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Abstract

The mechanism of cellular aging likely involves decreased telomere length and is associ-

ated with age-related diseases such as cardiovascular disease. Metabolic syndrome (MetS)

is an important risk factor for CVD. The purpose of this study was to investigate the associa-

tion between LTL and MetS. We evaluated 7370 participants in the National Health and

Nutrition Examination Survey (1999–2002). The association between LTL and individual

MetS components and the number of MetS components was analyzed by multivariable

regression models, adjusting for gender, race/ethnicity, albumin, C-reactive protein, alanine

transaminase, uric acid and medical condition. An increase in the number of MetS compo-

nents was strongly associated with shorter telomere length, especially in female participants

(p for trend < 0.05). In addition, triglycerides were negatively associated with LTL in female

participants (p < 0.001). Waist circumstance was associated with decreased LTL (p < 0.05)

in both males and females. In summary, our study indicated that an increment of MetS com-

ponent is strongly associated with shorter LTL, especially in the female population.

Introduction

Telomere are specific DNA–protein structures found at both ends of each chromosome and

are essential and dynamic regulators of cellular life span and chromosome integrity[1]. The

mean leukocyte telomere length is related to cellular aging[2]. LTL shortening is strongly

associated with certain types of age-related diseases such as cardiovascular disease, coronary

disease, diabetes mellitus and all-cause mortality[3]. Short telomeres can result in cellular

senescence and apoptosis which contribute to the development of atherosclerosis and a predis-

position to plaque instability[4]. In contrast, longer telomeres are associated with increased

survival, especially among men and those who are active and the importance of advance of
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physical activity behavior is stressed[5]. Aging is characterized by shortening of telomere

length and also is also associated with cardiovascular disease[6]. A Japanese study of patients

with DM or impaired glucose tolerance demonstrated that excessive oxidative stress leads to

telomere damage reduced telomere length[7].

Metabolic syndrome (MetS) is defined by the Modified National Cholesterol Education

Program-Adult Treatment Panel III criteria as a constellation of abdominal obesity, dyslipi-

demia, hypertension and insulin resistance[8]. Metabolic syndrome is highly prevalent in

the elderly population in the US[9]. A study by Veronica et al revealed that aging is acceler-

ated when metabolic and cardiovascular diseases are present and that the risk of these dis-

eases increases with age[10]. Another study, indicated that the pathogenesis of metabolic

syndrome and related diseases involves excess reactive oxygen species, which damage mito-

chondrial components and trigger cellular lysis[11]. Such toxic reactions lead to the aging

process.

The association of individual MetS components with shorter LTL had been examined in

several previous studies. For glucose, high oxidative stress potentially lead to accelerated telo-

mere shortening in type 2 diabetes mellitus development[12]. In a longitudinal study reported

by Lee et al, telomere length was shorter in an obese population[13]. In a cohort study of 5,598

participants, shorter LTL was associated with multiple measures of obesity in both males and

females[14]. In terms of high blood pressure, leukocyte telomeres may be shorter in hyperten-

sive than in normotensive individuals. Rehkopf and his colleagues showed that triglyceride

was a risk factors for CVD and CHD that is strongly associated with shorter LTL[15]. Shorter

telomere length, a cellular marker for biological age, was associated with a higher metabolic

risk profiles, which remains unfavorable even after a period of 6 years[16]. Accumulating evi-

dences demonstrated that shortened leukocyte telomere length had a significant association

with stroke, myocardial infarction, and type 2 diabetes mellitus[17–19]. However, it is unclear

whether gender differences existed in the association between MetS and leukocyte telomere

length. Our aim was to explore the gender differences in relationship between LTL and MetS

by analyzing data obtained from the National Health and Nutrition Examination Survey

(NHANES) between 1999 and 2002.

Methods

Ethics statement

The NHANES study protocol was based on the National Center for Health Statistics Institu-

tional Review Board (IRB). Before data collection procedures and examinations, all eligible

participants were asked to complete the consent forms agreeing to participate in the survey.

Study design and participants

We collected data from the National Health and Nutrition Examination Survey (NHANES),

which consisted of a detailed home interview and a health examination conducted by the

National Center for Health Statistics (NCHS) of the Centers for Disease Control and Preven-

tion. We analyzed these data which are available for public download (http://www.cdc.gov/

nchs/nhanes/nhanes_questionnaires.htm). Comprehensive studies, including demographic

data, laboratory results, questionnaire contents, and mean leukocyte telomere length, were col-

lected from 2 NHANES datasets (1999–2000 and 2001–2002). Participants who lacked associ-

ated results of laboratory and clinical examinations were excluded, such as the components of

metabolic syndrome and mean leukocyte telomere length.

Association between metabolic syndrome and the mean leukocyte telomere length
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Definition of MetS

As defined by the Modified National Cholesterol Education Program–Adult Treatment Panel

III criteria, MetS was diagnosed if an individual exhibited 3 or more of the following compo-

nents: (1) waist circumstance� 90th percentile for age and sex; (2) triglyceride� 110 mg/dL;

(3) HDL-C� 40 mg/dL; (4) systolic blood pressure or diastolic blood pressure� 90th percen-

tile for age, sex, and height, use of BP-lowering medication or a previous diagnosis of hyper-

tension; and (5) fasting plasma glucose� 100 mg/dL, current diabetes status, or current use of

insulin or hypoglycemic medication[8].

Mean leukocyte telomere length

Blood samples were obtained from the laboratory at NHANES, National Center for Health Sta-

tistics, Centers for Disease Control and Prevention. Using standardized procedures, DNA was

purified from whole blood and stored at −80˚. The telomere length assay was performed in the

laboratory using the quantitative PCR method to measure telomere length relative to standard

reference DNA (T/S ratio)[20, 21]. Control DNA values were used to normalize between-run

variability. Runs in which more than four control DNA values fell outside 2.5 standard devia-

tions from the mean for all assay runs were excluded from further analysis (<6% of runs). The

formula of conversion of T/S ratio to base pairs (bp) was (3,274 + 2,413 � (T/S)). The conver-

sion from T/S ratio to bp was calculated based on comparison of telomeric restriction frag-

ment (TRF) length from Southern blot analysis and T/S ratios using DNA samples from the

human diploid fibroblast cell line IMR90 at different population doublings[22].

Covariates

We analyzed laboratory data such as serum uric acid, total bilirubin, total cholesterol, triglycer-

ides, HDL-C cholesterol, LDL cholesterol, serum glucose, C-reactive protein, waist circum-

stance and blood pressure. The details of the measurement of these factors are described in the

NHANES documentation. All protocols were conducted with standard method according to

the CDC reference, and all data was downloaded from the NHANES website. We acquired

demographic variables such as age, sex, race/ethnicity, smoking history, and medical status

from self-reported data. The interviewer asked the question “Do you now smoke cigarettes” to

confirm the smoking status of the respondents. We obtained the medical history base on

whether by they had ever been diagnosed with or told by doctors and professionals that they

had coronary artery disease, heart attack, congestive heart failure, angina, cancer and stroke.

Statistical analysis

Because of the complicated survey design used in the National Health and Nutrition Examina-

tion Survey III, conventional calculations of statistical analyses according to the assumption of

a simple random sample would provid improper variance estimates and thus are not appropri-

ate. All statistical analyses were performed in SPSS (Version 18.0 for Windows, SPSS, Inc.,

Chicago, IL, USA). We used multivariable regression models to assess the association between

LTL and the number of MetS components or each individual MetS component, and they were

used in covariate adjustment. Model 1 consisted of age, sex, and race/ethnicity adjustment. In

Model 2, Model 1, albumin, C-reactive protein, alanine transaminase (ALT) and uric acid

adjustment were included. Model 3 included Model 2 and heart failure, coronary artery dis-

ease (CAD), heart attack, angina, stroke, cancer and smoking status adjustment. To explore

the association between an increased number of MetS components and mean leukocyte telo-

mere length, P-values for the trend were used by regarding the number of MetS components

Association between metabolic syndrome and the mean leukocyte telomere length

PLOS ONE | https://doi.org/10.1371/journal.pone.0180687 July 7, 2017 3 / 11

https://doi.org/10.1371/journal.pone.0180687


as a continuous variable. Two-sided P-values < 0.05 were considered to indicate significant

differences.

Results

Sample characteristics

We used a stratified sampling method to divide participants according to the presence of meta-

bolic syndrome and gender in Table 1. In the study, the mean age of participants with meta-

bolic syndrome was 56.57±16.25 years for males and 56.61±17.58 years for females. In the

non-metabolic syndrome group, the mean age was 47.88±18.45 years for males and 44.57

±18.36 years for females. Blood pressure, waist circumstance, serum triglycerides, serum glu-

cose, serum ALT, serum uric acid, C-reactive protein and self-reported medical condition/

smoking history were significantly greater in MetS participants than non-MetS participants.

As expected, serum HDL-cholesterol was significantly lower in MetS participants than non-

MetS participants. In the Fig 1, it existed a decreasing relationship in mean LTL with an

increase in the numbers of components of MetS in the male (Fig 1A) and female (Fig 1B) par-

ticipants (p for trend< 0.05).

Metabolic syndrome and mean leukocyte telomere length

After additional adjustment (Fig 2A), the β coefficient of the mean LTL considering 1, 2, 3

and>4 MetS components was -0.029, -0.034, -0.032, -0.044 in Model 3 for females (p for

trend = 0.012). However, as shown in the regression model, mean LTL was not associated with

significantly increased MetS components (Fig 2B). There was a strong linear decrease in the

mean LTL when the number of metabolic syndrome components increased among females.

Table 2 and Table 3 present the regression coefficients for the association of the components

of MetS with mean LTL in males and females.

As shown in Table 3, in female participants, high triglyceride was highly significantly asso-

ciated with a decrease in mean LTL in fully adjusted models (p< 0.001). In both the male and

female groups (Table 2 and Table 3), waist circumstance was significantly associated with a

decrease of mean LTL (p< 0.05).

Discussion

In our study, shorter LTL was favorably associated with metabolic health risk, particularly the

criteria for MetS. Notably, an increment in the number of MetS components in female partici-

pants had a strong linear association with shorter LTL. This study indicates that a better under-

standing of the clustering of metabolic syndrome will facilitate the elucidation of the link

between LTL and metabolic risk factors. This is the first large-scale study to demonstrate gen-

der differences in the relationship between MetS components and shorter mean telomere

length.

A prospective cohort study, by Révész et al, explored the longitudinal associations between

MetS dysregulations and telomere length over a 6-year period which revealed that higher base-

line waist circumference, blood glucose and lower HDL cholesterol were significantly associ-

ated with shorter telomere length[3]. A previous study reported that an one unit difference in

the following biomarkers were associated with kilobase pair differences in LTL, such as BMI,

waist circumference, percentage of body fat, HDL, triglycerides, pulse rate, systolic blood pres-

sure and diastolic blood pressure[15]. However, these studies only focused on the relationship

between individual MetS components and telomere length. No further analysis of the number

of MetS components influencing shorter telomere length was performed. Our regression

Association between metabolic syndrome and the mean leukocyte telomere length
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analysis supports a significant inverse dose-response relationship between shorter telomere

length and the number of MetS components, especially in females.

In the present study, waist circumstance in both men and women was significantly associ-

ated with shorter LTL. A cross-sectional analysis of 21,004 participants of all ages revealed a

0.2% decrease in telomere length for every kg/m2 increase in BMI, whereas a unit increase in

waist circumference and percent body fat contributed to a decreases in LTL of 0.09% and

0.01% respectively[23]. A substantial body of research indicates that abdominal adiposity is

Table 1. Characteristics of participants with or without metabolic syndrome.

Variables Men (N = 3564) Women(N = 3806)

Non-Metabolic

syndrome

Metabolic

syndrome

P-value Non-Metabolic

syndrome

Metabolic

syndrome

P-value

Continuous Variables, mean

(SD)

Mean Telomere Length (T/S

ratio)

1.033(0.31) 0.957(0.24) <0.001 1.070(0.27) 0.990(0.24) <0.001

Age (years) 47.88(18.45) 56.57(16.25) <0.001 44.57(18.36) 56.61(17.58) <0.001

SBP(mmHg) 125.35(17.61) 137.07(20.99) <0.001 120.66(21.87) 139.11(24.69) <0.001

DBP(mmHg) 72.39(13.68) 76.62(16.02) <0.001 68.38(12.61) 72.29(15.18) <0.001

Waist circumference (cm) 95.31(12.72) 110.40(12.28) <0.001 90.56(14.10) 104.55(13.34) <0.001

Serum triglycerides (mg/dL) 122.01(86.94) 250.40(226.81) <0.001 109.57(58.36) 211.98(129.42) <0.001

HDL-C (mg/dL) 49.66(13.46) 37.66(8.70) <0.001 60.81(15.27) 46.41(12.70) <0.001

Serum glucose (mg/dL) 93.42(24.67) 117.48(52.56) <0.001 86.67(18.23) 112.64(50.31) <0.001

Serum albumin (g/dL) 4.46(0.32) 4.34(0.32) <0.001 4.21(0.37) 4.17(0.32) <0.001

Serum ALT (U/L) 29.30(32.27) 33.89(23.55) <0.001 20.45(19.43) 24.92(58.29) <0.001

Serum uric acid (mg/dL) 5.93(1.25) 6.42(1.47) <0.001 4.40(1.20) 5.29(1.46) <0.001

C-reactive protein (mg/dL) 0.35(0.77) 0.49(0.98) <0.001 0.48(0.95) 0.72(0.86) <0.001

Categorical variables, n (%)

Race-ethnicity, % <0.001 0.005

Mexican American 609(23.5) 253(26.1) 603(22.5) 318(28.1)

Other Hispanic 125(4.8) 49(5.1) 157(5.9) 58(5.1)

Non-Hispanic White 1316(50.7) 529(54.6) 1372(51.3) 551(48.8)

Non-Hispanic Black 467(18.0) 118(12.2) 459(17.2) 166(14.7)

Other 78(3.0) 20(2.1) 85(3.2) 37(3.3)

Education Level

More than high school 1739 (67.0) 584 (60.3) <0.001 1913 (71.5) 681 (60.3) <0.001

Less than high school 855 (33.0) 385 (39.7) 762 (28.5) 449 (39.7)

Annual family income (dollars) 0.084 <0.001

�$20,000 1798 (71.6) 638 (68.5) 1791 (69.2) 630 (58.3)

<$20,000 714 (28.4) 293 (31.5) 798 (30.8) 450 (41.7)

Congestive heart failure 63(2.4) 49(5.1) <0.001 45(1.7) 47(4.2) <0.001

Coronary heart disease 113(4.4) 88(9.1) <0.001 51(1.9) 53(4.7) <0.001

Angina 80(3.1) 67(6.9) <0.001 53(2.0) 61(5.4) <0.001

Heart attack 126(4.9) 81(8.4) <0.001 42(1.6) 54(4.8) <0.001

Stroke 50(1.9) 59(6.1) <0.001 47(1.8) 51(4.5) <0.001

Cancer 218(8.4) 82(8.5) <0.001 191(7.1) 116(10.3) <0.001

Smoke 1488(57.4) 627(64.7) <0.001 1004(37.5) 462(40.9) <0.001

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; ALT, alanine

aminotransferase

https://doi.org/10.1371/journal.pone.0180687.t001
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positively related to high levels of biomarkers of oxidative stress and low systemic inflamma-

tion[24–26]. Adipose tissue may stimulate inflammation by releasing proinflammatory media-

tors and increasing levels of adipokines, especially leptin[27]. Increased plasma leptin level in

obese and lean participants may promote the production of IL-6, CRP, and other proinflam-

matory cytokines, which regulate insulin sensitivity and exert inflammatory activities[22]. It is

tempting to speculate that adipose tissue may be an important source of systemic chronic

inflammation, leading to shorter telomere length[28].

A cross-sectional study of US adults, by Rehkopf et al, demonstrated that triglyceride is a

risk factor for cardiovascular disease and is strongly associated with shorter LTL[15]. A

10-year prospective study from 1995 to 2005 revealed that baseline telomere length in bariatric

patients was inversely associated with plasma triglycerides concentration[29]. The triglyceride

Fig 1. (A) distribution of mean leukocyte telomere length according to the number of MetS components in male participants.

(B) distribution of mean leukocyte telomere length according to the number of MetS components in female participants.

https://doi.org/10.1371/journal.pone.0180687.g001

Fig 2. (A) Relationship between the number of metabolic syndrome components and mean telomere length

in male participants. (B) Relationship between the number of metabolic syndrome components and mean

telomere length in female participants.

https://doi.org/10.1371/journal.pone.0180687.g002
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level is one of several lipid parameters that can aid the prediction of coronary heart disease

(CHD) risk, and elevated plasma TG levels are strongly associated with an increased risk of

CHD[30]. The previous studies are consistent with our findings of a significant association

between high triglyceride level and shorter telomere length in females but not males. Elevated

serum triglyceride levels have been shown to play an important role in the pathogenesis of

insulin resistance, and the insulin resistance- hyperinsulinemic- metabolic complex elevates

metabolic health and cardiovascular risks[31]. The current consensus is that inflammation and

oxidative stress are the unifying factors that explain the association of a relatively short LTL

with atherosclerosis and with insulin resistance[32, 33]. In mice, short telomeres result in met-

abolic dysfunction through mitochondrial dysfunction[34], whereas mice with disruption of

Rap1, a telomere-binding protein, exhibit accumulation of abdominal fat and insulin resis-

tance[35, 36]. A previous study, by Zhou et al, reported the interaction between short telo-

meres and T2DM risk appears to involve mitochondrial dysfunction as an intermediate

process[37]. The hypertriglyceridemia mechanism underlying the association of insulin resis-

tance with telomere length is poorly understood.

In the present study, an increasing number of MetS components was strongly associated

with shorter telomere length, especially in females. The mean age of the MetS female group

was approximately 56 years. In a prospective study of a population of 486 white elderly females,

women with the longest leukocyte telomere length underwent menopause three years later

than those with the shortest leukocyte telomere length[38]. In addition, a recent Korean study

demonstrated that decreased estrogen levels after menopause are related to shorter telomere

Table 2. Regression coefficients of components of metabolic syndrome for mean Telomere length in male participants.

Variables Model 1 Model 2 Model 3

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Components of metabolic syndrome

Waist circumference -0.024(-0.043, -0.006) 0.011 -0.022(-0.041, -0.003) 0.024 -0.022(-0.041, -0.003) 0.025

Blood pressure 0.003(-0.017, 0.023) 0.755 0.004(-0.016, 0.023) 0.723 0.003(-0.017, 0.023) 0.761

Low HDL-C -0.008(-0.028, 0.011) 0.389 -0.006(-0.026, 0.013) 0.536 -0.006(-0.025, 0.014) 0.561

High triglycerides -0.007(-0.026, 0.012) 0.483 -0.003(-0.022, 0.016) 0.731 -0.003(-0.022, 0.016) 0.757

High glucose -0.010(-0.032, 0.011) 0.341 -0.017(-0.029, -0.014) 0.492 -0.008(-0.029, -0.014) 0.468

Model 1 = age, race-ethnicity, education level, annual family income

Model 2 = Model 1+ (serum albumin, C-reactive protein, serum ALT, serum uric acid).

Model 3 = Model 2+ (heart failure, CAD, angina, heart attack, stroke, cancer and smoke)

https://doi.org/10.1371/journal.pone.0180687.t002

Table 3. Regression coefficients of components of metabolic syndrome for mean Telomere length in female participants.

Variables Model 1 Model 2 Model 3

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Components of metabolic syndrome

Waist circumference -0.025(-0.042, -0.009) 0.002 -0.025(-0.042, -0.007) 0.007 -0.025(-0.042, -0.007) 0.007

Blood pressure 0.012(-0.007, 0.032) 0.222 0.013(-0.007, 0.033) 0.206 0.013(-0.007, 0.033) 0.206

Low HDL-C -0.009(-0.025, 0.007) 0.289 -0.007(-0.024, 0.009) 0.392 -0.007(-0.024, 0.009) 0.400

High triglycerides -0.032(-0.049, -0.015) <0.001 -0.031(-0.049, -0.014) <0.001 -0.031(-0.048, -0.014) <0.001

High glucose -0.010(-0.031, 0.011) 0.357 -0.007(-0.028, 0.014) 0.513 -0.007(-0.029, 0.014) 0.505

Model 1 = age, race-ethnicity, education level, annual family income

Model 2 = Model 1+ (serum albumin, C-reactive protein, serum ALT, serum uric acid).

Model 3 = Model 2+ (heart failure, CAD, heart attack, angina, stroke, cancer, smoke)

https://doi.org/10.1371/journal.pone.0180687.t003
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length compared to the premenopausal state[39]. Kyo and his colleagues examined the exis-

tence of hormone-dependent mechanisms by which estrogen may affect telomerase activity

[40]. Telomerase is a reverse transcriptase enzyme that can prevent telomere shorting[1].

Another study demonstrated that LTL were significantly higher in postmenopausal female

population who had received long-term hormone therapy with estrogen than in female who

had never taken estrogen after menopause[41]. The decrease in estrogen levels in postmeno-

pausal females compared to premenopause may prevent activation of telomerase to catalyze

the synthesis and extension of telomeres[39]. For the relationship between LTL and testoster-

one, one previous study performed by Wang et al, reported LTL were positively associated

with polycystic ovary syndrome(PCOS) and indicated higher testosterone expression could

promote telomere lengthening[42]. In a prospective clinical study, patients with short telo-

meres had an increase in telomere length in response to a pharmacologic intervention with

male hormone[43]. Yeap et al reported that serum dihydrotestosterone and estrodiol corre-

lated with LTL independently of chronological age, though aromatase gene polymorphisms

are associated with both lower serum estrodiol and shorter LTL in community-dwelling men

[44]. Sex hormones may be useful in the treatment of telomere attrition, such as post-chemo-

therapy[45] and hematopoietic stem cell transplantation[46].

There are some potential limitations in the present study that warrants consideration. First,

causal inference is not suitable because we cannot explain whether the MetS components affect

the shortening of LTL; a longitudinal study would be more convincing than a cross-sectional

study. Second, the technique for measuring telomere length can lead to bias in measurements

because of the high variability of qPCR analysis. Consequently, potential experimental errors

should be carefully controlled. Third, a potential for recall bias exists because of self-reported

method of past medical histories. Fourth, information on pharmacological treatment was lack-

ing in our study, such as post-menopausal or hormone-replacement therapy. The plausible rel-

evance of estrogen metabolism on LT and its association with metabolic derangement were

not established. In the future, it might be the emphasis to assess whether decreased metabolic

components postpone the reduction of telomere length. Finally, limited ethnicity diversity in

the participants were enrolled from 1999 to 2002, which may not reflect current racial distribu-

tion among the United States’ population. However, according to a previous study of the prev-

alence of MetS in the US[47], MetS remains widespread in older and non-Hispanic whites,

consistent with our sample.

Conclusion

In summary, the present study demonstrates a strong linear association between an increment

in the number of MetS components and shorter telomere length, especially in female. Addi-

tionally, individual MetS component such as waist circumstance and high triglyceride were

inversely associated with shorter telomere length. Our findings provide epidemiological infor-

mation for further studies to determine the molecular mechanisms of underlying telomere

length and the development of interventions for preventing disease progression.
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