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ABSTRACT

The chromatin immunoprecipitation (ChlIP) assay is
a major tool in the study of genomic processes
in vivo. This and other methods are revealing that
control of gene expression, cell division and DNA
repair involves multiple proteins and great number
of their modifications. ChIP assay is traditionally
done in test tubes limiting the ability to study
signaling of the complex genomic events. To
increase the throughput and to simplify the assay
we have developed a microplate-based ChIP (Matrix
ChlIP) method, where all steps from immunoprecipi-
tation to DNA purification are done in microplate
wells without sample transfers. This platform has
several important advantages over the tube-based
assay including very simple sample handling, high
throughput, improved sensitivity and reproducibility,
and potential for automation. 96 ChIP measure-
ments including PCR can be done by one researcher
in one day. We illustrate the power of Matrix ChIP by
parallel profiling 80 different chromatin and tran-
scription time-course events along an inducible
gene including transient recruitment of kinases.

INTRODUCTION

Chromatin-dependent processes respond to extracellular
signals, and control gene transcription, cell division and
DNA repair (1-3). The dynamic chromatin structure is
at the center of regulating these nuclear events. ChIP has
proven to be a powerful tool to investigate chromatin
structure (1,4,5). Along with other techniques (6,7), ChIP
assays are revealing complexity of chromatin, tran-
scriptional, RNA processing and DNA replication

events (1,6,8—13). These processes are regulated by multi-
ple histone modifications mediated by kinases, methyl-
transferases, acetyltransferases, ubiquitintransferases and
others (14—-19). Given that there are hundreds of different
transcription and RNA processing factors, the list of
regulatory modifications of DNA-bound and accessory
factors is far greater than that documented for histones
alone. The ability to follow a multitude of these
modification events simultaneously would enhance our
understanding of nuclear processes.

The traditional ChIP method has notable limitations, in
that it takes several days to complete, requires bead-based
immunoprecipitation, phenol-chloroform or spin column-
based DNA extractions and involves multiple tube
transfers (4). Such DNA extractions and precipitations,
are not only time consuming and tedious but also
introduce steps for potential sample loss, cross-
contamination and variability. This becomes a bigger
problem in experiments involving multiple chromatin
samples. We have previously developed the Fast ChIP
method that improved the standard ChIP protocol by
simplifying the DNA purification step (20-23). Although
Fast ChIP increased the efficiency and reproducibility of
the procedure, it is done in test tubes and requires bead-
based precipitation and elution steps limiting the number
of samples that one researcher can handle and making it
unsuitable for automation.

This article describes a novel ChIP strategy, Matrix
ChIP, that utilizes surface-immobilized antibodies in a
96-well plate, where the entire procedure from chromatin
precipitation to PCR-ready DNA purification is done
on the same plate without sample transfers. The high-
throughput potential of the Matrix ChIP is illustrated by
simultaneous profiling of recruitment of three kinases,
Erkl/2 (24), PKCd (25) and Fyn (26), and several
chromatin and transcriptional events along the PMA
inducible egr-1 locus in mesangial cells (27). These data
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demonstrate that the pattern of Erkl1/2, PKCS and Fyn
recruitment to the inducible egr-/1 gene resemble that of
RNA Polymerase II. We suggest that these kinases
phosphorylate their targets in situ to regulate chromatin
dynamics and transcription (28-32).

MATERIALS AND METHODS
96-well microplates

Reactin-Bind™ Protein A (Pierce cat. no. 15132) and
Polystyrene High Binding Capacity 96-well microplates
(Corning cat. no. 9018) were used.

Reagents

Chelex 100 (Bio-Rad, cat. no. 142-1253), Protein A
(Sigma, cat. no. P7837), Proteinase K (Invitrogen, cat.
no. 25530-015), Protein A—Sepharose (Amersham, cat. no.
17-5280-01), Formaldehyde (J.T. Baker, cat. no. 2106-02),
BSA (Sigma cat. No. A9647), beta-Glycerol phosphate
diSodium salt hydrate (Sigma cat. no. G-6251), Sodium
molybdate dihydrate (Sigma cat. no. S-6646), Sodium
fluoride (Sigma cat. no. S-1504), Sodium orthovanadate
(Sigma cat. no. S-6508), p-nitrophenyl phosphate diTris
salt (Calbiochem cat. no. 487655), PMSF (Sigma, cat. no.
P-7626), Leupeptin (Sigma, cat. no. L-2884), SYBR Green
PCR Master Mix (Quantace, 2xSensiMix, cat. no. QT6T3)
and Salmon sperm DNA [Sigma, cat. no. D1626] were the
reagents used.

Equipment

ChIP: Misonix Sonicator 3000 with micro tip (Misonix,
cat. no. S3000); Ultrasonic bath (Branson, cat. no. B3510-
MT CPN-952-316); Heat blocks (Analog Heat Block
VWR  Scientific 13259032, and Isotemp 125, Fisher
Scientific); Eppendorf Repeater Pipette model 4780.

PCR: Quantitative PCR ABI 7900HT system, ABI
Biotechnology; MixMate (Eppendorf).

Buffers

PBS: 137mM NaCl, 10mM Sodium phosphate, 2.7 mM
KCl, pH 7.4; TE: 10mM Tris, 1mM EDTA, pH 7.5;
Immunoprecipitation (IP) buffer: 150 mM NaCl, 50 mM
Tris—-HCI (pH 7.5), 5mM EDTA, NP-40 (0.5% vol/vol),
Triton X-100 (1.0% vol/vol); Blocking buffer: 5% BSA,
100 pg/ml sheared salmon sperm DNA in IP buffer;
Elution buffer: 25mM Tris base, 1 mM EDTA, (pH 9.8),
200 pg/ml proteinase K. A stock solution of 500 ml of Tris
base-EDTA buffer is prepared at a time and stored at
room temperature for at least four months. A 20 mg/ml
proteinase K stock solution in water is stored at —20°C.

Cells

Rat mesangial cells were grown in 150 mm plastic cell
culture dishes in RPMI 1640 media supplemented with
10% FBS, 2mM glutamine, penicillin (100 units/ml),
streptomycin  (0.01%) and humidified with 5/95%
COy/air gas mixture (33).
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Preparation of sheared chromatin and tube-based Fast
ChIP assay

Preparation was done as described previously using IP
buffer containing protease and phosphatase inhibitors
(20,34). Sheared chromatin of 1ml was prepared from
1-2 x 107 mesangial cells and stored in 50ul aliquots
(=70°C) to avoid repeated thawing/freezing.

Matrix ChIP assay using polystyrene plates coated with
protein A

All washes were done using needle connected to vacuum
pump and Eppendorf Repeater Pipette. Polystyrene plates
washed once with 200 ul PBS/well were incubated over-
night with 0.2 pug Protein A in 100 ul PBS/well. After a
wash (200 pl PBS/well) well walls were blocked with 200 ul
blocking buffer (15-60 min, RT). Wells were cleared and
then incubated with antibodies in 100 pl blocking buffer/
well (60min, RT). Wells were cleared and chromatin
samples (2.0-5.0 pul chromatin prep/100 pl blocking buffer)
were added to wells (100 pl/well) and plates were floated in
ultrasonic water bath (60 min, 4°C) to accelerate protein—
antibody binding (20,34,35). Well walls were washed three
times with 200 pl IP buffer and once with 200 ul TE buffer.
Wells were incubated with 100 pl elution buffer (15 min at
55°C, followed by 15min at 95°C). DNA samples were
stored (-20°C) in the same Matrix ChIP plates for
repeated use.

Real-time PCR

The reaction mixture contained 2.5ul 2X SYBR Green
PCR master mix (SensiMix, Quantace), 2.3ul DNA
template and 0.2 pl primers (10 uM) in Spl final volume
in 384-Well Optical Reaction Plate (Applied Biosystems).
Amplification (three steps, 40 cycles), data acquisition and
analysis were carried out using the 7900HT Real Time
PCR system and SDS Enterprise Database (Applied
Biosystems). All PCR reactions were run in triplicates.

Calculations

ChIP DNA data were expressed as a fraction of input
DNA calculated using the following method. PCR
calibration curves were generated for each primer pair
from a dilution series of total cellular DNA. The PCR-
primer efficiency curve were fit to the In (Standard DNA
dilution) versus CT points measured for the DNA samples
using an R-squared best fit. DNA concentration values for
each ChIP and input DNA samples were calculated from
their respective average PCR CT values using the formula

b x emxAngT
[DNAJ = Dilution !
where b and m are the curve fit parameters from the
primer calibration curve that is generated for each PCR
experiment. Dilution is the cumulative dilution of ChIP
DNA compared to input DNA sample. Final results are
expressed as

[ChIP DNA] _ [DNAgmpie] — [DNAmock]

= 2
[Input DNA] [DNA;pul
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where DNA concentrations were computed from
Equation (1), DNAg,mpie, ChIP DNA sample; DNA,ocks
IgG mock IP control and DNA;,,,; input DNA used
in ChIP.

RESULTS AND DISCUSSION

Fast ChIP is done in test tubes with antibody immobilized
to protein A-agarose beads that require centrifugation and
use of Chelex-100 resin to purify the DNA (20). Our goal
was to develop a simple microplate-based ChIP method
that would not only increase the throughput but would
also be suitable for automation. The adaptation of the
Fast ChIP assay to a 96-well microplate format required
several key modifications: (i) Purification of PCR-ready
DNA without Chelex-100 resin. (ii) Immobilization of
antibodies to well walls. (iii) Minimizing non-specific
adsorption to the well surface.

DNA purification

Isolation of PCR-ready DNA from immunoprecipitated
chromatin requires not only elution of the DNA from the
protein A agarose beads but also reversal of the cross-
links between DNA and proteins. In the Fast ChIP assay
we introduced Chelex-100 resin to extract DNA (20). For
the plate-based ChIP, we chose to develop a simpler
method for the isolation of PCR-ready DNA from the
surface-bound antibody by using a buffer that reverses
cross-links and facilitates DNA extraction.

The Chelex-100 resin is a styrene-divinylbenzene copo-
lymer containing paired iminodiacetate groups which
chelate polyvalent metal ions. The Chelex suspension
has pH ~10. We reasoned that a high pH buffer and
EDTA could be substituted for the Chelex beads. The test-
tube format with chromatin-loaded Protein A beads was
used to test buffers with a range of pH values. The Chelex-
based Fast ChIP protocol was used as a positive control
(20). Briefly, test tubes with chromatin-loaded Protein A
beads (anti-H3K4m3 antibody) suspended in elution
buffer were first incubated with proteinase K at 55°C for
15min and then at 95°C for another 10 min. After centri-
fugation of the tubes, supernatant was collected and used
in real-time PCR to compare the DNA recoveries to the
Chelex-based Fast ChIP protocol. The results demon-
strated that 25mM Tris base, ImM EDTA (pH?9.8)
performs comparably to Chelex (Figure 1), Therefore,
we used this buffer in the following experiments.

Antibody immobilization

The 96-well microplate format requires the protein
capturing antibodies to be attached to the surface of the
microplate well wall. Antibody-coated microplates
have been widely used in multi-well enzyme-sensitive
immunosorbent assays (ELISA) (36) and in standard
co-immunoprecipitations (37). For immobilizing antibo-
dies, the surface needs to be modified to maintain the
antibodies in an active state and in the correct orientation.
It is known that specific orientation of antibodies increases
the binding capacity of target molecules up to 10-fold
compared to surfaces with random-oriented antibodies (38).
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Figure 1. Extraction of PCR-ready DNA from immunoprecipitated
chromatin with Tris-base/EDTA buffer. All steps were done in 1.5ml
tubes. Sheared chromatin from MC (0.5ml) was incubated with anti-
H3K4m3 antibody in an ultrasonic water bath (15min, 4°C). After
centrifugation (I0min at 17000g) the supernatant was transferred to
fresh tubes containing Protein A agarose beads. The slurry was rotated
for 45min (4°C) and then the beads were washed with IP buffer (20,34).
Equal aliquots of beads were first incubated with proteinase K
(200 pg/ml) in either 25mM Tris, 1mM EDTA (pH9.8, 8.6, 7.6 or
3.5 titrated with HCI) or 10% Chelex/H,O for 15min at 55°C and then
at 95°C for 15min. After centrifugation the supernatant was collected
and analyzed by qPCR using primers to either 5-flanking intergenic
(-5kb to egr-1 transcription start site) or transcribed region (exon 1 of
egr-1). PCR results are shown as percent of the ChIP DNA extracted
with Chelex (mean+SD, n=3).

Several antibody immobilization methods have been
introduced to achieve this goal (38—42). Surface coating
with Protein A, G or A/G mixture is one way to increase
antibody-binding capacity of a surface (43,44).

To test this strategy, we utilized commercially available
polystyrene Protein A coated 96-well microplates (Pierce).
The Fast ChIP done in tubes in parallel was used as
a control. Results of these experiments done with
H3K4m3 antibody demonstrated that the performance
of well-attached antibodies was comparable to Fast
ChIP. However, the unspecific background signal (Mock
IP done with non-immune IgGs) was higher in Matrix
ChIP. We found that using blocking buffer that
contains BSA and sheared salmon sperm DNA reduced
the non-specific binding to polystyrene well walls
(Figure 2). The reason for higher background with high
concentration of salmon sperm DNA is not clear, it is
possible that excess of DNA causes aggregation of
chromatin to the well walls.

Although pre-coated Protein A microplates are
commercially available they are costly. We found that
passive adsorption of Protein A to the Corning
Polystyrene High Bind Microplate performed well in
the ChIP assay. Thus, Protein A-coated ChIP microplates
can be ecasily fabricated in the laboratory (‘Methods’
section).
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Figure 2. Reducing non-specific chromatin binding to well walls with
sheared salmon DNA (ssDNA). Polystyrene well walls were pre-
blocked with 5%BSA and either 0, 50, 100, 200, 400 pg/ml of ssDNA.
After washing with IP/TE buffers DNA was eluted from the walls and
assayed in real-time PCR using primers to egr-/ exonl. PCR results are
shown as percent of chromatin DNA bound to walls without blocking
buffer (mean+SD, n = 3).

Protein A coated
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Blocking well walls
15-60 min, 25°C
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Figure 3. Diagram of the Matrix ChIP protocol. Detailed protocol is
described in ‘Methods’ Section. Starting with sheared chromatin and
Protein A coated plates 96 ChIPs can be completed in 4-5h.

The Matrix ChIP protocol for Protein A coated
polystyrene plates is summarized in Figure 3. The entire
ChIP procedure is done in the same microplate well.
The PCR-ready ChIP samples are stored in the same
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plates (—20°C) for repeated use. Starting with sheared
chromatin, 96 PCR-ready ChIP DNA samples can be
generated in 4-5h.

Verification of Matrix ChIP assay

To validate the Matrix ChIP method, we profiled
several inducible changes along the phorbol 12-myristate
13-acetate (PMA)-inducible egr-1 (27) locus in rat
mesangial cells using the Matrix ChIP method and
compared it to the tube-based Fast ChIP method (20,34).
We used both the commercially available (Pierce) and in-
lab made Protein A-coated microplates. The following
affinity-purified antibodies were used: to RNA polymerase
I1, Pol 11 (45), histone H3 (15) hnRNP K protein (46) and
the tyrosine kinase Fyn (26) as well as whole antiserum to
histone H3 dimethylated at lysine 4, H3K4m2 (Figure 4).
The detailed information about antibodies that were used
in this article is included in Table S1. The list includes
mouse monoclonal and rabbit polyclonal that either
affinity, or Protein A- and Protein G-purified antibodies
as well as whole antisera.

The Pol II, H3, H3K4m2 and hnRNP K (46) densities
at the egr-1 gene measured with the Matrix and Fast ChIP
assays were overall similar. While transient binding of Fyn
to the egr-1 gene was observed with Matrix ChIP, the level
of recruitment detected with Fast ChIP was much lower.
The reproducibility of the results obtained with the Matrix
ChIP method is illustrated by similar kinetics of changes
of Pol II, hnRNP K and Fyn at the egr-1 locus observed
in two independent experiments (Figure 4). Also, this
comparison shows that the in-lab coated and the
commercially available plates performed equally well.

Matrix ChIP enables tracking of kinase binding in parallel
with many chromatin and transcriptional events along the
transcribed gene locus

Extracellular stimuli activate signaling cascades that result
in changes of gene expression, cell division and other
processes. Protein kinase-mediated phosphorylation plays
a major role in signal transmission (47). In many cases
the steps required for signaling have been defined.
Compartmentalization of protein kinases has been recog-
nized as an important mode to control events at discrete
intracellular locations (48-52). However, it was not until
very recently that inducible kinases were discovered to be
directly recruited to genomic sites (28-32). Most of these
studies were done in yeast and looked at a single kinase at
a time. MAPK, PKC and tyrosine kinase cascades are the
major pathways that signal inducible genomic events in
response to mitogens and other stimuli (31,32). We used a
panel of MAPK, PKC and tyrosine anti-kinase antibodies
in Matrix ChIP to identify which kinases target the
mitogen-inducible egr-/ locus. Among 18 anti-kinase
antibodies tested, this search identified strong recruitment
of active phospho Erkl/2 and PKCd as well as Fyn. We
used Matrix ChIP and 20 different antibodies to correlate
recruitment of these kinases with chromatin and tran-
scription events (Figures 5 and S1). Pol II density is
highest at the transcription start sites (17, 53, 54). Parallel
profiling revealed that the kinetics of Erk1/2, PKCd and



PAGE 50F 9

Nucleic Acids Research, 2008, Vol. 36, No.3 el7

- - @ - -FastChIP
—l— Matrix ChIP plate 1
~———fh—— Matrix ChlIP plate 2

Egr-1

—-5kb

0.06 1
0.04 1

0.02 1

0.00 #e=——=—4 T l.

Pol Il / Input

Exon1

Pol Il (N20)

0.02 1

0.01 1

K/ Input

0.00 * - —y

hnRNP K

0.02

0.01

Fyn / Input

0.00 B=——# - : l

Fyn (FYN3)

0.10 1

0.05

H3 / Input

H3

0.30

0.20

0.10

H3K4mz2 / Input

0.00 +

H3K4m2

0 60 120 180 240

PMA (min)

60 120 180 240

Figure 4. Validation of Matrix ChIP assay. Sheared chromatin was prepared from PMA-treated rat mesangial cells. Matrix ChIP method using
either in-lab (Plate 1) or commercial (Pierce) (Plate 2) Protein A-coated polystyrene plates was compared to tube-based Fast ChIP assay (20). The
following rabbit polyclonal antibodies were used; anti-Pol II (N20), anti-hnRNP K, anti-Fyn (FYN3), anti-histone H3 and whole antiserum,
anti-H3K4m?2 (Table S1). Real-time PCR was done using primers to either egr-/ exon 1 (+232bp from transcription start site, TSS) or 5 flanking
site (-5344bp from TSS), -5kb. Non-immune IgG fraction was used as a mock IP control. ChIP results are calculated as fraction of input DNA

(see ‘Methods’ Section).

Fyn binding are similar to each other and resemble the
spatiotemporal patterns of Pol II, hnRNP K (46) and
HP1y (55) recruitment. Higher spatiotemporal resolution
is needed to determine if these profiles are identical.
HnRNP K acts as a docking platform at sites of nucleic-
acids-directed processes (46,56,57). HnRNP K may bind

pre-mRNA and/or Pol II. Since hnRNP K interacts with
Erk1/2, PKC3 and Fyn (46) it may serve to recruit and/or
regulate activity of these enzymes along the egr-/ locus.
Several chromatin factors have recently been shown to be
associated with transcription including HP1y (55). It has
been suggested that HP1 proteins may provide a dynamic
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Figure 5. Time-course pattern of Erk 1/2, PKCd and Fyn recruitment profiled in parallel with several chromatin and transcriptional events along the
PMA-induced egr-1 gene. Matrix ChIP analysis of sheared chromatin from PMA-treated cells was done using in-lab coated Protein A polystyrene
plates and 20 antibodies to different proteins. A non-immune IgG fraction was used as a mock IP control. The results of following ChIPs are shown.
Top-to-bottom (all antibodies and amounts used are listed in Table S1), Pol II, RNA polymerase II (4H8), PKCS (anti-phosphoSer643), Erkl/2
(anti-phosphoThr183-phosphoTyr185), Fyn, HP-1y, H3K4m2, H3K4m3, H3, H3K27m3, H3K36m3, H4-Ac-K5,8,12,16 and Serum Responsive
Factor, SRF. Real-time PCR was done using primers to the regions shown in the diagram of the egr-/ gene (the two exons are shown as boxes). The
ChIP results corrected for background (IgG mock IP) are expressed as fraction of input DNA. The graphs represent mean = SD of two experiments.
The full data set (20 different antibodies) is shown in Figure SI.
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platform for recruitment of regulatory proteins (55,58).
Thus, HP-1y may serve to transmit kinase signals to
chromatin and/or to recruit these enzymes. It is also
possible that recruited kinases are activated in situ and
transmit signals downstream by phosphorylating compo-
nents of chromatin components and transcriptional
machinery.

The constitutive and inducible profiles of chromatin
factors and histone marks observed at the egr-1 promoter
and the transcribed region (Figures 5 and S1) are in good
agreement with the general patterns seen along transcribed
genes (17,53,54). For example, lower nucleosome density
in regions flanking transcription start sites is a common
feature of genes (14,53). We found that total histone H3
levels and several of its marks were lowest at the promoter
of transcribed egr-1 gene (Figure 5). Acetylation of lysines
eliminates their positive charge which, when it occurs on
certain histone tails, has been shown to have a negative
effect on the higher order structure of chromatin,
essentially making it more open (15). In agreement with
previous reports we found inducible changes in histone H3
and H4 acetylation (59). Di- and trimethylation of histone
H3 lysine 4, H3K4m2/m3, are associated with actively
transcribed genes (60-62). Consistent with previous
reports, H3K4m2 and m3 marks were enriched in the
egr-1 transcribed region and there was a decrease with
induction. As there was no change in total H3 levels this
decrease could reflect demethylation or histone exchange
(2,63). Trimethylation of histone H3 lysine 36, H3K36m3,
is a mark associated with transcription elongation (15,64).
H3K36m3 levels were lowest at the promoter and highest
in the transcribed region, this pattern of H3K36 methyla-
tion, is a common feature of transcribed genes (18,54).
Trimethylation of lysine 27 of histone H3, H3K27m3, is a
marker of silent genes (60). In agreement with previous
studies on H3K27 methylation (54,65,66), the level of
H3K27m3 was significantly higher within the 5 flanking
region (Figure S1).

Serum responsive factor (SRF) binds several elements
within the egr-1 promoter (67-69). Matrix ChIP revealed
SRF presence in the promoter region in uninduced cells
and following induction its levels decreased (Figure 5).
The significance of the decrease remains to be determined.

The coupled chromatin, transcription and RNA proces-
sing and other genome-directed events have emerged as
some of the most intensively studied fields of biology
today (15,16,18,70). Matrix ChIP introduces the much
needed high-throughput technology to effectively use the
large collection of antibody probes. With these advances,
the Matrix ChIP platform enables us for the first time to
follow hundreds of antigens including the less abundant
but critical factors such as kinases (Figures 5 and SI).
Thus, the Matrix ChIP platform greatly increases the
potential to study the complexity of the inducible and
dynamic chromatin, transcription and RNA-processing
events. Studies of this type also promise to facilitate
discovery of epigenetic biomarkers of diseases.

In summary, we have developed a microplate-based
ChIP technology that has several important advantages
over the test-tube-based assay. (i) The entire procedure is
done on the same plate without sample transfers, which
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simplifies the procedure, increases sample to sample
measurement consistency, reduces the time of the assay
and reduces sample loss. (ii) Increased throughput allows
for efficient sample processing so that one can run 96 or
more ChIPs followed by PCR analysis in one day. (iii)
Microplate Matrix ChIP could be automated for studies
to follow complex chromatin and transcriptional events or
high volume screening applications.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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