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Intensity inhomogeneity (IIH) is often encountered in MR imaging, and a number of techniques have been devised to correct
this artifact. This paper attempts to review some of the recent developments in the mathematical modeling of IIH field. Low-
frequency models are widely used, but they tend to corrupt the low-frequency components of the tissue. Hypersurface models and
statistical models can be adaptive to the image and generally more stable, but they are also generally more complex and consume
more computer memory and CPU time. They are often formulated together with image segmentation within one framework
and the overall performance is highly dependent on the segmentation process. Beside these three popular models, this paper also
summarizes other techniques based on different principles. In addition, the issue of quantitative evaluation and comparative study
are discussed.
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1. INTRODUCTION

With the frequent application of the magnetic resonance
(MR) imaging method to clinical diagnosis, automatic anal-
ysis of the acquired images using techniques from computer
vision and pattern recognition has received considerable at-
tention. In developing such computer-aided diagnosis tools,
a commonly encountered problem is to correct the intensity
inhomogeneity (IIH) in MR images.

The IIH (also termed as the intensity nonuniformity, the
bias field, or the gain field in the literature) usually refers to
the slow, nonanatomic intensity variations of the same tissue
over the image domain. It can be due to imaging instrumen-
tation (such as radio-frequency nonuniformity, static field
inhomogeneity, etc.) or the patient movement [1–5]. This ar-
tifact is particularly severe in MR images captured by surface
coils. Two real MR images with severe IIH artifact are shown
in Figure 1(a), where one can see that the intensity varies sig-
nificantly for the pixels of the same tissue and the intensity
values overlap markedly between the pixels of the different
tissues. For comparison, the IIH corrected images by a sur-
face fitting technique [6] are given in Figure 1(b), from which
the improvement in image quality is clearly visible. The esti-
mated IIH maps are given in Figure 1(c).

Let x denote the measured intensity and x′ the true in-
tensity. Then the most popular model in describing the IIH
effect is

x = αx′ + ξ, (1)

where α denotes the IIH effect and ξ the noise. Notation of
bold letters refers to 2D or 3D MR data. Figure 2 displays the
widely used BrainWeb [7] simulated MR images, where on
Figure 2(a) is the original image, on Figure 2(b) the image
with IIH artifact, on Figure 2(c) the image with noise, and on
Figure 2(d) the image with both IIH artifact and noise. From
Figure 2, one can see the visual difference resulting from the
IIH artifact and the noise.

To simplify the computation, one often ignores the noise
and takes the logarithmic transform of intensity

yi = log xi = log x′i + logαi = y′i + βi, (2)

where xi is the intensity at voxel i (i = 1, . . . ,n). Here, to
avoid numerical problems, care should be taken for those
pixels/voxels with low intensities, which are usually excluded
from computation.

In general, the presence of IIH can significantly reduce
the accuracy of image segmentation and registration, hence
decreasing the reliability of subsequent quantitative mea-
surement. A number of techniques have been proposed to
deal with this issue. In general, if a map of the IIH in the im-
age domain (Figure 1(c) for instance) is known or can be es-
timated, then it is simple to correct the IIH by division in (1)
or subtraction in the log-domain (2). One can obtain the IIH
map from measurement in vivo [8–15], typically of a uni-
form phantom, [16–20], which often requires extra measure-
ment (and increases the scanning time) or needs additional
hardware which may not be readily available in some clinical
departments. Also there are theoretical modeling approaches
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Figure 1: Sample MR images with severe intensity inhomogeneity:
original images (a), corrected images (b), and estimated inhomo-
geneity maps (c).

[21–28] to approximate the IIH map. However, due to the
complexity that causes the IIH, it is difficult to model the
IIH under a variety of imaging conditions. In particular, the
object-induced IIH is hard to be accounted for by phantom
study or theoretical modeling.

More often, the IIH map is derived retrospectively from
the image data alone. A number of research efforts have been
put in this direction and many techniques have been pro-
posed. Popular mathematical models for IIH description can
be classified as follows:

(1) low-frequency model, which assumes the IIH to
constitute low-frequency components in frequency
domain and the IIH map can be recovered by lowpass
filtering;

(2) hypersurface model, which fits the IIH map by a
smooth functional, whose parameters are usually ob-
tained using regression;

(3) statistical model, which assumes the IIH to be a ran-
dom variable or a random process and the IIH map
can be derived through statistical estimation;

(a) (b)

(c) (d)

Figure 2: BrainWeb simulated images: original image (a), image
with 40% inhomogeneity (b), image with 9% noise (c), and image
with both artifacts (d).

(4) others, which are based on different principles, and
sometimes without explicit assumptions on the IIH
field.

With this in mind, the IIH correction methods are catego-
rized into lowpass filtering, statistical modeling, surface fit-
ting and others, which are detailed, respectively, in the fol-
lowing sections.

For an early literature review, interested readers are re-
ferred to [29], where an evaluation of the IIH correction ef-
fect for brain tumor segmentation is also reported. This pa-
per attempts to summarize the recent progress and focus will
be on mathematical modeling for IIH removal. Nevertheless,
it is by no means an exhaustive summary. For simplicity, the
description will be on single-channel data only.

2. LOWPASS FILTERING

Since the IIH is slowly varying in the image domain, its spec-
trum in frequency domain will be concentrated in the low-
frequency end. Therefore the IIH could be separated from
the true image by a lowpass filter, L. After lowpass filtering
in log-domain, one would approximately have

L{y} ≈ β. (3)

This procedure to correct the IIH is similar to the homomor-
phic filtering in digital image processing for the correction of
illumination inhomogeneity [30]. In fact, (1) easily reminds
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one of the illumination-reflectance model in optical imaging
[30], where the artifact from the illumination inhomogeneity
is often termed “shading” in the literature. Thus, techniques
for shading correction, such as the homomorphic filtering,
can be adopted for IIH removal and the converse also holds.
An investigation of applying IIH correction methods to deal
with the shading problem in microscopic images has been
carried out in [31].

Due to their simplicity and efficiency in implementation,
lowpass filtering methods have been widely used [30–43].
For a summary, interested readers are referred to [42]. Also in
[42], the impact of filter width on IIH correction was inves-
tigated and it was found that these methods should be used
with care to avoid intensity distortion and artificial artifacts
in the corrected images. Basically, for MR images, due to the
overlapping spectrum between the patient data and the IIH,
the effectiveness of most conventional lowpass filtering in re-
moving the IIH is generally quite limited.

Luo et al. [44] presented a technique to recover low-
frequency components which correspond to anatomic struc-
ture and are lost during the lowpass filtering. The method
expresses the signal with a linear combination of singularity
functions. The higher-frequency components are assumed to
be less affected by the IIH and are used to reconstruct the true
image, after which the ratio between the observed and esti-
mated image is used for IIH map approximation.

Recently, lowpass filtering methods have been extended
using the wavelet transform [45, 46] and were shown to be
effective in removing IIH in images acquired by surface coils
and phase array coils. Compared with usual lowpass filter-
ing methods, the multiresolution analysis allows one to se-
lect an optimal scale from which the approximate band in
the wavelet transform domain is used for estimating the IIH
map.

In [47], an improvement of a lowpass filtering method
[43] was presented. The method varies the filter kernel size to
minimize the segmentation error. The idea is generally sim-
ilar to [45, 46] in addressing IIH correction from the scale
space, but differs in the criterion to determine the optimal
scale.

3. SURFACE FITTING

Since the inhomogeneity field is slowly varying, it is natural
to approximate the IIH by a parametric smooth functional
[6, 48–58]. Very often, the parameter estimation is linked to
image segmentation. In this way, the two different problems,
IIH correction and image segmentation, are formulated in
one framework and solved simultaneously. Alternatively, the
parameter searching can be guided through the variation of
some global image feature in an iterative process. A typical
example is to minimize the entropy of gray-level histogram.

3.1. Segmentation

A large category of surface fitting approaches search the pa-
rameters by fitting with respect to a set of tissue points en-
coding information about the IIH. Let I = {1, . . . ,n} in-

dex the voxel coordinates of brain tissue. Then, in order to
determine the parameters of this functional, one needs to
find/segment a set of voxels SI ⊆ I which convey informa-
tion about the IIH map. Among these methods, the essential
difference lies in the identification of SI , and hence decoding
the IIH information from SI .

Dawant et al. [48] proposed to manually select SI such
that they belong to the same type of tissue. As a result,
the intensity variation among these voxels can largely be at-
tributed to IIH. However, expert supervision to select points
is time consuming and error prone, especially for volume
data. Wang et al. [59] has presented an automated method
for generating the reference points.

Meyer et al. [49] employed the LCJ method [60] to pre-
liminarily segment the image and then fit a smooth func-
tional over the segmented image. The LCJ segmentation
method assumes the image to be piecewise smooth and re-
quires that the different objects are well separated at the
boundaries, which is quite stringent in practice, particularly
when image quality is poor due to perturbation such as noise,
partial volume artifact, or IIH. Beside that, not every clinical
department can afford the computer cost to run the parallel
LCJ algorithm.

Liew and Yan [58] approximated the IIH as a stack of B-
spline surfaces with continuity constraints across slices. The
estimation of IIH interwines with a fuzzy c-means clustering
process. In [61, 62], segmentation that utilizes local scale as
homogeneous criteria has been presented and applied to IIH
correction.

When a statistical classifier, such as Gaussian classifier or
random field modeling, is exploited [50, 53, 63], the process
is similar to the parameter estimation in Section 4, where the
parameters are associated with a probability distribution and
can be estimated with common statistical estimation meth-
ods such as maximum-likelihood estimation.

3.2. Entropy minimization

As a frequently used criterion to characterize the intensity
distribution of an image, entropy has been employed to de-
sign algorithms for image restoration, thresholding, or clas-
sification [64, 65]. Also, it has been utilized to quantify the
image property with IIH present and guide the parameter
searching for IIH removal [54–57].

It is assumed that the intensity distribution of the orig-
inal image is multimodal, and the presence of IIH causes
the intensity overlapping between objects. Figure 3 shows the
histograms of brain tissue in a BrainWeb-simulated image
(Figure 3(a)) and the head image in Figure 1 (Figure 3(b)).
On Figure 3(a), the solid line is the histogram without
inhomogeneity, where the modes corresponding to differ-
ent tissues are very distinctive. With the presence of IIH
(dashed-dotted line), the valleys between different modes
are markedly flattened. For the head image with severe IIH,
the histogram (Figure 3(b)) is so flat that the modes corre-
sponding to the gray matter and the white matter are diffi-
cult to distinguish. The flattening of the histogram leads to
the increase in the entropy of the image, therefore, the IIH



4 International Journal of Biomedical Imaging

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

Without intensity inhomogeneity
With 40% intensity inhomogeneity

(a)

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

(b)

Figure 3: Histogram of brain tissue with the presence of intensity inhomogeneity. (a) Corresponds to a BrainWeb-simulated image: without
intensity inhomogeneity (solid line) and with 40% intensity inhomogeneity (dashed-dotted line), and on (b) the head image (Figure 1).

correction can be achieved through searching the parameter
space of the IIH model such that the entropy of the image is
reduced. It should be pointed out that direct minimization
on the entropy would lead to the null field [55, 66]. To avoid
this pitfall, constraints over the solution space are necessary.
Mangin [55] constrained the solution to minimize the dis-
tance between the mean values of the restored and the orig-
inal image. In [57], the restored image was constrained to
have the same mean value as the original one.

Evidently, other quantities relevant to image features,
variance for example, can also be applicable in a similar fash-
ion. Again, constraints upon the solution space are necessary.

4. STATISTICAL MODELING

The statistical methods [67–71] may assume that the IIH fol-
lows a distribution, the Gaussian distribution for example,
or model the IIH as a random process, such as the Markov
random field.

4.1. Bayesian framework

The Bayes’ rule has frequently been employed to estimate the
IIH map when the IIH is modeled by a distribution. Let β be
a random vector (β1, . . . ,βn) with probability density p(β).
To estimate β, one can maximize the conditional probability
of β given y (the log-transform of x) as follows:

̂β = max
β

p
(

β | y
)

. (4)

This is called the maximum a posterior (MAP) estimate and,
by the Bayes rule, is equivalent to

̂β = max
β

p
(

y | β)p(β). (5)

Wells et al. [67] used the Gaussian distribution to model
the entire log-transformed bias field and the observed inten-
sity at voxel i:

p(β) = Gψβ(β), (6)

p
(

yi | Γi,βi
) = GψΓi

(

yi − μ
(

Γi
)− βi

)

, (7)

where Γi is the tissue class at voxel i with mean value μ(Γi),
and

Gψx (x) = (2π)−n/2
∣

∣ψx
∣

∣

−1/2
exp

(

− 1
2

xTψ−1
x x

)

, (8)

with ψx as the covariance matrix. By assuming the statisti-
cal independence of voxel intensities and from (7), one can
derive

p
(

y | β) =
∏

i

p
(

yi | βi
)

=
∏

i

∑

Γi

p
(

yi | Γi,βi
)

p
(

Γi
)

.
(9)

When the image data is not polluted by IIH, the above
method is simply the tissue classification using a mixture
Gaussian model. Hence, this method essentially interleaves
the IIH correction with a Gaussian classifier. Guillemaud and
Brady [68] observed that the effect of IIH correction by Wells
et al. algorithm is substantially affected by the Gaussian clas-
sifier. In real images, it is very possible for the histogram to
deviate from the mixture Gaussian distribution. A modifi-
cation was then proposed by introducing a tissue class Γother

with a non-Gaussian distribution

p
(

yi | βi
) =

∑

Γ j

p
(

yi | Γ j
)

p
(

Γ j
)

+ λp
(

Γother
)

. (10)
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With this modification, the IIH is only estimated with respect
to the Gaussian classes. Including the non-Gaussian compo-
nent makes the Gaussian classifier less influenced by possible
outliers arising in images.

4.2. Spatial modeling

In the method by Wells et al. the IIH correction has not ex-
plicitly considered the context of IIH map. Since the IIH field
is slowly varying in the image domain, the values of the IIH
map in neighboring pixels/voxels would be close. When this
spatial relation is taken into account in the IIH modeling, one
would likely arrive at a smoother approximation of the IIH
map. A useful tool for spatial modeling is the Markov ran-
dom field (MRF), which is first employed by Geman and Ge-
man [72] for image segmentation. Held et al. [69] have em-
ployed the MRF to model IIH. According to the Hamersly-
Clifford theorem [73], the prior probability p(y) is given by
the Gibbs distribution

p(y) ∝ exp
{−U(y)

}

(11)

with the Gibbs energy

U(y) = α
∑

〈i, j〉

(

yi − yj
)2

+ β
∑

i

y2
i , (12)

where 〈i, j〉 sums over every voxel i and its neighbours j.

4.3. The N3 method

Different from most IIH correction method which involves
a classification step, Sled et al. [74] proposed a nonparamet-
ric nonuniform intensity normalization (N3) method which
searches for the IIH field to maximize the frequency content
of the image intensity distribution. The method simplified
the problem in log-domain as a deconvolution problem by
realizing that if v1 and v2 are two independent random vari-
ables with distributions V1 and V2, respectively, then the dis-
tribution of their sum is the convolution of V1 and V2 [75].
To constrain the solution space, the IIH field is modeled as
a Gaussian distribution with small variance. Code for this
method is publicly available.1

5. OTHER APPROACHES

5.1. Comparison between local and global statistics

There are efforts [76, 77] to estimate the IIH by comparing
a local statistic with the global one. The two statistics are as-
sumed to characterize the same population. These methods
essentially relate the IIH correction to tissue segmentation,
and the implicit assumptions are (1) the constant intensity

1 http://www.bic.mni.mcgill.ca/software/N3

for a tissue and (2) that the intensity variation within a tissue
is solely due to IIH. Not surprisingly, these methods are sen-
sitive to the estimation of tissue statistics, which is nontrivial
in practice.

When GM and WM are combined as one class and the
local statistic is estimated from a sample in a local region as
done in [76, 77], the method can be regarded as a generalized
white matter method by Dawant et al. [48], where the refer-
ence tissue is the combination of GM and WM. Also, it can be
taken as a lowpass filtering estimation. Although it is usually
much easier to identify GM and WM together than to iden-
tify WM alone, a potential problem is that the local sample
could fail to adequately characterize the feature of the com-
bined tissue class even though there is no artifact like IIH.

A possible solution is to carry out more detail tissue clas-
sification in each local region. For example, the technique
proposed in [78, 79]2 estimated the global tissue mean val-
ues by empirical thresholding, while the local statistics are
derived through fitting the local histogram with a theoretical
distribution. After obtaining estimations of local correction
factors, a smooth function is fitted among these data and ap-
plied to the whole brain volume for IIH removal.

5.2. Image feature-based methods

An image feature-based technique was reported in [80],
where the IIH correction was decomposed into row and col-
umn correction. The correction factor at a voxel is firstly
related to first-order difference at other voxels in the same
row/column, then combined with those calculated in the
rows/columns from the initial to the current one. The ra-
tionale underlying the computation is obscure from the de-
scription. However, it is very similar to that in [81]. In the
latter technique, a smooth “variation” image was firstly de-
rived from normalized intensity gradient field, where pixels
with low intensity or high gradient magnitude are excluded.
Then numerical integration was applied to the “variation”
(first-order derivative) image to obtain an image, which only
contains small variations and was used to determine the IIH
map.

Vovk et al. [82, 83] proposed to use the probability distri-
bution of image features for IIH correction, where the image
feature includes the intensity and the second spatial deriva-
tive of the image. Similar to the usual intensity histogram,
the joint probability distribution also contains information
for classifying tissues and such information was encoded by
entropy. The correction factor was derived so that the en-
tropy would decrease, similar to [57].

5.3. Estimate without explicit modeling

There are methods [84–88] which consider the IIH as model
parameters formulated in a segmentation framework. Sup-
pose the segmentation is to optimize a functional Φ(y, θ,β),
where y denotes the observed data, β the IIH term, and θ

2 Available with the BrainSuite package (http://neuroimage.usc.edu/).

http://www.bic.mni.mcgill.ca/software/N3
http://neuroimage.usc.edu/
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other parameters. Then one way to estimate β can be ob-
tained by

∂Φ

∂β
= 0. (13)

Rajapakse and Kruggel [84] used an MRF formulation,
whereas Farag and his group exploited the fuzzy c-means
clustering framework [85–88].

It is noted that in these methods no explicit assumption
has been made on the IIH field, which can be advantageous
over model-based methods, since the assumptions with a
model could be violated in practice. On the other hand, the
absence of constraints on the IIH solution could result in er-
roneous IIH maps that deviate far away from the truth. In
addition, voxel-wise updating the IIH in an iterative process
is time-consuming, hence techniques such as multigrid com-
puting may help reduce the computation load.

5.4. Registration against template

Image registration has also been utilized to aid the IIH cor-
rection [89, 90]. In [90], the patient data was registered
against a tissue reference template, which allows to estimate
the IIH map by direct comparison between two images. Here
human intervention was employed to ensure the correct cor-
respondence between the distorted and the reference image.

5.5. Shape recovery

Lai and Fang [91] transformed the IIH correction into the
problem of shape recovery with orientation constraint and
solved the latter using regularization theory. The approach
may result in solving a linear equation with a large matrix.

5.6. Deformed thin plate model

Bansal et al. [92] modelled the IIH field as a thin plate de-
forming elastically under a body force:

μ∇2β + (λ + μ)∇(∇ · β) + b(β) = 0, (14)

where μ and λ are the elasticity constants. The body force
b(β) is evaluated to minimize the entropy of the observed
image.

6. DISCUSSION

6.1. Integrated approaches

As seen from the description above, many IIH correction
methods relate the problem with image segmentation and
solve these two problems alternatively through an iteration
process. Evidently, accurate segmentation would significantly
ease the burden of IIH correction. Conversely, if the IIH has
been precisely removed, the segmentation accuracy will in
general be improved. Thus, it is not surprising to see over-
whelming techniques addressing these two problems within
a common framework.

Actually, it has been a trend in computer vision to imitate
the human intelligent system and solve the different prob-
lems simultaneously. A typical computer vision system may
consist of several individual processes, which can be solved
sequentially. However, the solution of one process could be
beneficial to the solution of another one and the converse
may also hold. As an example, image denoising and edge
detection are two closely related problems. And it is com-
mon to require a denoising algorithm able to preserve im-
age edge structures, and an edge detection method robust
against noise. For the problem of IIH correction, beside the
connection with image segmentation as mostly noted, there
are efforts that relate the solution to image registration, be-
cause the image quality can impose an impact on the accu-
racy of image registration and conversely a good registration
against a template could greatly help derive a high-quality
image. In addition, there even exist attempts to address these
three processes, IIH correction, segmentation, and registra-
tion together [93, 94].

Among some processes, their relationship may not be
very intimate, but different implementation order could re-
sult in different performance. In [68], it was found that de-
noising after IIH correction is more preferable. Madabhushi
and Udupa [95] investigated the interplay between IIH cor-
rection and intensity standardization, and concluded that the
better sequence is IIH correction followed by intensity stan-
dardization.

6.2. Validation and comparative study

For end users, it is natural to ask questions such as how to
assess the performance of an IIH correction method, which
method should be recommended when a practical medical
image processing system encounters the problem of IIH cor-
rection, or if there is a method which exclusively outperforms
others. To answer these questions, we need to do extensive
comparisons under a variety of data sets. However, this turns
out to be a difficult task, because the true amount of IIH is
unknown for real data. The lack of ground truth is a common
problem in evaluating a computer vision algorithm. There
are two possible ways to circumvent this difficulty. One is
to approximate the golden standard by experts’ estimation,
which is often a tedious task. Alternatively, we can use syn-
thetic data. In IIH correction, the simulated brain images
[7, 96] from the Montreal Neurological Institute3 have been
widely employed for validation.

(1) Criteria

The criteria that have been frequently used are listed in the
following.

Cr-I The variance of the fully or a partially segmented
image, which is supposed to decrease after the IIH
correction. When this criterion is used for compar-
ing different methods, the result could be misleading

3 http://www.bic.mni.mcgill.ca/brainweb

http://www.bic.mni.mcgill.ca/brainweb
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because the variance is scale-variant. Usually, the
mean-preserving condition is utilized to avoid this
problem.

Cr-II The coefficient of variation, cv, of class Γi:

cv
(

Γi
) = σ

(

Γi
)

μ
(

Γi
) . (15)

It can be shown that this quantity overcomes the lim-
itation of the image variance. But the cv alone only
characterizes the within-class scatter and a criterion
that also takes into account the between-class scatter
is as follows.

Cr-III The coefficient of joint variations between two classes

c jv
(

Γ1,Γ2
) = σ

(

Γ1
)

+ σ
(

Γ2
)

∣

∣μ
(

Γ1
)− μ(Γ2

)∣

∣

. (16)

Moreover, one can also use the relative change of c jv
as defined below:

c jva − c jvb
c jvb

× 100%, (17)

where the subscripts a and b denote after and before
IIH correction.

Cr-IV Mean-square error, which directly measures the dis-
tance between the derived and the true IIH map.

Cr-V Segmentation accuracy, which indirectly reflects the
effect of IIH correction. Care should be taken in inter-
preting the segmentation result since the latter could
be complicated by other factors, like subject, scanner,
noise, segmentation method, and so forth.

Cr-VI Stability, which means that an IIH correction algo-
rithm is recursively applied to the corrected volume.
For a good algorithm, the extracted IIH map is as-
sumed to converge rapidly.

Cr-VII Computer requirement and CPU time.

From the list, one can observe that most criteria have
their own limitations and some are applicable to simulated
data only. However, simulated data might not adequately
characterize real ones. For example, in [47], the proposed
method was reported to be inferior to methods such as the
N3 in terms of cv or c jv when tested on simulated data,
but the order is reversed when tested against real volumes.
Furthermore, the adaptivity of an algorithm is also impor-
tant. For a method with good adaptivity, the approximated
IIH map would approach a constant when the real IIH ap-
proaches zero.

(2) Comparative study

Compared to the numerous techniques for IIH correction,
only a few studies have been carried out towards the com-
parative evaluation of existing algorithms. Sled et al. [97]
have compared three IIH correction methods, the expecta-
tion maximization (EM) [67], the white matter (WM) [48],
and the N3 method [74] using simulated T1, T2, and PD
weighted data. It was shown that the WM method performs

better than the other two methods for T1 weighted volumes,
which might be due to the high contrast between the WM
and other tissues in T1 weighted images. The EM method
made excessively large corrections to voxels that fall outside
the classifier’s tissue model, as is consistent with that pointed
out in [68]. Overall, the N3 method performs the most stable
for all simulated images.

Velthuizen et al. [29] have evaluated four IIH correc-
tion methods (a phantom method [17], two lowpass filtering
methods [36, 39], and a surface fitting method with refer-
ence points selected from white matter [48]) in brain tumor
segmentation. The surface fitting method was found to be in-
ferior to others, which could be due to the way the reference
points were generated. As mentioned in Section 3.1, the lat-
ter is crucial to the performance of the surface fitting method.
An automatic method to generate such reference points has
been presented in [59]. Hou and Huang [98] have also de-
veloped a similar technique based on order statistics, which
is very well comparable with the state-of-the-art IIH correc-
tion methods.

Although it turned out no improvement in tumor assess-
ment after the IIH correction [29], it does not mean that IIH
correction is not an obstacle to automatic medical image pro-
cessing in general, since the tumor segmentation is charac-
terized by the localization of the tumor region as well as the
intensity contrast with surrounded tissue. Thus, the tumor
segmentation could be less affected by the IIH artifact.

A more comprehensive study was presented in [66],
where six algorithms, n3 [74], hum [42], eq [43], bfc [78], spm
(statistical parametric mapping)4 [52], and cma5 were com-
pared against BrainWeb-simulated data as well as real vol-
umes including repeated scans of the same subject, scans un-
der different magnetic fields and different scanners. Three of
the methods (hum, eq, and cma) are lowpass filtering based.
The spm method is based on surface-fitting, and its parame-
ters are estimated through integration with a tissue mixture
model. It was found that the IIH maps obtained by filtering
based methods can exhibit higher-frequency structures per-
taining to brain anatomy. The spm method could be unsta-
ble when operating on relatively uniform image volumes and
could lead to spurious solution for some volume. Overall, the
n3 and the bfc methods are superior to the other four meth-
ods. At lower bias levels, the estimated bias by bfc is more
accurate than that by n3, and at higher bias levels, the or-
der reverses. Nevertheless, none of the six methods performs
ideally under all the circumstances investigated.

The problem of the spm might be similar to that of
the EM method by Wells et al. [67]. Both methods utilized
the mixture Gaussian classifier, which may be inadequate to
model the image intensity distribution arising in practice. It
should be pointed out that the spm method used in [66] is the
SPM99 version, which has been updated to version SPM2 in
2003 with substantial improvement in theoretical modeling

4 It is a part of the SPM99 software released by the Wellcome Department
of Imaging Neuroscience (http://www.fil.ion.ucl.ac.uk/spm).

5 Available in the Nautilos Library from the Center for Morphometric Anal-
ysis at the Massachusetts General Hospital.

http://www.fil.ion.ucl.ac.uk/spm
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or algorithmic design, and the latest version is SPM5. As
to the three filtering-based methods, they lack a scheme to
adapt the filtering strength to data quality, which may explain
the inefficiency compared with the n3 and the bfc methods.
As mentioned in Section 2, filtering methods [45–47] with
data adaptivity have been developed recently, which might
outperform their conventional counterparts.

Although further comparative study using more exten-
sive MR images is necessary, it might be inappropriate for
end users to expect an algorithm superior to others and ex-
clusively applicable. In general, each method has its under-
lying assumptions and limitations and the choice of which
method to use is intimately interwined with the problem to
solve, the source, and quality of the data. Many methods have
attempted to correct the IIH artifact in brain MR images,
some of which require the removal of the scalp/skull before
the correction process, while others do not. Although sophis-
ticated methods may be able to correct for IIH more accu-
rately, one would also have to consider the expense of com-
puter cost as well as the final segmentation error. Among the
publicly available softwares, the N3 method has been widely
used and its performance has been well demonstrated, while
the BFC method can be advantageous when the image is also
contaminated by severe noise [98].

7. CONCLUSION

This paper presented a summary of the recent progress on
MR image IIH correction. The most popular models to de-
scribe the IIH field are the low frequency, the hypersurface,
and the statistical model. Filtering methods are fast, easy to
code and widely used. With optimization in scale space, the
filtering method can also be adaptive to image data. Surface
fitting and statistical methods are easy to integrate with other
knowledge such as segmentation, registration, or some im-
age feature, thus could in principle provide more reliable so-
lution, which have been and will be the trend in the field.
Some techniques based on other IIH correction principles
were also reviewed in the paper. In future, it might be of in-
terest to have more extensive investigations on evaluation of
existing methods.
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