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� A novel variable-order nonlinear
model of dengue virus is analyzed as
an optimal control problem.

� The bang-bang control is suggested to
minimize the dose and duration of
the intervention for model.

� Necessary conditions for the control
problem are derived.

� Two numerical methods are
constructed to solve the proposed
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Introduction: Dengue and Malaria are the most important mosquito-borne viral diseases affecting
humans. Fever is transmitted between human hosts by infected female aedes mosquitoes. The modeling
study of viral infections is very useful to show how the virus replicates in an infected individual and how
the human antibody response acts to control that replication, which antibody playing a key role in con-
trolling infection.
Objectives: Optimal control of a novel variable-order nonlinear model of dengue virus is studied in the
present work. Bang-bang control is suggested to minimize the viral infection as well as quick clearance
of the virus from the host. Necessary conditions for the control problem are given. The variable-order
derivatives are given in the sense of Caputo. Moreover, the parameters of the proposed model are depen-
dent on the same variable-order fractional power. Two numerical schemes are constructed for solving the
optimality systems. Comparative studies and numerical simulations are implemented. The variable-order
fractional derivative can be describe the effects of long variable memory of time dependent systems than
the integer order and fractional order derivatives.
Methods: Both the nonstandard generalized fourth order Runge-Kutta and the nonstandard generalized
Euler methods are presented.
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Results: We have successfully applied a kind of Pontryagin’s maximum principle with bang-bang control
and were able to reduce the viraemia level by adding the dose of DI particles. The nonstandard general-
ized fourth order Runge-Kutta method has the best results than nonstandard generalized Euler method.
Conclusion: The combination of the variable-order fractional derivative and bang-bang control in the
Dengue mathematical model improves the dynamics of the model. The nonstandard generalized Euler
method and the nonstandard generalized fourth order Runge-Kutta method can be used to study the vari-
able order fractional optimal control problem simply.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dengue and Malaria are the most important mosquito-borne
viral diseases affecting humans. Fever is transmitted between
human hosts by infected female aedes mosquitoes. The modeling
study of viral infections is very useful to show how replication of
virus in an infected cases and how acts the human antibody. The
model presented in this paper confirmed the dynamics of defective
interfering particles (DI) with virus. In [1] the authors give quanti-
tative insight into the relationship between antibody levels and the
efficiency of viral clearance. In [2], the authors keep the rate of
infection and rate of antibody-mediated virus neutralisation con-
stant for each serotype and included the immune cell-mediated
antibody production, which is triggered by both the free virus
and free defective particles. In [4], short fragments of dengue virus
(DENV) RNA containing only key regulatory elements at the 3’ and
5’ ends of the genome were recovered from the sera of patients
infected with any of the four DENV serotypes. Identical RNA frag-
ments were detected in the supernatant from cultures of Aedes
mosquito cells that were infected by the addition of sera from den-
gue patients, suggesting that the sub-genomic RNA might be trans-
mitted between human and mosquito hosts in defective interfering
(DI) viral particles. The authors in [5] conclude that DI particles
may be important determinants of the course of acute, self-
limiting viral infections and of porsistent, slowly progressing viral
diseases. In addition, many host reactions may alter the production
of DI particles and thus influence tho outcon1e of viral infections.

Recently, optimal control of diseases treatment has become
popular in biology. In optimal control problems, it is sometimes
the case that a control is restricted to be between a lower and an
upper bound. If the optimal control switches from one extreme
to the other (i.e., is strictly never in between the bounds), then that
control is referred to be a bang-bang solution. Bang-bang controls
frequently arise in minimum-time problems. Bang-bang solutions
also arise when the Hamiltonian is linear in the control variable;
application of Pontryagin’s minimum or maximum principle will
then lead to pushing the control to its upper or lower bound
depending on the sign of the coefficient of u in the Hamiltonian.
In order to find DI particles minimum dose, we used bang-bang
control, that should be delivered to minimize viraemia duration
and height, for more details on advantage of bang-bang control
see ([6,7]).

Since integer order derivative is local in nature so it does not
contain the complete memory and hence it does not describe the
physical behavior of the model. To overcome this challenge, we
use the fractional derivative. It is well known that fractional
derivative is non-local in nature and due to this characteristic, it
contains the whole memory and physical nature of the model.
Fractional order models are used to determine the real world prob-
lems with a strategic solution. There are many mathematicians
articles in this field, see for example ([21–24]).

On the other side, it is known that variable-order fractional
derivative (VOFD) can be describe the effects of long variable mem-
ory of time dependent systems, but the integer order derivative
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can be used to characterize the short memory. Gómez-Aguilar et.
al., in [8] studied the advantage of using variable order in the frac-
tional ordinary differential equations (FODE) and proposed a new
generalize numerical schemes for simulating variable-order frac-
tional FODE operators with power-law, exponential-law and Mit-
tag–Leffler kernel. Also, Chen et al., in [9] presented an
interesting review on variable-order fractional differential equa-
tions. Also, Sweilam et al., introduced some numerical studies for
variable-order fractional differential equations (VOFDEs), for more
details see [10–15]. Recently, Sweilam and AL-Mekhlafi introduced
some numerical studies for variable-order optimal control (VOC)
models, for more details see [16–18].

The aim of this work is to extend the model of dengue virus
which given in [2] to variable-order model with modified parame-
ters. The bang-bang control is suggested to minimize the viral
infection as well as quick clearance of the virus from the host. Nec-
essary conditions for the control problem are given. The behavior
of the proposed model will be studied by four numerical methods;
the generalized Euler method (GEM), the generalized fourth-order
Runge–Kutta method (GRK4M), the nonstandard generalized Euler
method (NGEM) and the nonstandard generalized fourth-order
Runge–Kutta method (NGRK4M). Comparative studies are given.

The rest of this paper is structured as follows: Some mathemat-
ical tools of VOFD are given in ’Notations and Preliminaries’. The
proposed VOFD model with bang-bang control is introduced in
’Model Problem’. Numerical schemes for solving the optimality
system are given in ’Numerical Methods for VOC Model’. Compar-
ative studies and numerical simulations are presented in ’Numeri-
cal Simulations’. In ’Conclusions’, the conclusions are introduced.

Notations and preliminaries

In this section, basic definitions of VOF calculus used in this
paper are introduced [11]. Consider the following VOFDE:

C
0D

aðtÞ
t yðtÞ ¼ gðyðtÞ; tÞ; 0 < aðtÞ � 1; 0 < t 6 T; ð1Þ

yð0Þ ¼ yo.
Caputo’s variable-order fractional derivatives can be defined as

follows:
Let X ¼ f½a; b�;�1 < a < b < þ1;aðtÞ 2 Cg;0 < aðtÞ < 1, the

left–right hand side Caputo’s derivatives of order aðtÞ for a function
yðtÞ are defined respectively:

C
aD

aðtÞ
t yðtÞ ¼ R t

a
gnðsÞ

ðt�sÞ1þaðtÞ�n ds
h i

1
Cðn�aðtÞÞ ; t > a;

C
tD

aðtÞ
b yðtÞ ¼ R b

t
gnðsÞ

ðs�tÞ1þaðtÞ�n ds
h i

1
Cðn�aðtÞÞ ; t < b:

ð2Þ

For more details on VOFDE see ([11–18]).

Model problem

In the following, Dengue mathematical model which presented
in [2] will be developed. This is extended to variable-order frac-
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Table 2
All symbols in the system and their definition [2].

Symbols Definitions Values

Natural parameters (human hosting)
raðtÞ Intrinsic rate of host cell proliferation. 15:217aðtÞ

KaðtÞ Cellular carrying capacity of proliferation. ð3:505e7ÞaðtÞ
CU0 Uninfected level cells without illness. 1e8

Serotype-specific parameters

baðtÞ Number of V released per CV cells after
packaging.

758:045aðtÞ

eaðtÞ Antibody-mediated virus neutralisation. 16:225aðtÞ

caðtÞ Number of D released per CVDcells after
packaging.

38:259aðtÞ

kaðtÞ Rate of infection per virus. ð2:45e�7ÞaðtÞ
laðtÞ The rate mutation of V to D within host cells,

turning CV cells into CVD cells.
37:651aðtÞ

qaðtÞ Natural rate of clearance for D and V. 9:562aðtÞ

Parameters for patient-specific
raðtÞ Rate of loss of DI particles within host cells,

turning CU into CD cells.
ð5:836e�2ÞaðtÞ

daðtÞ Death rate of infected cells. ð2:426e�2ÞaðtÞ

gaðtÞ1
Triggered immune rate by D or V, see [2]. ð1:607e�2ÞaðtÞ

gaðtÞ2
Threshold parameter of the triggered immune
cells proliferation.

ð2e10�2ÞaðtÞ

paðtÞ
1

Rate of maturation of CV cells into CV� cells ð9:863e�2ÞaðtÞ

paðtÞ
2

Rate at each CV� cells produces V cells. ð68:503e�2ÞaðtÞ
uaðtÞ Rate at each CVD cells produces D cells. ð21:782e�2ÞaðtÞ
V0 Viraemia level on the day 0 of illness. ð3:6e5�2ÞaðtÞ
Z0 Immune level response without illness. ð5:645e�2�2ÞaðtÞ
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tional Dengue model with modified parameters, it is more general
model than the model given in [2]. The competitive dynamics of
the DI particles with virus is exhibited in the presence of the anti-
body response. Infected cells are categorized in two classes accord-
ing to their stages of infection: early and late. The early infected
cells ðCD and CV Þ are available for super-infection, but the late cells
ðCV� and CVDÞ are not because of the triggered interferon response
and alteration in cell membrane receptor dynamics [2]. We use
one control variable uðtÞ, the administration of excess DI particles
to the model to reduce the viral infection as well as quick clearance
of the virus from the host. Both the variables and parameters of
proposed model are given in Tables 1 and 2 respectively. The gen-
eral model is given as follows:

C
0D

aðtÞ
t CU ¼ raðtÞCUð1� N

KaðtÞ
Þ � kaðtÞðVðtÞ þ DðtÞÞCUðtÞ þ raðtÞCDðtÞ;

C
0D

aðtÞ
t CD ¼ kaðtÞðCUD� CDVÞ � raðtÞCD;

C
0D

aðtÞ
t CV ¼ kaðtÞðCUV � CVDÞ � ðpaðtÞ

1 þ laðtÞÞCV ;

C
0D

aðtÞ
t CV� ¼ paðtÞ

1 CV � daðtÞCV� ;

C
0D

aðtÞ
t CVD ¼ kaðtÞðCVDþ CDVÞ þ laðtÞCV � daðtÞCVD;

C
0D

aðtÞ
t V ¼ baðtÞpaðtÞ

2 CV� � qaðtÞV � eaðtÞZV ;
C
0D

aðtÞ
t D ¼ caðtÞuaðtÞCVD � qaðtÞD� eaðtÞZD;

C
0D

aðtÞ
t Z ¼ gaðtÞ1 Z V

gaðtÞ2 þV
þ gaðtÞ1 Z D

gaðtÞ2 þD
:

ð3Þ
Let:

NðtÞ ¼ CU þ CD þ CV þ CV� þ CVD:
Formulation of VOC bang-bang problem

In the following, we apply a kind of Pontryagin’s maximum
principle given in [3], to determine the necessary conditions for
optimal control dengue virus model. Consider the following objec-
tive functional [2]:

JðuÞ ¼ min
06u6ub

Z Tf

T0

1
2
ða V2ðtÞ þ b C2

V ðtÞÞ þ c uðtÞ
� �

dt; ð4Þ

subjected to the constraint of the following system:

C
0D

aðtÞ
t CU ¼ raðtÞCUð1� N

KaðtÞ
Þ � kaðtÞðV þ DÞCU þ raðtÞCD;

C
0D

aðtÞ
t CD ¼ kaðtÞðCUD� CDVÞ � raðtÞCD;

C
0D

aðtÞ
t CV ¼ kaðtÞðCUV � CVDÞ � ðpaðtÞ

1 þ laðtÞÞCV ;

C
0D

aðtÞ
t CV� ¼ paðtÞ

1 CV � daCV� ;

C
0D

aðtÞ
t CVD ¼ kaðtÞðCVDþ CDVÞ þ laðtÞCV � daðtÞCVD;

C
0D

aðtÞ
t V ¼ baðtÞpaðtÞ

2 CV� � qaðtÞV � eaðtÞZV ;
C
0D

aðtÞ
t D ¼ uðtÞ þ caðtÞuaðtÞCVD � qaðtÞD� eaðtÞZD;

C
0D

aðtÞ
t Z ¼ gaðtÞ1 Z V

gaðtÞ
2

þV
þ gaðtÞ1 Z D

gaðtÞ
2

þD
;

ð5Þ
Table 1
States of time for the model [2].

States Description

CU The uninfected target cells.
CD The infected cells by defective interfering (DI) particles only.
CV The infected cells due to only by virus.
CV� The virus infected.
CVD Cells infected by (DI) particles and virus.
V The dynamics of standard virus i.e viraemia level.
D The defective interfering (DI) particles.
Z The antibody response, for more details see [2].
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where the constants a; b and cstand for the weighting constants,
whereas T0 and Tf are the initial and final time respectively. Accord-
ing to ([16,17]) the Hamiltonian is given as follows:

HðCU ;CD;CV ;CV� ;CVD;V ;D; Z;u; kiÞ

¼ 1
2
ða V2ðtÞ þ b C2

V ðtÞÞ þ c uðtÞ þ
X8
i¼1

kiFi; ð6Þ

where, ki are the adjoint variables or co-state variables and Fi is the
right hand side of system (5) respectively, i ¼ 1; . . . ;8.

The necessary conditions can be obtained by extension the con-
ditions in [3] to variable order fractional as ([16–18]). These can be
derived from (4) and (6):

C
0D

aðtÞ
t kiðtÞ ¼ � @H

@gi
; gi ¼ fV ;D; Z;CU ;CD;CV ;CV� ;CVDg: ð7Þ

C
0D

aðtÞ
t CUðtÞ ¼ @H

@k1
; C

0D
aðtÞ
t CDðtÞ ¼ @H

@k2
;

C
0D

aðtÞ
t CV ðtÞ ¼ @H

@k3
; C

0D
aðtÞ
t CV� ðtÞ ¼ @H

@k4
;

C
0D

aðtÞ
t CVDðtÞ ¼ @H

@k5
; C

0D
aðtÞ
t IV ðtÞ ¼ @H

@k6
;

C
0D

aðtÞ
t IDðtÞ ¼ @H

@k7
; C

0D
aðtÞ
t IZðtÞ ¼ @H

@k8
;

ð8Þ

@H
@u

¼ wðtÞ;

where wðtÞ is a switching function, it can be negative or positive. A
singular control will occurre when wðtÞ ¼ 0. The particular time
points, when the changes in sign of the switching function are
defined as the switching points, where the duration between the
switches are called the bang times [2].

Theorem 1. If u� is the control variable with corresponding state
C�
U ;C

�
D;C

�
V ; C

�
V� ; C�

VD;V
�;D�; Z�; then there exist adjoint variables k�i ,

i ¼ 1; . . . ;8, satisfies the following:
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(i) adjoint equations:

C
tD

aðtÞ
tf

k�1ðtÞ ¼ �k�1ðraðtÞð1� N�

KaðtÞÞ � raðtÞ
C�
U

KaðtÞ � kaðtÞðV� þ D�ÞÞ

� k�2ðkaðtÞD�Þ � k�3k
aðtÞV�;

C
tD

aðtÞ
tf

k�2ðtÞ ¼ k�1ðraðtÞ
C�
U

KaðtÞ � raðtÞÞ þ k�2ðkaðtÞV� þ raðtÞÞ � k�5k
aðtÞV�;

C
tD

aðtÞ
tf

k�3ðtÞ ¼ �bC�
V þ k�1ðraðtÞ

C�
U

KaðtÞ þ k�3ðkaðtÞD� þ paðtÞ
1 þ laðtÞÞ

� k�4p
aðtÞ
1 � k�5ðkaðtÞD� þ laðtÞÞ;

C
tD

aðtÞ
tf

k�4ðtÞ ¼ k�1ðraðtÞ
C�
U

KaðtÞ � k�6ðbaðtÞpaðtÞ
2 Þ þ daðtÞk�4;

C
tD

aðtÞ
tf

k�5ðtÞ ¼ k�1ðraðtÞ
C�
U

KaðtÞÞ þ k�5d
aðtÞ � caðtÞuaðtÞk�7;

C
tD

aðtÞ
tf

k�6ðtÞ ¼ �aV� þ k�1k
aðtÞC�

U þ k�2k
aðtÞC�

D � k�3k
aðtÞC�

U � k�5k
aðtÞC�

D þ k�6ðqaðtÞ þ eaðtÞZ�Þ

�k�8
gaðtÞ1 Z�gaðtÞ2

ðgaðtÞ2 þV� Þ2
;

C
tD

aðtÞ
tf

k�7ðtÞ ¼ k�1k
aðtÞC�

U � k�2k
aðtÞC�

U þ k�3k
aðtÞC�

V � k�5k
aðtÞC�

V þ k�7ðqaðtÞ þ eaðtÞZ�Þ � k�8
gaðtÞ1 gaðtÞ2 Z�

ðgaðtÞ2 þD� Þ2
;

C
tD

aðtÞ
tf

k�8ðtÞ ¼ k�6eaðtÞV
� þ k�7eaðtÞD

� � k�8g
aðtÞ
1 ð gaðtÞ2 V�

gaðtÞ2 þV� þ
gaðtÞ2 D�

gaðtÞ2 þD�Þ;

ð10Þ

(ii) with transversality conditions:

k�i ðTf Þ ¼ 0, where i ¼ 1;2; . . . ;8.

(ii) optimality condition:

HðC�
U ;C

�
D;C

�
V ;C

�
V� ;C�

VD;V
�;D�; Z�;u; k�i Þ ¼

min
06u6ub

HðC�
U ;C

�
D;C

�
V ;C

�
V� ;C�

VD;V
�;D�; Z�; u�; k�i Þ: ð11Þ

The switching function

wðtÞ ¼ @H
@u

¼ c þ k�7: ð12Þ

So, u� is bang-bang, and

u� ¼ 0; wðtÞ < 0;

u� ¼ ub; wðtÞ > 0:

Proof. By (7), we get the system (10), where H�:

H� ¼ 1
2 ða V�2 þ b C�2

V Þ þ c u� þ k�1
C
0D

aðtÞ
t C�

U þ k�2
C
0D

aðtÞ
t C�

D þ k�3
C
0D

aðtÞ
t C�

V þ k�4
C
0D

aðtÞ
t C�

V�

þk�5
C
0D

aðtÞ
t C�

VD þ k�6
C
0D

aðtÞ
t V� þ k�7

C
0D

aðtÞ
t D� þ k�8

C
0D

aðtÞ
t Z�:

ð13Þ
Table 3
The reduction value of viraemia level VðtÞ when weighting constants a ¼ b ¼ c ¼ 1, upper

aðtÞ GEM NGEM
h ¼ 0:001 uðhÞ ¼ 0:025

aðtÞ ¼ 1 16% 22:1%
aðtÞ ¼ 1� 0:001t 22:4% 29:4%
aðtÞ ¼ 1� 0:003t 38:4% 47:9%
aðtÞ ¼ 0:98� 0:001t 38:5% 48%
aðtÞ ¼ 0:96� 0:001t 48:3% 69%
aðtÞ ¼ 1� 0:05e�t 16:5% 22:15%
aðtÞ ¼ cosð0:005tÞ 17:1% 23%

aðtÞ ¼ 1� 0:002sin2ðtÞ 16:8% 22:5%

aðtÞ ¼ 1� 0:1sin2ðtÞ 34:1% 43:2%
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The optimal control (12) can be obtained from the minimization
condition (11). Then, we obtain the following state system:

C
0D

aðtÞ
t C�

U ¼ raðtÞC�
Uð1� N�

KaðtÞ
Þ � kaðtÞðV� þ D�ÞC�

U þ raðtÞC�
D;

C
0D

aðtÞ
t C�

D ¼ kaðtÞðC�
UD

� � C�
DV

�Þ � raðtÞC�
D;

C
0D

aðtÞ
t C�

V ¼ kaðtÞðC�
UV

� � C�
VD

�Þ � ðpaðtÞ
1 þ laðtÞÞC�

V ;

C
0D

aðtÞ
t C�

V� ¼ paðtÞ
1 C�

V � daðtÞC�
V� ;

C
0D

aðtÞ
t C�

VD ¼ kaðtÞðC�
V D� þ C�

D V�Þ þ laðtÞC�
V � daðtÞC�

VD;

C
0D

aðtÞ
t V� ¼ baðtÞpaðtÞ

2 C�
V� � qaðtÞV� � eaðtÞZ�V�;

C
0D

aðtÞ
t D� ¼ u� þ caðtÞuaðtÞC�

VD � qaðtÞD� � eaðtÞZ�V�;
C
0D

aðtÞ
t Z� ¼ gaðtÞ1 Z� V�

gaðtÞ
2

þV� þ gaðtÞ1 Z� D�

gaðtÞ
2

þD� ;

ð14Þ

where,

N� ¼ C�
U þ C�

D þ C�
V þ C�

V� þ C�
VD:

Numerical Methods for VOC Model
In this section, two nonstandard methods are constructed to

simulate the optimality systems (10) and (14), for more details
on NSFDM, see [20].

NGEM
The Euler method had been extended to study the variable-

order fractional differential equations, for more details see [16]
and the references cited therein. Consider a set of mesh points
I ¼ fto; t1; . . . ; tng, such that to ¼ 0, and tn ¼ T , where the step size
h ¼ tn

n ; n ¼ 1;2; . . . ;N.
The approximate solution of Eq. (1) using NGEM can be rewrit-

ten as follows [16]:

ynþ1 ¼ yn þ
uðhÞaðtÞ

CðaðtÞ þ 1Þ gðyn; tnÞ: ð15Þ

Note that if aðtÞ ¼ 1, then the NGEM reduces to the classical non-
standard Euler’s method. The stability analysis of the fractional
NGEM is investigated in ([12,16]).

NGRK4M
In the following, we will constructed a novel method called

NGRK4M for solving the VOFDEs numerically. Using GRK4M [19],
to approximate the solution of the Eq. (1), where,
I ¼ fto; t1; . . . ; tng: to ¼ 0, and tn ¼ T , and h ¼ tn

n ; n ¼ 1;2; . . . ;N is
the step size. By substitute uðhÞ instead of h in GRK4M, where
uðhÞ is a continuous function in h, and satisfies the following
conditions:

uðhÞ ¼ hþ Oðh2Þ; 0 < u < 1; 8 h > 0:

Then NGRK4M general formula is given as follows:

ynþ1 ¼ yn þ
1
6
ðK1 þ 2K2 þ 2K3 þ K4Þ; ð16Þ
bounded ub ¼ 2� 109 and t 2 ½0;10�.

GRK4M NGRK4M
ð1� e�hÞ h ¼ 0:001 uðhÞ ¼ 0:025ð1� e�hÞ

16:4% 22%
42:9% 51:8%
77:6% 85:1%
77:7% 85:3%
93:6% 96:9%
16:4% 22%
20:13% 26:27%
17:9% 23:7%

71:3% 79:8%
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K1 ¼ jf ðtn; ynÞ;

K2 ¼ jf ðtn þ 1
2
j; yn þ

1
2
K1Þ;

K3 ¼ jf ðtn þ 1
2
j; yn þ

1
2
K2Þ;
Fig. 1. Behavior of VðtÞ;DðtÞ, and uðtÞ when a ¼ b ¼ c ¼ 1

Fig. 2. Behavior of VðtÞ;DðtÞ, and ZðtÞ when a ¼ b ¼
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K4 ¼ jf ðtn þ j; yn þ K3Þ;

where j ¼ uðhÞaðtÞ
CðaðtÞþ1Þ,

Stability of NGRK4M
In order to study the stability of NGRK4M. Consider for simplic-

ity the test problem:

C
0D

aðtÞ
t yðtÞ ¼ t yðtÞ; 0 < t 6 T; 0 < aðtÞ � 1; t < 0; ð17Þ
and aðtÞ ¼ 1� 0:001t using GRK4M and NGRK4M.

c ¼ 1 at different values of aðtÞ using NGRK4M.



Fig. 3. Behavior of VðtÞ;DðtÞ, and ZðtÞ when a ¼ b ¼ c ¼ 1 at aðtÞ ¼ 1� 0:001t with and without bang-bang optimal control.
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yð0Þ ¼ yo, we can rewrite Eq. (17) using NGRK4M as follows:

yðtjþ1Þ ¼ yðtjÞ þ 1
6

uðhÞaðtÞt
CðaðtÞ þ 1Þ yðtjÞ; j ¼ 0;1; . . . ; n� 1: ð18Þ

The stability analysis of NGRK4M is similar to the NGEM method
[12], when the terms are regrouped, the following equation is
achieved:

yðtjþ1Þ ¼ ð1þ 1
6

uðhÞaðtÞt
CðaðtÞ þ 1ÞÞ

j

y0; j ¼ 0;1; . . . ; n� 1: ð19Þ

Then the stability condition [16] is given as follows:

� 1 < ð1þ 1
6

uðhÞaðtÞt
CðaðtÞ þ 1ÞÞ < 1;

0 < uðhÞaðtÞ < 12jCðaðtÞ þ 1Þ
t

j:
Fig. 4. Behavior of VðtÞ and DðtÞ, when a ¼ b ¼ c ¼ 1 and aðtÞ ¼ 1� 0:001t with and
without bang-bang optimal control.
Numerical simulations

In the following, numerical simulations of the optimality
systems (10) and (14) are presented. NGEM and NGRK4M are
constructed to simulate these systems using the parameter values
in Table 2. So we consider the initials states [2]:
CUð0Þ ¼ 108 ; CDð0Þ ¼ 0; CV ð0Þ ¼ 100; CV� ð0Þ ¼ 0; CVDð0Þ ¼ 0; Dð0Þ ¼ 103 ;V0 ¼ 3:6� 105,
and Z0 ¼ 5:645. Table 3, shows the reduction values of viraemia
level VðtÞ when weighting constants a ¼ b ¼ c ¼ 1, upper bounded
ub ¼ 2� 109 and t 2 ½0;10� which is given as follows:

Reduction ¼ Vw:out � Vw

Vw:out
� 100%;

where, Vw:out is viraemia level without bang-bang control treatment
and Vw is viraemia level with bang-bang control treatment. Fig. 1,
illustrates the behavior of the approximate solutions using GRK4M
and NGRK4M. Fig. 2, shows the behavior of the state variables
VðtÞ; DðtÞ and ZðtÞ with bang-bang control treatment and different
value of aðtÞ using NGRK4M. Figs. 3 and 4, show the efficiency of
the control treatment based on the densities of uninfected cells, vir-
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aemia level, DI particles and antibody particles with and without
control. Fig. 3, shows that without treatments, the viraemia level
is increasing up to some time. But after treatment of adding DI par-
ticles, the concentration of antibody particles are increasing up to
some time and viraemia level is decreasing. Fig. 4, shows the effect
of control treatment on viraemia and defective particles. Figs. 5 and
6, show the effect of DI high dose which reduce the viraemia and
increase antibody particles in host body. Fig. 5, shows the behavior
of the state VðtÞ;DðtÞ; ZðtÞ and the optimal control uðtÞ at different
values of upper bounded when aðtÞ ¼ 1� 0:001t and
uðhÞ ¼ 0:025ð1� e�hÞ using NGRK4M. Fig. 6, shows the viraemia
controlled treatment and particles defective at different values of
upper bounded when aðtÞ ¼ 1� 0:001t and uðhÞ ¼ 0:025ð1� e�hÞ
using NGRK4M.
Conclusions

In the present work, optimal bang-bang control for a novel vari-
able order fractional model of dengue virus is presented. The com-
bination of variable order fractional derivative and optimal control
in the model improves the dynamics and increases complexity of
the model. We have successfully applied a kind of Pontryagin’s



Fig. 5. Optimization of the dose treatment when a ¼ b ¼ c ¼ 1 and aðtÞ ¼ 1� 0:001t at different values of upper bounded ub .

Fig. 6. Optimization of the dose treatment between VðtÞ and DðtÞ when
a ¼ b ¼ c ¼ 1 and aðtÞ ¼ 1� 0:001t at different values of upper bounded ub .
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maximum principle with bang-bang control to reduce the viraemia
level by adding the dose of DI particles. NGEM and NGRK4M are
used to study numerically the control problem. Mathematical anal-
ysis for NGEM and NGRK4M are introduced. Comparative studies
are done and we can conclude from Table 3 that NGRK4M is the
best than GEM, NGEM and GRK4M. Also from Fig. 2, we can con-
clude that the integer and fractional order models are special cases
from the variable order model. Moreover, NGRK4M and NGEM can
be used to study the variable order fractional optimal control prob-
lem simply.
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