin particles can fit in a deposition cell of area ΔS = 5 (μm)2, corresponding to

the size of a deposited platelet (obtained as the smallest variation of cluster area observed with

the microscope). An activated platelet that hits a platelet-free cell deposits with a probability Q,

where Q decreases as the local concentration ρal of albumin increases. We assumed that

Q ¼ pAd expð� aTralÞdt; ð8Þ
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where pAd and aT are parameters to be determined. This expression can be justified by the fact

that a platelet needs more free space than an albumin to attach to the substrate, due to their

size difference. In other words, the probability of having enough space for a platelet, decreases

roughly exponentially with the density of albumin in the substrate (more details in [5]). In our

model, AP and NAP can deposit next to already deposited platelets. From the above discus-

sion, the aggregation probability R is assumed to be

R ¼ pAg expð� aTralÞdt; ð9Þ

with pAg another unknown parameter. We also introduce pT the rate at which platelets deposit

on top of an existing cluster. Fig 4 presents coarsely the competing adhesion-aggregation pro-

cess between albumin and platelets. More details on the stochastic deposition rules can be

found in [25].

For the purpose of the present study, the platelet deposition model M is parametrized in

terms of the seven quantities introduced above, namely the adhesion rate pAd, the aggregation

rates pAg and pT, the deposition rate of albumin pF, the attenuation factor aT, and the velocities

of AP and NAP vAP
z and vNAP

z . Collectively, we define

θ ¼ ðpAg; pAd; pT; pF; aT; vAP
z ; v

NAP
z Þ:

If the initial number of AP and NAP at time t = 0 (Nplateletð0Þ and Nact� plateletð0Þ), as well as the

concentration of albumin are known from the experiment, we can forward simulate the depo-

sition of platelets over time using model M for the given values of these parameters θ = θ�:

M½θ ¼ θ�� ! fðNagg� clustðtÞ;Sagg� clustðtÞ;NplateletðtÞÞ; t ¼ 0; . . . ;Tg:

whereNagg� clustðtÞ,Sagg� clustðtÞ and NplateletðtÞ are correspondingly average size of the aggregation

clusters, their number per mm2, the number of non-activated and pre-activated platelets per

μℓ still in suspension at time t.
The Impact-R experiments have been repeated with the whole blood obtained from each of

the volunteers and patients and the observations were made at time, 20 sec., 120 sec. and 300

sec. At these three time points, ðNagg� clustðtÞ;Sagg� clustðtÞ;NplateletðtÞÞ are measured [Fig 3]. Let us

call the observed dataset collected through experiment as,

x0 � fðN0

agg� clustðtÞ;S
0

agg� clustðtÞ;N
0

plateletðtÞÞ : t ¼ 0 sec:; . . . ; 300 sec:g:

Estimation of model parameters

As the likelihood function induced by the platelets deposition model is analytically intractable

due to the need of computing a very high-dimensional integral, we can not compute the maxi-

mum likelihood estimate of the model parameters or perform traditional Bayesian inference.

In setting where the likelihood function is not available, approximate Bayesian computation

(ABC) [7] offers a way to sample from an approximate posterior distribution of the parameter

p(θ|x0)� π(θ)p(x0|θ) given the observed data x0, where π(θ) and p(x0|θ) are correspondingly

the prior distribution on the parameter θ and the likelihood function. Further we note that the

mode of this approximate posterior distribution (i.e. the maximum-a-posteriori -MAP- esti-

mate) is also the approximate maximum likelihood estimate if we assume the prior distribu-

tion on the parameter to be uniform. Following this, given the observed data, we compute the

MAP estimates using the ABC approximate posteriors of the parameters of the stochastic

platelet deposition model.
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Approximate Bayesian computation (ABC)

The fundamental ABC rejection sampling scheme iterates the following steps:

1. Draw θ from the prior π(θ).

2. Simulate a synthetic dataset xsim from the simulator-based model MðθÞ.

3. Accept the parameter value θ if d(xsim, x0)< �. Otherwise, reject θ.

See Fig 5 for a visualization of the above algorithm.

Here, the metric on the dataspace d(xsim, x0) measures the closeness between xsim and x0.

The accepted (θ, xsim) pairs are thus jointly sampled from a distribution proportional to π(θ)

pd,ϵ(x0|θ), where pd,ϵ(x0|θ) is an approximation to the likelihood function p(x0|θ):

pd;ϵðx0jθÞ ¼
Z

pðxsimjθÞKϵðdðx
sim; x0ÞÞdxsim; ð10Þ

whereKϵðdðxsim; x0ÞÞ is in this case a probability density function proportional to

1ðdðxsim; x0Þ < ϵÞ and 1ð�Þ is used as an indicator function. Besides this choice for

Kϵðdðxsim; x0ÞÞ, that has been exploited in several papers (for instance [28–31]), ABC algo-

rithms relying on other choices exist, for instance with the kernelK being exp(−d(xsim, x0)/ϵ)

as in simulated-annealing ABC (SABC) [32]. More advanced algorithms than the simple rejec-

tion scheme detailed above are possible, for instance ones based on Sequential Monte Carlo

[30, 31], in which various parameter-data pairs are considered at a time and are evolved over

several generations, while ϵ is decreased towards 0 at each generation to improve the approxi-

mation of the likelihood function, so that we are able to approximately sample from the true

posterior distribution. For inference of parameters of the platelets deposition model, here we

choose the SABC algorithm, based on its suitability to high performance computing systems

[33]. For practical implementation, SABC was run for 20 iterations generating 510 samples

from the posterior distribution of the model parameters given data from each patient, keeping

all other parameters fixed to the default values proposed in the Python package ‘ABCpy’ [34].

Next, we explain how the distance between datasets used for ABC was chosen via a discrimina-

tive summary statistics learning approach and finally how the MAP estimates (MAP) of the

parameters was computed.

Discriminative summary statistics learning (DSSL)

Traditionally, distance between xsim and x0 is defined by summing over Euclidean distances

between all possible pairs composed by one simulated and one observed datapoint in the

Fig 5. Approximate Bayesian computation. Having observed data x0 from an individual patient (the gray dot), we

sample parameter values θ from the prior and generate observations through the model simulator, MðθÞ, that are then

accepted (green) or rejected (red) according to their distance from the observation measured by d(x1, x2) = ||s(x1) − s
(x2))||2 on the summary statistics space.

https://doi.org/10.1371/journal.pcbi.1009910.g005
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corresponding datasets. Recently, distances for ABC have also been defined through classifica-

tion accuracy [35], Kullback-Liebler divergence [36], maximum mean discrepancy [37] or by

Wasserstein distance [38], under the assumption that the datapoints in each datasets are iden-

tical and independently distributed and they are available in a large number in both xsim and

x0. We notice that in our setting we only have one datapoint in the observed dataset corre-

sponding to the platelet deposition pattern of a patient and also due to the very expensive

nature of our simulator model (simulation of one datapoint takes around 15 minutes) we can

only have few datapoints in the simulated dataset. Hence, here we concentrate on the defini-

tion of distances through Euclidean distance on summary statistics extracted from the dataset

when we only have one data-point in both xsim and x0.

When the data x is high-dimensional, a common practice in ABC literature is to define d as

Euclidean distance between a lower-dimensional summary statistics s : xsim 7! s(xsim). Reduc-

ing the data to suitably chosen summary statistics may also yield more robust inference with

respect to noise in the data. Moreover, if the statistics is sufficient, then the above modification

provides us with a consistent posterior approximation [39], meaning that we are still guaran-

teed to converge to the true posterior distribution in the limit ϵ! 0. As sufficient summary

statistics are not known for the majority of the complex models, the choice of summary statis-

tics remains a problem [40] and they have been previously constructed using neural networks

trained on a ‘pilot’ simulated dataset from the simulator model as in neural network based

semi automatic summary statistics learning (SASL) [41, 42] or summary statistics learning

minimizing triplet loss (TLSL) [11]. Detailed description of SASL and TLSL can be found in S1

Appendix.

These procedures are computationally expensive due to the need of the simulation of the

‘pilot’ dataset, further the learned summary statistics using these methods are not able to dis-

criminate between datasets from different patient types. As the main goal of the present

research is to learn parameter values which are able to differentiate between different patient

types, here we propose a methodology to learn such summary statistics and name it as discrim-

inative summary statistics learning (DSSL). Learning summary statistics which is most dis-

criminative between datasets with different labels falls under a well-developed field of research

in metric-learning [9]. We use Large Margin Nearest Neighbor Metric Learning (LMNN) [10],

one of the metric-learning approaches, which learns a Mahalanobis distance between data

from any two patients x1 and x2 able to discriminate between datasets with different labels,

dMðx1; x2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
TMðx1 � x2Þ

q
ð11Þ

where M is a d × d positive semi-definite matrix. We note that learning of the Mahalanobis dis-

tance here corresponds to learning a summary statistics of the data. It is sufficient to recall that

for each positive semidefinite matrix M there exists a square matrix L such that M = LTL.

Therefore, we can write Eq 11 in the following way:

dMðx1; x2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
TLTLðx1 � x2Þ

q

¼ kLðx1 � x2Þk2
;

where ||�||2 is the Euclidean distance, from which it is clear that the above corresponds to learn-

ing the transformation s : x 7! s(x) = Lx which is able to discriminate between different patient

groups.

To learn the transformation, LMNN solves the following optimization problem:

min
L

X

i;j

ZijkLðxi � xjÞk
2
þ
X

i;j;l

Zijð1 � yijÞ½1þ kLðxi � xjÞk
2
þ kLðxi � xlÞk

2
�
þ
;
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where xi is a data from a patient, xj is one of that patient’s k-nearest neighbors belonging to the

same group of patients, and xl are all the other data from patients of different type within the

neighborhood, ηij, yij 2 {0, 1} are indicators, ηij = 1 if xj is one of the k-nearest neighbors (con-

ditioned on being of the same type of patient as xi) of xi, yij = 0 indicates xi, xj are different

types of patients, [�]+ = max(0, �) is the Hinge loss. Intuitively, LMNN tries to learn a metric

able to keeps k-nearest neighbors from the same patient group close together, while keeping

patients from the other groups well separated. Further we note LMNN does not make any

assumptions about the distribution of the data. To learn the projection by using LMNN, we

consider the original data, its second and third order polynomial expansion and the cross

products between them. Further, we manually tuned the tuning parameters for the LMNN

algorithm provided in Python package ‘metric-learn’ [43] to maximize the rand index [44]

between the true patient clusters in the dataset and the clustering achieved using agglomerative

hierarchical clustering with the Euclidean distance on the learned discriminative summary sta-

tistics. Euclidean distance between the learned summary statistics from the data of different

patient types were able to cluster the dataset with 100% accuracy. In Fig 6 we illustrate the

learned discriminative summary statistics space in which the 3 groups of patients/volunteers

are accurately clustered.

To validate our DSSL approach, we compare DSSL with SASL and TLSL by using posterior

predictive checks for a experimental simulated dataset from the stochastic platelet deposition

model. Further experimental details can be found in S1 Appendix. The main goal here is to

Fig 6. Discriminative summary statistics space. The discriminative summary statistics space learned by DSSL, in which the

patients with COPD, patients having dialysis and healthy volunteers were accurately clustered.

https://doi.org/10.1371/journal.pcbi.1009910.g006
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analyze the degree to which the experimental data deviate from the data generated from the

inferred posterior distribution of the parameters. Hence we want to generate data from the

model using parameters drawn from the posterior distributions learned using the three differ-

ent summary statistics learned via SASL, TLSL and DSSL. To do so, we first draw 500 parame-

ter samples from the corresponding inferred approximate posterior distribution and simulate

500 data sets, each using a different parameter sample. This simulated dataset is considered as

the predicted dataset from our inferred posterior distributions. In Fig 7, we plot the experi-

mental data (solid line), 95% predictive credibility interval (shaded area) and the median pre-

diction (dashed line) for SASL (red), DSSL (blue) and TLSL (green). The experimental data

falls inside the 95% predictive credibility interval (PCI) for all the three summary learning

approach, where DSSL producing the tightest PCI. For Nagg� clust and Sagg� clust the median pre-

diction is closer to the true experimental data, whereas SASL and TLSL performs better for

Nplatelet .

Further, to measure the deviation of the predicted dataset from the experimental data used

for inference we use a Monte Carlo estimate of the energy score, which is a strictly proper scor-

ing rule used to measure predictive performance of probabilistic predictions [45],

Energy score ¼ 2
X

i

kxi � x0k
b

2
�
X

i;j

kxi � xjk
b

2
; ð12Þ

where xi is the i-th data simulated using a posterior sample, x0 is the experimental data used

for inference, β 2 (0, 2). In Table 4, we report the energy score (fixing β = 1) computed corre-

spondingly for the three inferential schemes using summary statistics learned via SASL, TLSL

and DSSL for the three observed quantities Nagg� clust, Sagg� clust and Nplatelet. The values in Table 4

are in agreement with Fig 7, allowing us to conclude that the proposed DSSL approach works

better in predicting Nagg� clust and Sagg� clust, whereas other two approaches perform better for the

prediction of Nplatelet . This illustrates that the discriminative summary statistics learned by

DSSL did not compromise in the overall predictive performance of the model, whereas it also

encapsulates discriminative information between the three groups of patients/volunteers.

Fig 7. Comparison of predictive performance of SASL, DSSL and TLSL. The experimental data (black solid line), 95% predictive credibility interval (colored

shaded area) and the median prediction (colored dashed line) for SASL (red), DSSL (blue) and TLSL (green) are illustrated to compare the predictive performance

of SASL, DSSL and TLSL summary learning approach forNagg� clust , Sagg� clust andNplatelet.

https://doi.org/10.1371/journal.pcbi.1009910.g007
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Maximum a posteriori estimate (MAP)

Given an observed dataset x0, we want to estimate the corresponding θ. SABC inference

scheme provides us with Z samples ðθiÞ
Z
i¼1

from the ABC approximated posterior distribution

p(θ|x0) given the data for each patient. Given these samples we construct a smooth approxima-

tion of the posterior distribution (given data for a specific patient) of the parameters using

Gaussian kernel density estimator with a bandwith equal to 0.45 and compute the mode of the

smoothed posterior distribution using Nelder-Mead algorithm [46] as the estimate of parame-

ters for each specific patient. This estimate will be considered as the MAP of the parameters.

The Gaussian kernel density and Nelder-Mead algorithm were used as implemented in Python

package ‘scipy’ [47].

In Fig 8 we illustrate the discriminative projection of the parameter space θ learnt using

LMNN, by considering the MAP estimates, its second, third and fourth order polynomial

expansion and the cross products between them. The tuning parameters for the LMNN algo-

rithm were tuned as before to maximize the rand index [44] between the true patient clusters

in the dataset and the clustering achieved using agglomerative hierarchical clustering with the

Euclidean distance on the learned discriminative projection of parameter values from the

MAP estimates. Euclidean distance between this learned parameter projection from the MAP

estimates for different patient types were able to cluster the patients with 100% accuracy. This

illustrates that we didn’t lose any discriminative information inherent in the patient (volun-

teer) dataset by learning the MAP estimates, justifying our main claim that the values of the

model parameters are precisely the information needed to assess various possible pathological

conditions.

Here we further note that we could have used the discriminative summary statistics space

or the discriminative projection of the parameter space correspondingly in Figs 6 and 8, which

are not biologically meaningful, to construct the test to determine pathology in the patients

with 100% accuracy. Instead we choose here to construct the test for pathology based on the

biologically meaningful parameters of our stochastic deposition model, doing so our method-

ology somewhat looses accuracy but gains significant interpretability.

Conclusion

A numerical model of platelets deposition introduced in [25] was illustrated to successfully

predict the platelets deposition and aggregation patterns in Impact-R device. [8] proposed an

inferential scheme based on ABC using a distance based on expert knowledge to quantify the

uncertainty of the model parameters of the model presented in [25] given data from a healthy

patient. Due to the modeling of platelets reaching the bottom layers by a 1D diffusion, it was

not possible to accurately calibrate the diffusion coefficient and the thickness of the boundary

layers using the inferential scheme described in [8] and hence these quantities were manually

tuned. To solve this problem, here we introduced a fully stochastic model which replaces the

Table 4. Comparison of predictive performance of approximate ABC posterior learned via summary statistics

learned using DSSL, SASL and TLSL approach based on energy score. Better predictive performance is measured by

the smaller energy score values.

DSSL SASL TLSL

Nagg� clust 2.71e+02 1.08e+03 1.17e+03

Sagg� clust 3.47e+02 2.16e+03 1.99e+03

Nplatelet 7.90e+04 4.16e+04 2.46e+04

https://doi.org/10.1371/journal.pcbi.1009910.t004
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above parameters by the characteristic velocities of activated and non-activated platelets. We

were able to estimate these velocities in addition to the other model parameters using the infer-

ential scheme we propose in the present manuscript. Hence the proposed methodology

completely removes the need to manually tune any parameters of the numerical model of

platelets deposition.

Secondly, we adapt our inferential scheme to estimate parameters of the model which not

only achieves good prediction performance but also can accommodate the discriminative

information available in the dataset of different types of patients and volunteers. This is done

by learning a summary statistic which is maximally discriminative between the three groups

(healthy volunteers, patients with COPD and patients needing dialysis) considered and finally

defining an Euclidean distance on this summary statistics space to use as distance between

observed and simulated data in approximate Bayesian computation. We show that the three

groups cluster accurately in this learned summary statistics space. This discriminative sum-

mary statistics was also able to get comparable predictive performance to the existing summary

learning approaches when used in ABC to learn approximate posterior distribution of the

model parameters given the data.

Finally, we evaluate the maximum a posteriori of the model parameters for each of the 48

patients by computing the mode of the joint approximate posterior distribution inferred by

ABC. We notice estimated values of some of the parameters were able to distinguish between

Fig 8. Discriminative projection of parameter space. The discriminative projection of the parameter space learned from the

MAP estimates, in which the patients with COPD, patients having dialysis and healthy volunteers were accurately clustered

illustrating that we do not lose any discriminative information inherent in the patient dataset while learning the MAP estimates.

https://doi.org/10.1371/journal.pcbi.1009910.g008
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different types of patients and healthy volunteers. We would like to note here that the original

learned discriminative summary statistics could be used to differentiate between different

types of patients and volunteers, but those summary statistics are not interpretable in a biologi-

cal sense. Hence, our main contribution lies in this ability to estimate biologically meaningful

parameters which can also discriminate between different types of patients. This may serve as

an illustration to make some of the machine learning models used in biology interpretable.

Supporting information

S1 Appendix. Additional mathematical details. Details on Semi Automatic Summary Statis-

tics Learning and Summary Statistics Learning by minimizing triplet loss.

(PDF)
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