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Abstract: Lymphocyte-specific protein tyrosine kinase (Lck) is a pivotal tyrosine kinase involved in T
cell receptor (TCR) signaling. Because of its importance, the activity of Lck is regulated at different
levels including phosphorylation of tyrosine residues, protein–protein interactions, and localization.
It has been proposed that the co-chaperone Cdc37, which assists the chaperone heat shock protein 90
(Hsp90) in the folding of client proteins, is also involved in the regulation of the activity/stability
of Lck. Nevertheless, the available experimental data do not clearly support this conclusion. Thus,
we assessed whether or not Cdc37 regulates Lck. We performed experiments in which the expression
of Cdc37 was either augmented or suppressed in Jurkat T cells. The results of our experiments
indicated that neither the overexpression nor the suppression of Cdc37 affected Lck stability and
activity. Moreover, TCR signaling proceeded normally in T cells in which Cdc37 expression was
either augmented or suppressed. Finally, we demonstrated that also under stress conditions Cdc37
was dispensable for the regulation of Lck activity/stability. In conclusion, our data do not support
the idea that Lck is a Cdc37 client.
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1. Introduction

The lymphocyte-specific protein tyrosine kinase p56Lck is one of the most well studied
member of the Src-family kinases (SFKs), playing an essential role in the initiation of T cell
receptor (TCR) signaling [1,2]. Lck possesses the typical structural organization of SFKs,
including a SH4 domain for plasma membrane targeting, a unique domain required for
the association with the co-receptors CD4 and CD8, a SH3 and a SH2 domain required for
protein–protein interactions, a SH2-kinase domain linker, a kinase domain, and a negative
regulatory tail [1–3]. The activity of Lck is regulated by two tyrosine residues, Y394 located
in the activation loop within the kinase domain and Y505 lying in the negative regulatory
tail. It is well established that phosphorylation on Y394 is mandatory to enzymatically
activate Lck [4,5], whereas phosphorylation of Y505 inhibits Lck activation by closing Lck
via an intramolecular interaction with its SH2 domain [6–8].

Upon TCR engagement by major histocompatibility complex (MHC) peptide ligands,
Lck undergoes a conformational opening paralleling with de novo phosphorylation on
Y394 which is crucial for the initiation of TCR signaling [4,5,9]. Subsequently, Lck phos-
phorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs
(ITAMs), which are located in the intracellular tails of TCR-associated CD3 chains (for more
comprehensive reviews, see [2,10,11]). This event allows the recruitment of the tyrosine
kinase zeta chain of T cell receptor-associated protein kinase 70 (Zap-70) to the phospho-
rylated ITAMs, followed by Zap-70 phosphorylation and activation by Lck. Signaling is
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further propagated upon Zap-70-mediated phosphorylation of the transmembrane adap-
tor molecule linker for activation of T cells (LAT), thus culminating in T cell activation.
The importance of Lck in T cell biology has been shown using different model systems.
Initial studies using an Lck-deficient T cell line clearly showed that loss of Lck results in
blunted TCR signaling [12]. Subsequent studies using peripheral murine T cells confirmed
the pivotal role of Lck in TCR signaling [13]. Since TCR signaling regulates different aspects
of T cells such as T cell development, activation, and homeostasis, it was hypothesized that
loss of Lck would have a major impact on these biological processes. Indeed, Lck-deficient
mice display a severe block of T cell development [14], impaired T cell activation [13,15],
and defective T cell homeostasis [15].

The activity of Lck is tightly regulated by a number of sophisticated mechanisms [1,3,16].
In this regard, it was previously shown that the molecular chaperone heat shock pro-
tein 90 (Hsp90) is essential for membrane localization [17] and stability [17–20] of Lck.
These studies also demonstrated that the active form of Lck is significantly more depen-
dent on the chaperoning activity of Hsp90 than the catalytically inactive closed form
of Lck [17,18,20]. Thus, the idea is that Hsp90 is an additional player in the regulation
of Lck activity, which is required to maintain an active pool of Lck and to prevent its
ubiquitin-mediated degradation.

Hsp90 is an abundant cytoplasmic molecular chaperone stabilizing and regulating the
activity of a broad spectrum of client proteins (recently reviewed in [21]). The selectively of
Hsp90 for its clients is determined by a set of co-chaperones, which bridge Hsp90 to the
client protein. One of the most well characterized co-chaperons is Cdc37, which mediates
the recruitment of protein kinases to Hsp90 [22–24]. Cdc37 interacts via its N-terminus
with the client kinase, whereas the C-terminal region of Cdc37 binds to Hsp90 [25,26].
In addition to its scaffolding function, it has become evident that Cdc37 also has an
important regulatory activity on the Hsp90 chaperone cycle [27–29].

A variety of kinases have been shown to be associated with Cdc37 [30], includ-
ing Lck [31]. The importance of Cdc37 in the regulation of client kinase activity has
been demonstrated by a number of studies in which the expression of Cdc37 was geneti-
cally manipulated. For example, it was shown that overexpression of Cdc37 increased the
intracellular levels of the cleaved part of Ryk, a receptor tyrosine kinase-like Wnt-family
member, and promotes its nuclear localization. In contrast, Cdc37 knockdown reduces its
stability [32]. Similarly, overexpression of Cdc37 enhanced the expression of the protein
kinase IRAK in 293T cells [33]. Using prostate cancer as a model, researchers found that
overexpression of Cdc37 enhances c-Raf activity and increases CDK4 expression in human
prostate epithelial cells [34]. Conversely, Cdc37 silencing was found to attenuate kinase
signaling of the Raf-ERK and PI3K/protein kinase B (AKT) pathways and impair prolif-
eration of Schwann cells [35]. Similarly, downregulation of Cdc37 in breast cancer cells
paralleled with decreased levels of Akt [36]. Silencing of Cdc37 in human colon cancer
cells reduced the expression of different kinases such as ErbB2, c-Raf, CDK4, and CDK6
and also impaired the activation of Akt [37]. Suppression of Cdc37 in HepG2 and Huh7
hepatoma cell lines enhanced CDK4 expression [38]. Finally, suppression of Cdc37 by
RNA interference decreased the activity of Erk, Akt, and mTOR in carcinoma cells [39].
Collectively, these data clearly highlight the importance of Cdc37 in the regulation of the
expression and/or the activity of different kinases.

Cdc37 has been shown to interact with Lck (although only in an in vitro cell-free
system) [31] and it is also assumed that Cdc37 in complex with Hsp90 plays a role in
the stabilization of Lck [20]. However, a direct demonstration of the role of Cdc37 in
the regulation of Lck stability/activity is to date still missing. On the basis of these
considerations, we decided to directly investigate whether Cdc37 is involved or not in
the regulation of Lck. To this aim, we overexpressed Cdc37 or suppressed its expression
in Jurkat T cells. Conversely to the studies mentioned above in which changes in the
expression of Cdc37 altered the expression/activity of Cdc37 client kinases, we surprisingly
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found that the expression/activity of Lck was not affected by suppressing or increasing the
expression of Cdc37. Moreover, Cdc37 did not appear to be involved in TCR signaling.

2. Results and Discussion
2.1. Overexpression of Cdc37 Did Not Affect Lck Expression, Lck Activation, and TCR Signaling

To study the role of Cdc37 in the regulation of Lck, we initially performed overex-
pression experiments in Jurkat T cells (JE6). We used a construct coding for a tagged
version of human Cdc37 to distinguish between the endogenous and the overexpressed
form (Figure 1A). Then, 16 h after transfection, JE6 cells were lysed and the levels of
total Lck as well as the levels of Lck phosphorylated on the regulatory sites, Y394 and
Y505, were assessed by immunoblotting. Figure 1B shows that both the expression of
total Lck and of its phosphorylated forms were not affected, despite significant increase
in the expression of Cdc37. Thus, even though Hsp90 has been proposed to regulate the
pool of constitutively active Lck [17,18,20], its co-chaperone appears to be dispensable in
this process.

The activity of Lck is crucial for the induction of TCR-mediated signaling [12]. We next
assessed whether global tyrosine phosphorylation, the phosphorylation of Zap-70, and cal-
cium influx are altered upon Cdc37 overexpression. Figure 1C,D clearly shows that these
signaling events were not altered in cells overexpressing Cdc37. These data additionally in-
dicate that the overexpression of Cdc37 did not alter the stability of other kinases involved
in TCR signaling. Indeed, the expression of Zap-70 (Figure 1C and [40]) as well as of Akt
and Raf (Figure 1E) were not affected by the overexpression of Cdc37.

2.2. Suppression of Cdc37 by RNAi Did Not Affect Lck Expression, Lck Activation,
and TCR Signaling

To further assess the function of Cdc37 in the regulation of Lck stability/activity,
we next suppressed its expression by RNA interference (RNAi). To this aim, we used previ-
ously published siRNA duplex, which was shown to efficiently silence Cdc37 [37]. Jurkat T
cells were transfected with Cdc37 siRNA or siRNA control. After 48 h, cells were harvested
and assayed for Cdc37 expression. The data shown in Figure 2A demonstrate that Cdc37
was efficiently suppressed. Of note, downregulation of Cdc37 did not affect the expression
of Hsp90 or the expression of the co-chaperones Aha-1, FKBP52, and Hop (Figure 2A).
This observation is in line with previously published data, indicating that this siRNA does
not alter the expression of other components of the chaperone complex [37]. In agree-
ment with the overexpression data, we found that suppression of Cdc37 did not affect
both the expression and the activation of Lck (Figure 2B). The kinases c-Raf [25,34,35,37]
and Akt [35–37] are among the Cdc37 clients that have been described to depend on its
co-chaperoning activity. Therefore, we assessed whether the expression of c-Raf and Akt
was also affected in T cells in which Cdc37 was silenced. We surprisingly found that
both c-Raf and Akt expression were not affected upon Cdc37 suppression (Figure 2E).
This observation together with the overexpression data presented in Figure 1E indicate
that c-Raf and Akt are likely not Cdc37 clients in T cells.
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Figure 1. Cdc37 overexpression did not affect lymphocyte-specific protein tyrosine kinase (Lck)
expression and T cell receptor (TCR) signaling. Jurkat T cells (JE6) were transfected with Ctrl or
Cdc37 plasmids and cultured for 16 h. Cell lysates were analyzed by immunoblotting using the
indicated Abs. (A) Immunoblot showing Cdc37 overexpression. (B) Immunoblots showing Lck
expression and phosphorylation. Bands in (B) were quantified using the ImageStudio software and
values were normalized to the corresponding total protein signal or β-actin signal. (C) After 16 h,
cells were stimulated with soluble CD3 (sAbs) (clone UCHT1) for the indicated times. Subsequently,
lysates were analyzed by immunoblotting using the indicated Abs. Bands in (C) were quantified as
described in (B). The graph shows the phosphorylation level of zeta chain of T cell receptor-associated
protein kinase 70 (Zap-70) as arbitrary units ± SEM (standard error of the mean) of four independent
experiments. (D) JE6 cells were incubated with Indo-1AM, stimulated with the TCR clonotypic
antibody C305, and Ca2+ flux was measured by flow cytometry. Ionomycin is used as positive control
to induce maximum Ca2+ flux. (E) Immunoblots showing Akt and cRaf expression. Graphs show the
expression levels of indicated molecules as arbitrary units ± SEM of three independent experiments.
Significant p-values were calculated using the Student’s t-test.
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We next assessed the effect of Cdc37 suppression on TCR signaling. Again, also in this
case, we did not see major differences when we analyzed global tyrosine phosphorylation,
Zap-70 activation, and Ca2+ influx in cells in which the expression of Cdc37 was suppressed
compared to control cells (Figure 2C,D). Taken together, these data strongly suggest that
Cdc37 is dispensable for the regulation of the stability/activity not only of Lck but also for
other kinases involved in TCR signaling.

2.3. Cdc37 Was Not Required for the Regulation of Lck under Stress Conditions

The activity of chaperones is particularly important to prevent misfolding of proteins
under stress conditions such as elevated temperatures [41,42]. To test whether the activity
of Cdc37 is required for the stability of Lck under stress conditions, we cultured Jurkat T
cells, in which Cdc37 was suppressed by RNAi, at 39 ◦C, and the expression of Lck and its
phosphorylation status were assessed by Western blotting. The data in Figure 3 show that
Cdc37 was also dispensable for the regulation of Lck under stress conditions.

2.4. Inhibition of Hsp90 Affected Lck Expression and Impaired TCR Signaling

The data described above indicate that Cdc37 was dispensable for the regulation of
Lck. To shed light onto the chaperoning mechanisms regulating Lck, we took advantage of
a Hsp90 inhibitor. Geldanamycin (GA) is a benzoquinone ansamycin antibiotic that inhibits
Hsp90 by blocking ATP binding [43]. Previous studies have shown that treatment of T
cells with GA destabilizes the active form of Lck (i.e., phosphorylated on Y394) [17,18,20].
We indeed corroborated these observations, as treatment of Jurkat T cells with GA strongly
reduced Lck expression (Figure 4A). The effect of GA was modest after 6 h incubation but
very pronounced 24 h after GA addition. Similarly, we found that the expression of Akt,
another client kinase of Hsp90, was also reduced upon incubation with GA (Figure 4A).
Of note, GA did not affect the expression of both Hsp90 and Cdc37 (Figure 4A). To test the
effects of GA on TCR signaling, we assessed Ca2+ influx using flow cytometry. In agreement
with the effect of GA on Lck expression, Ca2+ influx was reduced upon GA treatment
(Figure 4B). In conclusion, our data demonstrate that Hsp90 but not Cdc37 regulates Lck
expression/activity and TCR signaling in Jurkat T cells.
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Figure 2. Cdc37 suppression did not impair Lck expression and TCR signaling. JE6 cells were transfected with Ctrl or Cdc37
siRNA and cultured for 48 h. Cell lysates were analyzed by immunoblotting using the indicated Abs. (A) Immunoblot
showing Cdc37 suppression and the expression of components of the chaperone complex. Bands in (A) were quantified
using the ImageStudio software and values were normalized to the corresponding β-actin signal. Graphs show the
expression levels of the indicated molecules as arbitrary units ± SEM of three independent experiments. (B) Immunoblots
showing Lck expression and phosphorylation. (C) 48 hours after transfection, cells were stimulated with a soluble CD3
antibody (sAb) (clone UCHT1) for the indicated times. Subsequently, lysates were analyzed by immunoblotting. Bands
in (C) were quantified as in Figure 1. Graph shows the phosphorylation levels of Zap-70 as arbitrary units ± SEM of six
independent experiments. (D) JE6 cells were incubated with Indo-1AM and stimulated with the TCR clonotypic antibody
C305, and Ca2+ flux was measured by flow cytometry. Ionomycin was used to induce maximum Ca2+ flux. (E) Immunoblots
showing Akt and cRaf expression. Graphs show the expression levels of indicated molecules as arbitrary units ± SEM of
three independent experiments. Significant p-values were calculated using the Student’s t-test (****, p < 0.0001).
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Figure 3. Cdc37 suppression did not influence Lck phosphorylation and expression under stress condition. JE6 cells were
transfected with Ctrl (−) or Cdc37 (+) siRNA and cultured for 48 h. After 48 h, cells were incubated at 39 ◦C for indicated
time points. Subsequently, cell lysates were analyzed by immunoblotting using the indicated antibodies. (A) Immunoblots
showing the expression of the indicated molecules. Bands in (A) were quantified using the ImageStudio software and
values of Lck-pY394 were normalized to the total Lck signal, whereas signals of the total proteins were normalized to the
corresponding β-actin signal. (B) Graphs show the expression levels of the indicated molecules as arbitrary units ± SEM of
four independent experiments. Significant p-values were calculated using the Student’s t-test (**, p < 0.01; ****, p < 0.0001).
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Figure 4. Inhibition of heat shock protein 90 (Hsp90) activity affected Lck expression and TCR
signaling. JE6 cells were either left untreated (Ctrl) or treated with geldanamycin (GA) for 6 h or
24 h. Cell lysates were analyzed by immunoblotting using the indicated antibodies. (A) Immunoblot
showing the expression of the indicated molecules. Bands in (A) were quantified using the Im-
ageStudio software and values were normalized to the corresponding β-actin signal. Graphs show
the expression levels of the indicated molecules as arbitrary units ± SEM of three independent
experiments. (B) JE6 cells were either left untreated (Ctrl) or treated with geldanamycin for 6 h. Sub-
sequently, JE6 cells were incubated with Indo-1AM and stimulated with the TCR clonotypic antibody
C305, and Ca2+ flux was measured by flow cytometry. Ionomycin was used to induce maximum
Ca2+ flux. Significat p-values were calculated using the Student’s t-test (**, p < 0.01; ***, p < 0.001;
****, p < 0.0001).

3. Conclusions

Despite it having been proposed that Lck is a Cdc37 client, the data shown here do
not support this hypothesis. It is possible that the activity/stability of Lck is regulated
in concert by Cdc37 and other co-chaperones. Since Lck is an essential kinase in T cell
biology, redundancy in the co-chaperoning system would be required to tightly regulate
its expression. Alternatively, it is also possible that the chaperoning function of Hsp90
is not supported by Cdc37 but by other unknown co-chaperones to maintain Lck expres-
sion/activity and TCR signaling. Therefore, it will be important for the future to identify
which co-chaperones are expressed in T cells to assists Hsp90 in the regulation of Lck
expression and to maintain the proteostatic equilibrium necessary for TCR signaling.

4. Materials and Methods
4.1. Cell Culture

Jurkat T cells (JE6) were cultured in Roswell Park Memorial Institute (RPMI) 1640
medium (PAN Biotech, Aidenbach, Germany) with 10% (v/v) fetal bovine serum (FBS;
Biowest, Nuaillé, France).

4.2. Overexpression of Cdc37

For overexpression, Cdc37 plasmid (NM_007065, Origene, Rockville, MD, USA) and a
control plasmid (pEF-Bos) were used. DNA electroporation was performed with a Gene
Pulser II System (BIORAD, Hercules, CA, USA). We resuspended 2 × 107 Jurkat T cells
in 350 µL RPMI/10% FBS and transferred the mixture with 30 µg of either control or



Int. J. Mol. Sci. 2021, 22, 126 9 of 12

Cdc37-expressing plasmids into a 4 mm electroporation cuvette. Electroporations were
performed with 230 V and 950 µF. Subsequently, cells were transferred in 50 mL RPMI/10%
FBS (25 mL fresh/25 mL conditioned) and cultured for 16–20 h.

4.3. Suppression of Cdc37

For the downregulation of Cdc37, we synthesized siRNA duplex containing 19 nu-
cleotides with 2 thymidine 3′ overhangs from Invitrogen (Invitrogen, Carlsbad, CA, USA).
The following sequences were used: for Cdc37: 5′-UUC CAC GAA GGU CUU GUG
U-3′ [37], and as negative control, we used a Renilla luciferase siRNA duplex: 5′-UUG
AUC CUA CAU UAC UUG G-3′ [44]. siRNA duplex electroporation was performed as
previously described [44]. We transfected 2 × 107 JE6 cells with 200µM of either Renilla or
Cdc37 siRNA duplex and cultured the mixture for 48 h in 50 mL RPMI/10% FBS (25 mL
fresh/25 mL conditioned).

4.4. Cell Stimulation and Immunoblot Analysis

For cell stimulation, Jurkat T cells were treated at 37 ◦C with 2µg/mL soluble anti-CD3
(clone UCHT1, eBioscience, San Diego, CA, USA) for the indicated time points. Cells were
lysed in lysis buffer containing 1% Nonidet P-40 (NP-40), 1% laurylmaltoside (N-dodecyl
β-D-maltoside), 50 mM Tris (pH 7.5), 140 mM NaCl, 10 mM ethylenediaminetetraacetic
acid (EDTA), 10 mM NaF, 1 mM phenylmethylsulfonyl fluoride, and 1 mM Na3VO4.
For immunoblot analyses, proteins were separated by sodium dodecyl sulfate polyacry-
lamide gel electrophoresis, transferred onto nitrocellulose membrane, and blotted with
the following antibodies: anti-pY394 Lck (Cell Signaling Technology, Danvers, MA, USA),
anti-pY505 Lck (Cell Signaling Technology, Danvers, MA, USA), anti-pY319 Zap70 (Cell Sig-
naling Technology, Danvers, MA, USA), anti-p-Tyr (Biomol GmbH, Hamburg, Germany),
anti-Lck (Santa Cruz Biotechnology, Dallas, TX, USA), anti-Zap70 (Santa Cruz Biotechnol-
ogy, Dallas, TX, USA), anti-Akt (Cell Signaling Technology, Danvers, MA, USA), anti-c-Raf
(Cell Signaling Technology, Danvers, MA, USA), anti-β-actin (Sigma-Aldrich, Munich,
Germany), anti-Cdc37 (Santa Cruz Biotechnology, Dallas, TX, USA), anti-Hsp90 (Cell Sig-
naling Technology, Danvers, MA, USA), anti-Aha1 (Santa Cruz Biotechnology, Dallas, TX,
USA), anti-HOP (Santa Cruz Biotechnology, Dallas, TX, USA), and anti-FKBP52 (Bethyl
Laboratories, Montgomery, TX, USA). For protein detection, membranes were incubated
with labelled secondary antibodies and signals were analyzed using the Odyssey system
(LI-COR, Lincoln, NE, USA).

4.5. Geldanamycin Treatment

Cells were incubated with 5 µM geldanamycin (GA) (Sigma-Aldrich, Munich, Germany)
for 6 h or 24 h at 37 ◦C and lysed immediately, as described above.

4.6. Ca2+ Influx Measurement

To measure Ca2+ flux, we transfected cells with Cdc37 plasmids or Cdc37 siRNA, as
described above, and incubated with 4 µM Indo-1 AM (Invitrogen, Carlsbad, CA, USA)
at 37 ◦C for 90 min. Cells were washed, resuspended in RPMI without phenol red/10%
FBS (Biochrom, Cambridge, UK), and stimulated with C305 (clonotypic TCR antibody).
Ca2+ flux was measured on a LSRII flow cytometer (BD Biosciences, San Jose, CA, USA).
Ionomycin was added to the samples at the end of the measurement as a positive control
to measure maximum Ca2+ flux. Raw data were transferred to FlowJo V.7.8.5 (Tree Star,
Ashland, OR, USA) for the analysis.

4.7. Statistics

Statistical analyses were performed using GraphPad Prism (GraphPad Software Inc.,
San Diego, CA, USA). All data are presented as mean ± SEM (standard error of the mean).
p-values were determined by an unpaired two-tailed Student’s t-test.
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