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Profiling of cocaine using ratios of 
GC-MS peaks
Palle Villesen   1,2 & Louise Stride Nielsen1,3

Illicit cocaine seizures are often compared to each other by using gas chromatography-mass 
spectrometry (GC-MS) data from cocaine alkaloid compounds to determine whether two specimens 
originate from the same production batch or not. This can provide intelligence or investigative 
information at the early stages of an investigation or evidence in court. Traditional classification 
methods assume high stability of all alkaloids, use all of them to calculate the correlation between 
two profiles and use a threshold to classify samples. Unstable alkaloids will have a strong influence on 
the performance. We show that comparing each alkaloid target compound individually improves the 
classification. Unfortunately, it requires normalization and is also sensitive to the stability. Instead 
we suggest to use ratios of all possible pairwise combinations of the GC-MS peaks. These ratios are 
scale free and directly comparable between samples. The peaks can be given different weights in the 
comparison of profiles using appropriate classification methods and we show that randomForest 
classification using these ratios have a high and reproducible performance in comparison with other 
methods. The performance of this method is not affected by noise, transformation or normalization and 
should be considered for future comparison of chromatographic profiles in general.

Statistical comparison of illicit drug gas chromatography-mass spectrometry (GC-MS) profiles is used to deter-
mine whether two profiles (specimens) originate from the same production batch1–8. Such knowledge can provide 
intelligence or investigative information at the early stages of an investigation or evidence in court9.

In the case of cocaine profiling, eight alkaloid compounds originating from the coca leaves are typically used 
for statistical comparisons10, 11. Unfortunately, some of these alkaloids are unstable over time under certain con-
ditions (e.g. diluted cocaine stored at temperatures above room temperature)12. As a consequence, the compound 
composition in a seizure will slowly change over time and profiles originating from the same production batch 
will hence begin to look more and more different12. Recent work focused on using the residual solvents (trapped 
in the cocaine crystals) as they appear more stable, but these do not originate from the coca leaf13.

Traditionally, comparison of cocaine profiles use scale free comparisons (e.g. Pearson correlation or cosine 
angle)1. If two profiles are correlated above a certain threshold they are considered to be linked. A significant 
drawback of these methods is that all peaks in the profile are combined into a single variable (the distance). 
Consequently, this approach makes it impossible to discriminate between stable and unstable peaks.

Instead, we compare each alkaloid compound individually, i.e. define a distance for each of the eight alkaloid 
peaks and use these alkaloid distances as predictor variables for the classification. It is necessary to normalize each 
profile so that each peak value is directly comparable between profiles. This is achieved by sample normalization 
(dividing each peak by the sum of all peaks), where each peak value becomes a fraction of the total. However, if 
some peaks are highly unstable they will change their value and this will affect the total sum and affect all peaks 
after normalization. We are not aware of any report using this approach.

Here we also used a different approach for comparing GC-MS profiles by using ratios of all possible pairwise 
combinations of the GC-MS peaks. The ratios are scale free (as Pearson correlation) and directly comparable 
between samples. Furthermore, the use of ratios result in multiple variables that can be given different weights in 
the comparison of profiles using appropriate classification methods. Finally, if a peak is unstable, it will only affect 
the ratios where this peak is part of the ratio and not all other ratios.

In our work presented here (Fig. 1), we used a well described dataset consisting of GC-MS data of eight alka-
loids obtained from cocaine samples that were exposed to different environments12, 13. To simulate extremely 
unstable peaks, we added four extra noise peaks to the dataset (each using random peak values) and investigated 
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how these extremely unstable peaks affected the performance of different strategies. We split our data into two 
sets; training data for training models, estimating performance and model selection and an independent valida-
tion dataset only used for validating our results. We analysed the effect of different transformations and different 
data types (Pearson distance, peak differences and ratio differences). We estimated the performance of two dif-
ferent binary classification methods and showed that randomForest classification using the ratio differences was 
significantly better than other methods. The performance was not affected by noise, transformation or normaliza-
tion and should be strongly considered for future comparison of chromatographic profiles in general.

Results
The effect of noise on the data.  We evaluated the effect of noise on two types of data (peak values or 
pairwise ratios) and found that the two types of data behaved very differently when noise was added to the data 
set. For the peak values, the noise affected all peaks after normalization, resulting in very different profiles when 
visually comparing the profiles with and without noise (Supplementary Fig. 1).

Normalization do not change the ratio between two numbers. Therefore, the ratios of two alkaloid com-
pounds remained unchanged with addition of noise variables (Supplementary Fig. 2). In contrast to the peak 
values the noise was isolated to ratios with one or two noise variables, resulting a huge variance in these ratios 
(Supplementary Fig. 2b, right part). Hence, it should be possible to improve classification using the ratios together 
with appropriate methods that can identify the “pure” ratios and ignore the “noisy” ratios.

Classification results.  All performance results for all models and data are shown in Fig.  2 and 
Supplementary Table S3. The performance was estimated on the training set using only cross validation or 
out-of-the-bag estimates. Pearson distance performed the worst regardless of the transformation and classifica-
tion method. The addition of noise resulted in an even worse performance. Single peak differences showed better 
performance using logistic regression and was improved further when using randomForest classification but 
addition of noise to the dataset lowered the performance substantially. Logistic regression on ratio differences 
either had very low performance or a high variance in the performance. In contrast, randomForest classification 
on ratio differences performed the best and was not sensitive to noise. Generally, randomForest classification 
based on single peaks or ratio differences performed very well in the cross validation of the training data. The 
model with the highest performance both with and without noise used untransformed pairwise ratio differences 
and randomForest for classification and obtained an estimated MCC very close to 1.0 (but with nearly identical 
results for all transformations).

Validation of results.  The validation dataset were not involved in any model fitting or model selection but 
only used for validation. All models were fitted to the training data and the fitted models were then used to pre-
dict on the validation dataset (external performance is shown on the y-axis in Fig. 3). Pearson distance models 
had a low internal performance and/or low external performance (validation), which indicate a lack of predictive 
power. The high performance of single peak models and models using ratio differences was validated and the 
single peak models were more sensitive to noise. In general we found a good correlation between internal and 
external performance.

Importance of different alkaloids and noise.  For the single peak differences (Fig. 4A), both classifica-
tion methods gave higher weight to the alkaloid peaks than the noise peaks. For the ratio differences (Fig. 4B), 
logistic regression (x-axis) had low coefficients for the noise ratios as well as for many of the pure alkaloid ratios 
(coefficients < 7). RandomForest (Fig. 4B, y-axis) gave high importance to all pure ratios (blue) and low impor-
tance to all noisy ratios (with a single exception). In conclusion, randomForest was better at differentiating the 
real alkaloid variables from the variables filled with random noise.

Comparison of methods.  We used models that return probabilities. This makes it possible to compare 
different models directly. For logistic regression and Pearson distance, the probability relates directly to the 

Figure 1.  Workflow. Each GC-MS profile was normalized and transformed in three different ways. Both single 
peaks and all possible pairwise ratios were calculated for each profile. For comparison of two profiles, three 
different comparisons were performed. This was done for all pairs of profiles (with known linkage status) and 
submitted to two binary classification methods. All resulting models are a combination of transformation, data 
and classification method.
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Figure 2.  Mean performance +/− SEM of binary classification for all models. The results are shown for 
increasing mean performance from left to right. Error bars indicate standard error of the mean (SEM). Fill 
colour indicates data type, shape indicates classification method and outline colour indicates transformation. 
Performance were measured by Matthews Correlation Coefficient (MCC, y-axis) for the pure alkaloid dataset 
(A) and the data set with added noise (B).

Figure 3.  Validation of binary classification. Performance of the different models using different data types 
(fill colour), different binary classification methods (shape) and different transformations (outline colour). 
Performance (Matthews Correlation Coefficient) is shown for the training data (x-axis) and validation data 
(y-axis). The two plots show the pure alkaloid dataset (A) and the dataset with the added noise (B). Poor models 
show low internal performance and/or low external performance. Good models will show a high internal and 
external performance (upper right).
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distance (Supplementary Fig. S3). There was a clear overlap between distances for linked and unlinked pairs in 
the validation data (Supplementary Fig. S3, upper edge) and this overlap was also present in the probabilities 
(Supplementary Fig. S3, right edge). The overlap of probabilities was decreased when using the ratio differences 
and randomForest classification (Supplementary Fig. S4). Direct comparison showed that it was different pairs 
that was difficult to classify correctly for the two strategies. When we analysed the data with added noise there was 
a clear difference where the noise made classification using Pearson distance nearly impossible, whereas using the 
ratio differences yielded nearly the same results as without noise (Supplementary Fig. S5).

Discussion
Many approaches for statistical comparative analysis of illegal drugs in the literature propose normalization 
as pre-treatment prior to calculation of a distance-based correlation1, 2, 10. In this study, a normalization free 
approach using pairwise ratio differences showed better performance and provided a valid alternative to other 
methods. Overall, pairwise ratio differences exhibited higher discrimination power compared to either single 
peak differences or Pearson distance. With the controlled addition of noise to the dataset, the effect was clear (see 
Fig. 2). External validation showed a high correlation between estimated performance based on cross validation 
and true performance based on the validation dataset. The better performance of pairwise ratio differences could 
be a substantial amount of instability in some of the alkaloid variables that affected the Pearson distance as well 
as the single peak differences (due to normalization). The calculation of all pairwise ratios resulted in some ratios 
being very pure and optimal for classification (two stable alkaloids) and other ratios being very noisy. The sub-
sequent fitting of a randomForest identified the good predictor variables (the pure ratios) and ignored the noisy 
ratios resulting in an improved and validated classification performance.

Figure 4.  Importance of input variables and the ability to identify noise for the two binary classification 
methods. The importance assigned to difference variables by logistic regression (x-axis) and randomForest 
(y-axis). All plots show pure alkaloid variables (blue) and noisy variables (red) for (A) single peak differences 
and (B) ratio differences.

Dataset Groups Samples

Training 29 280

Validation 10 68

Table 1.  Number of groups and samples in in the training and validation dataset.
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We found that ratio differences and logistic regression had a low and highly variable performance in the 
training dataset and a low validation performance in the dataset (Fig. 3). This was most likely because logistic 
regression failed in identifying the true signal (Supplementary Figures S3–S5) and gave high weight to some of 
the noisy ratios.

In contrast, randomForest gave lower weights to noisy ratios and showed the highest performance and high 
reproducibility. In conclusion, using randomForest classification on pairwise ratio differences is an applicable 
approach to obtain a highly discriminative classification of cocaine profile pairs.

Besides better prediction, a normalisation-free approach improves the performance of a profile database as 
unnecessary calculations are removed and a potential re-calculation of the entire database for each newly added 
sample is not necessary2. The drawback is, however, that a trained model (a fitted random forest) is needed for 
classification, but distance-based methods also require training data to estimate the threshold to discriminate 
linked from unlinked.

The presented findings suggest that it is feasible to rely on alkaloids only and obtain reliable results when dis-
criminating between linked and unlinked cocaine seizures even when samples have been stored for months under 
different conditions. Alkaloids originate directly from the biological source material (the coca leaves) and should 
be considered the primary information source, whereas the residuals solvents are remnants from the solvents 
used during the production procedure. Finally, the use of logistic regression or randomForest models provides 
the investigator with probabilities and a simple likelihood ratio that estimates the certainty of the prediction. We 
suggest using the ratio differences and randomForest for cocaine comparison purposes as performance seems to 
be significantly better than distance-based models. In general, the use of ratio differences is highly compatible 
with comparison of chromatographic profiles and we therefore also recommend this approach for such purposes.

Methods
GC-MS profiles.  Data used in the present study were also used in two previous studies showing that cocaine 
GC-MS profiles change over time due to high sensitivity to seizure purity and storage conditions and how residual 
solvent profiles are useful for improved classification12, 13. Five street cocaine seizures were exposed to different 
experimental conditions and analysed at the beginning of the experiment and subsequently after 6 and 12 months 
of storage. Furthermore, several groups of specimens stored at room temperature for up to 15 months were also 
included in the dataset, with each group consisting of linked samples. We extracted some groups and only used 
these samples for validation of the results. These samples were not included in any model fitting or model selec-
tion (Table 1 and Supplementary Table S1). For training data we used the remaining groups and 124 single pro-
files from different cases and all 124 profiles were presumed to be unrelated to all groups based on the case 
information. All profiles from the same group were considered to be linked. All pairs with profiles from different 
groups or one of the 124 single profiles were assumed to be unlinked. Pairs where both profiles came from the 
124 single profiles were discarded from the analysis. All groups and the number of samples in each group for both 
training and validation data can be found in Supplementary Table S1. The number of pairs and the combinations 
of groups, their training/validation status and linkage status can be found in Supplementary Table S2.

The cocaine alkaloids were analysed for all samples, and the target compounds including the target and 
qualifier ions are listed in Table 2. The same 8 cocaine alkaloids were employed in other cocaine classification 
approaches1, 10.

Compound RRT Target Qualifiers

Nonadecane (internal standard) 1.000 (RT 17.300) 57 268, 71, 85

Ecgonine methylester (EME) 0.711 82 83, 96, 271

Ecgonine (EC) 0.793 96 82, 97, 83

Tropacocaine (TROPA) 1.035 124 245, 82, 94

Benzoylecgonine (BENZO) 1.229 240 82, 361, 256

Norcocaine (NOR) 1.243 240 346, 179, 140

Cis-cinnamoylcocaine (CIS) 1.285 82 182, 96, 329

Trans-cinnamoylcocaine (TRANS) 1.376 82 182, 96, 329

3,4,5-Trimethoxycocaine (TMC) 1.630 182 82, 94, 393

Table 2.  List of the cocaine alkaloid target compounds and the corresponding target and qualifier ions.

Dataset Linkage status Number of pairs (n)

Training data linked 422

Training data unlinked 11668

Validation data linked 222

Validation data unlinked 2056

Table 3.  The number of profile pairs in the two datasets and their true linkage status.
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Data analysis.  All data analysis was performed in R (version 3.4.0). All scripts are available upon request. 
Before any subsequent analysis, all profiles were normalized to a total sum of 106 * number of peaks.

Creation of dataset with noise.  We wanted to investigate how the addition of noise would affect the dif-
ferent methods. We simulated four extremely unstable alkaloid peaks by randomly selecting existing peak values 
from the dataset and adding them as four extra GC-MS peaks resulting in a total of 12 peaks (2/3 real data and 1/3 
noise). This approach ensured that these peaks had values of the same distribution as the real GC-MS values, but 
with no correlation between samples or between peaks.

Transformation and normalization of data.  We evaluated three different transformations (none, 4th 
root, log1p) followed by final normalization using the row sum (the sum of all peaks). For a given profile, each 
normalized peak was calculated as in equation (1).

scaled peak
peak peak noise noise (1)i

i

1 8 1 4
=

+ … + + + … +

This resulted in 8 single peak variables for the pure alkaloid dataset (8 alkaloids), and 12 single peak variables 
(8 alkaloids + 4 noise) for the dataset with added noise.

Pairwise ratios.  To create variables that were insensitive to normalization we took all possible pairwise com-
binations of the peaks and used them to calculate a new variable using equation (2) exemplified by Ecgonine and 
Tropacocaine.

ratio Ecgonine
Ecgonine Tropacocaine (2)

Ecgonine Tropacocaine =
+

+

The ratio will range from 0 (no Ecgonine, 100% Tropacocaine) to 1 (only Ecgonine). If both peaks are 0 we set 
the ratio to 0. The total number of pairwise ratios is given by equation (3), where n is the number of peaks.

=
∗ −number of ratios n n( 1)

2 (3)

For the data presented here, we had 28 ratios (from 8 alkaloids) or 66 ratios from 12 variables (8 alkaloids + 4 
noise). In the latter case, 28 ratios were pure alkaloid ratios and the remaining 38 ratios consisted of either one or 
two noise variables.

Comparison of profiles.  We used three different methods to calculate the difference between two profiles:

Pearson distance between two profiles.  This is the standard way of comparing cocaine profiles1, where the 
Pearson correlation between the two profiles (r) were converted to a distance by equation (4).

=
− r

Pearson distance
1

2 (4)
sample sample1, 2

If two profiles are identical, the Pearson correlation will be 1.0, resulting in distance = 0 (range 0–1). We used 
this single distance variable for classification of the profile pairs.

Single peak differences.  Here we calculated the difference for each peak (alkaloid) individually using equation 
(5) exemplified for the Ecgonine peak.

Ecgonine
Ecgonine Ecgonine

Ecgonine Ecgonine (5)

sample sample

sample sample

1 2

1 2

=
−

+

This resulted in 8 (without noise) or 12 (with noise) peak differences for a pair of profiles (each with 8 or 12 
peaks). If two profiles are identical, all the peak differences will be 0. We then used all these peak differences for 
classification.

Pairwise ratios difference.  We calculated the difference for each ratio individually using equation (6) exemplified 
by Ecgonine and Tropacocaine.

= −+ + +ratio ratiord (6)sample sample
Ecgonine Tropacocaine

1
Ecgonine Tropacocaine

2
Ecgonine Tropacocaine

The most important difference compared to the peak difference was that the ratio difference is not affected 
by normalization. As with the other comparison methods, the ratio differences will all be 0 if two profiles are 
identical. For the data presented here, we had 28 ratio differences (from 8 alkaloids) or 66 ratio differences (from 
12 variables, 8 alkaloids + 4 noise) all used for classification. In the latter case, 28 of the 66 ratio differences were 
based on alkaloid-alkaloid ratios and the remaining 38 consisted of either one or two noise variables and zero or 
one alkaloids.
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Classification methods.  We evaluated two basic binary classification methods to predict the linked or 
non-linked status of cocaine-seizure pairs: logistic regression and randomForest13. Both methods predict the 
probability that a pair is unlinked (the response variable), and we used the standard threshold of 0.5 to predict 
whether a pair of profiles were linked or not. The optimal model would give probabilities of 0 (linked) or 1 
(unlinked) and make no errors.

Evaluation of performance.  We used the training data to evaluate model performance (internal perfor-
mance). For logistic regression, we performed 5-fold cross validation to estimate performance. For randomForest, 
we used the out-of-the-bag estimates of performance that is built into the building of the forest. In this manner, 
estimates for false positives (FP), false negatives (FN), true positives (TP) and true negatives (TN) (and all derived 
performance measures) were obtained for both methods. Finally, due to differences in group size (most pairs were 
unlinked), we used Matthews Correlation Coefficient (MCC) to evaluate performance. The MCC summarizes 
both true and false positives and negatives and is generally regarded as a balanced measure that can be used even 
if the classes are of very different sizes. The MCC is a correlation coefficient between the observed and predicted 
binary classifications. A MCC of 1.0 represents a perfect prediction (FP and FN are both 0), whereas a MCC of 
0 is no better than random prediction and −1 indicates total disagreement between prediction and observation 
(TP and TN are both 0).

=
∗ − ∗

+ ∗ + ∗ + ∗ +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( ) ( ) ( ) ( ) (7)

Validation of results.  We used the training dataset to fit all the different models. The fitted model were then 
used to predict the linkage status of the validation data without prior knowledge. Performance in the validation 
set was then obtained by comparison of the prediction to the known linkage status of the validation data (external 
performance). For the number of pairs and the linked status in the training and validation set, see Table 3.

Measuring importance of different variables.  For both peak differences and ratio differences, we used 
the fitted models to measure how important the different variables were for the model fit. For logistic regression, 
we used the absolute coefficient values for the fitted models as a measure of importance for both peak differ-
ences and ratio differences. For the randomForest models, we used the R function randomForest(…, impor-
tance = TRUE) to obtain the mean decrease in classification accuracy for each variable. This analysis was only 
done for the data with noise included.

Availability of materials and data.  The datasets and scripts are available from the corresponding author 
on request.
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