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Abstract

Variable cellular composition of tissue samples represents a significant challenge for the interpretation of genomic profiling
studies. Substantial effort has been devoted to modeling and adjusting for compositional differences when estimating
differential expression between sample types. However, relatively little attention has been given to the effect of tissue
composition on co-expression estimates. In this study, we illustrate the effect of variable cell-type composition on
correlation-based network estimation and provide a mathematical decomposition of the tissue-level correlation. We show
that a class of deconvolution methods developed to separate tumor and stromal signatures can be applied to two
component cell-type mixtures. In simulated and real data, we identify conditions in which a deconvolution approach would
be beneficial. Our results suggest that uncorrelated cell-type-specific markers are ideally suited to deconvolute both the
expression and co-expression patterns of an individual cell type. We provide a Shiny application for users to interactively
explore the effect of cell-type composition on correlation-based co-expression estimation for any cell types of interest.
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Introduction
Cellular processes are governed by the interaction of genes and
gene products. This produces shared patterns of expression be-
tween functionally related genes. Gene co-expression networks
encode similarities in expression as edges in an undirected
graph and have been used to identify genes that potentially
share a regulatory relationship or common function [4, 6, 34, 36].

Co-expression network estimation

Statistical methods to estimate co-expression networks rely
on gene expression measurements from biological replicates
that share a common regulatory architecture. Relatively small
variations in gene expression across these replicates are used
to identify co-expressed genes. A major challenge is to design
an experiment that is sufficiently large to distinguish true
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co-expression from noise while minimizing sources of technical
variability, such as batch effects [15], that can easily overwhelm
the biological signal [21]. As such, recent co-expression analyses
have focused on data generated by large consortia such as the
Gene Tissue Expression Project [23, 26].

The Pearson correlation coefficient is the most widelyused
measure to capture linear dependencies between genes. For
example, one of the most popular methods, WGCNA [13, 37],
begins by constructing a gene co-expression network based
on the absolute value of the Pearson correlation coefficient. A
challenge in the application of network estimation methods to
gene expression data is that the number of genes is usually much
greater than the number of samples. A variety of approaches,
from the ad hoc to the statistically rigorous, have been used
to address this challenge. For example, Schäfer and Strimmer
[28] proposed estimating the gene–gene covariance matrix by
shrinking the empirical covariance matrix toward a diagonal
matrix with unequal variance.

Tissue composition and statistical deconvolution

Tissues are comprised of multiple cell types with distinct molec-
ular phenotypes, resulting from cell-type-specific gene expres-
sion. Many of the cellular processes encoded by gene regulatory
networks are specific to a particular cell type, resulting in fun-
damental differences in these networks across cell types.

A substantial number of statistical methods have been
developed to estimate cellular composition and/or cell-type-
specific RNA expression from tissue-level expression data.
The vast majority of these methods are based on a linear
combination of cell-type-specific expression profiles, originally
proposed by [32]. Specifically, these methods model the
observed expression, Yij, of gene i in tissue sample j as a linear
combination of cell-type-specific expression, Xik, of each of the
K cell types that make up the tissue:

Yij =
K∑

k=1

pjkXik, (1)

where the compositional proportions, pjk, have the constraint∑K
k=1 pjk = 1. A clear limitation to this model is that cell-type

expression is assumed to be constant across tissue samples; Xik

is the same for all j. This is biologically implausible and often
in direct opposition to subsequent analyses that seek to identify
genes whose expression differs between groups of samples.

Two recent methods, focusing on tumor/normal mixtures,
have improved upon these earlier approaches by allowing cell-
type expression to vary across samples. One method, ISOpure,
assumes that each normal expression profile is a convex combi-
nation of a set of reference normal profiles and that the cancer
profiles are similar to one another [2]. The other method, DeMix,
provides flexible modeling of mixed tissue samples across four
different situations: with or without reference gene profiles
and with or without matched tumor/normal samples. In each
of these situations, DeMix assumes that the normal mixture
component can be measured directly [1].

Approach
In this study, we begin by illustrating the challenges of estimat-
ing co-expression in the constituent cell types from heteroge-
neous tissue samples. We then assess the ability of deconvo-
lution methods to facilitate the estimation of cell-type-specific
co-expression. Finally, we conclude with a discussion of the

conditions in which deconvolution improves estimation of cell-
type-specific co-expression. For the purpose of this study, we
focus on correlation-based co-expression networks, which are
arguably the most commonly used [22, 33] and have been shown
to perform comparably with more complex methods [31].

Methods
Co-expression network estimation

In the subsequent analyses, we use the absolute value of either
Pearson’s correlation coefficient or a shrinkage correlation esti-
mator [28] to assess the pairwise association between genes. The
latter is a modification of Pearson’s correlation coefficient with
a shrinkage intensity parameter, λ ∈ [0, 1]. Before constructing
the shrinkage estimator, we define notation for the empirical
variance–covariance matrix, �̂, with elements sij. Suppose �̂ is
an m × m real, symmetric and positive definite matrix, then it
can be expressed as:

�̂ = T1/2 R T1/2,

where

Tij =
⎧⎨
⎩

sij, i = j;

0, i �= j;
and Rij =

⎧⎨
⎩

1, i = j;

rij, i �= j.

In other words, the off-diagonal elements (i �= j) have the
following expression:

sij = rij
√

siisjj,

where rij is Pearson’s correlation coefficient.
The modified correlation estimator is a linear shrinkage

approach that combines the diagonal matrix with unequal
variances, T, and the empirical variance-covariance matrix, �̂,
such that

�̂� = λT + (1 − λ)�̂.

In the above equation, T is the shrinkage target, and the optimal
shrinkage parameter is

λ = max(0, min(1, λ̂�))

with

λ̂� =
∑

i �=j Var(rij)∑
i �=j r2

ij

.

This optimal shrinkage parameter is determined analytically
based on the minimal mean squared error (MSE) criterion,
which was derived by Ledoit and Wolf [14]. Finally, the shrinkage
estimator can be written explicitly as

s�
ij = r�

ij

√
siisjj,

where s�
ij is the (i, j)th element of �̂� and r�

ij is the corresponding
shrinkage correlation estimate. This approach is implemented
in the R package GeneNet [27].

Sample-specific deconvolution

A sample-specific deconvolution model can be expressed as

Yij =
K∑

k=1

pjkXijk. (2)
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Note that Equation (2) is a generalization of Equation (1) where
cell-type-specific expression, Xijk, is now allowed to vary across
the sample index j. Note that a co-expression analysis for a
specific cell type is now possible because the expression within
each cell type is allowed to vary across samples.

However, in the most general case where only the Yij are
observed, Equation (2) is an under-determined system of equa-
tions, i.e. the number of equations is less than the number of
unknown parameters. With further assumptions, the deconvo-
lution problem can be categorized into two types: (i) full decon-
volution for unknown pjk and Xijk and (ii) partial deconvolution
with known pjk or Xijk [19].

ISOpure deconvolution

ISOpure [2, 24] was originally developed for tumor profiles (pre-
purification) that are considered as mixtures of cancer and
normal profiles. By comparing the tumor profiles to a set of
unmatched normal profiles, ISOpure estimates tumor purities
(i.e. proportions in the mixtures) and individual cancer pro-
files (post-purification) for each tumor sample. The ISOpure
statistical model is based on a Dirichlet-multinomial mixture
model. The ISOpure algorithm estimates the proportions and
the purified expression profiles in two steps. The 1st step is a
Bayesian approach that iteratively updates the Dirichlet prior
for the proportions and the compound multinomial distribution
for the mixed profiles after appropriate data reorganization.
Based on the outputs from the Bayesian model, the 2nd step
is to estimate the individual profiles for the target cell type by
maximum likelihood.

For a mixture of two cell types, we adopt ISOpure to decom-
pose the compositional cell-type profiles using the R package
ISOpureR [9]. For the two cell types, suppose cell type 1 is the
target cell type, whose profile is in lieu of the cancer profile,
and cell type 2 is the reference cell type, whose profile is in
lieu of the normal profile. ISOpure assumes that there is a set
of reference cell type profiles that can represent the cell type
2 expression profile. Thus, ISOpure inputs Yij (i.e. the mixed
profiles) and Xij2 (i.e. the reference profiles), where the sample
indices, j, from the two collections of profiles do not need to
match; and, it returns estimated pj1 and Xij1, where j denotes the
mixed sample index. Normalized but not log-transformed data
are require for ISOpure. In our analyses, we use quantile normal-
ization [5] to make expression profiles comparable from sample
to sample. Technically, ISOpure depends on an initial random
seed, and the algorithm may fail to converge occasionally. When
this happened, we repeated the analysis with a new random
seed.

Limitations of regression-based composition adjustment

The full deconvolution problem is an under-determined sys-
tem of linear equations, even in the case of a mixture of two
cell types. Sometimes, investigators may have knowledge of pjk

through complementary measurements (e.g. histological imag-
ing). In this case, a regression-based deconvolution model [10]
has been proposed such that

Yij = βi1 × pj1 + βi2 × pj2 + εij, (3)

where βi1 and βi2 are the unknown average theoretical cell-type-
specific gene expression and εij represents random error. This
model suffers from two related limitations. First, εij captures
technical variation but not biological variation between samples.
Second, as previously shown in the study by Jaffe and Irizarry

[12], Equation (3) is only valid when the difference between gene
expression in each sample and the cell-type average are the
same across cell types, which is rarely a reasonable assumption.

Simulations

We utilize simulations to access the effects of cell-type mixture
and deconvolution on co-expression networks. Let m be the
number of features, i.e. i = 1, . . . , m. Using vector forms, we
denote Yj = (Y1j, . . . , Ymj)

′ for the jth mixed expression profile and
Xjk = (X1jk, . . . , Xmjk)

′ for the pure cell-type-k expression profile.
Also, we denote the log2-transformed profiles as X̃jk and Ỹj, such
that

X̃jk = log2(Xjk) and Ỹj = log2(Yj) (4)

and similarly for the mixed profiles. We emphasize this log-
transformation because it has been shown that deconvolution
models, such as Equations (1) or (2), should be built upon data
that have not been log-transformed, since such a transformation
introduces bias in the resulting profiles [38].

In our simulations, we generate the log-transformed data,
X̃jk, from an m-dimensional multivariate normal distribution and
use Equation (4) to obtain the appropriate data for deconvolu-
tion, Xjk. Focusing on two cell types, we randomly draw X̃jk from
the following multivariate normal distribution

X̃jk ∼ Nm(μk, �k) for k = 1, 2 and j = 1, · · · , n,

where n is the number of samples for each cell type. Suppose
the cell-type-specific mean vectors, μk, are available. We design
the cell-type-specific covariance matrix (i.e. co-expression struc-
ture), �k, according to Figure 1. For the two cell types, we set one
as the reference cell type with an identity covariance matrix and
the other cell type as the target with a block-diagonal covariance
matrix. The block-diagonal covariance matrix is further charac-
terized by the number of blocks, block size, correlation magni-
tude and co-varying features: the most differentially expressed,
randomly selected or the least differentially expressed.

With μ1, μ2, �1and �2 specified, we generate random samples
for pure cell type 1, X̃j1, and pure cell type 2, X̃j2, using the
corresponding multivariate normal distributions. Before mixing,
we transform the data to obtain Xj1 and Xj2. Let p = (p1, · · · , pn)

′

be the proportions of cell type 1 and 1 − p be the proportions
of cell type 2 in the mixture. These proportions are generated
in one of two ways: (1) equally spaced from zero to one or (2)
randomly sampled from a beta distribution. Finally, expression
in the mixed samples is generated as follows:

Yj = pjXj1 + (1 − pj)Xj2 for j = 1, · · · , n.

The microRNAome data

We obtained cell-type-specific microRNA expression data
from the microRNAome Bioconductor package [18]. Simulated
data were generated according to Figure 1 using 382 well-
characterized microRNAs in pure aortic smooth muscle cells
(ASM) and pure aortic endothelial cells (AEC). Without loss of
generality, we set AEC as the reference cell type. For each cell
type, we generated 20 samples and computationally mixed these
to obtain 20 mixed samples. We designed the co-expression
pattern for ASM as follows: 3 co-expression blocks, 10 features
per block and a correlation magnitude of 0.7. The 20 mixture
proportions were equally spaced from 0 to 1. In different
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Figure 1. Overview of the simulation scheme. Consider two cell types: cell type 1 (the target cell type) in yellow with known mean vector and block-diagonal covariance

matrix, �1, and cell type 2 (the reference cell type) in blue with known mean vector and identity covariance matrix, �2. The top-left panel characterizes the design of �1.

The co-expression signal in the target cell type is concentrated on the most differentially expressed (DE) features randomly selected features, or the least differentially

expressed (non-DE) features. The bottom-left panel is an example of the type of structure (i.e. co-expression network) applied to each signal-receiving block, where A–E

are five genes, and the matrix beneath specifies the covariance structure. The right panel is a flow chart of the data generation procedure. Pure samples are generated

from a multivariate normal distribution, Nm(μk, �k); mixed samples are mixtures of the pure samples in given proportions, p for the target cell type and 1 − p for the

reference cell type.

simulations, the co-expressed features were selected as the most
differentially expressed, as the least differentially expressed or
randomly.

We applied the ISOpure deconvolution algorithm to the
mixed samples and compared the simulation performance
using receiver operating characteristic (ROC) curves based on
the Pearson correlation and the shrinkage correlation for the
pure ASM, mixed and deconvoluted samples.

To assess performance on a real data network, we selected
two cell types from the microRNAome data: dendritic cells (18
samples) and fat cells (15 samples). We set the fat cells as the
reference cell type. We identified 363 microRNAs, which were
non-zero in at least half of the samples for each cell type. We
mixed the pure cell-type samples with two different sequences
of mixture proportions. In terms of the proportions of the den-
dritic cells, the 1st sequence is equally spaced from 0 to 1,
and the 2nd sequence is equally spaced from 0.4 to 0.6. Based
on Equation (2), we obtained computationally mixed samples
by randomly selecting 15 samples of pure dendritic cells and
combining them with the 15 samples of pure fat cells in the

given proportions. This mixed sample generation was repeated
20 times to produce 20 complete mixed data sets.

A true edge in the real data network was defined based on
the empirical correlation matrix from the data. We dichotomize
the empirical correlation matrix and obtain the edge matrix as
follows:

Eij = 1(ρij > T) =
⎧⎨
⎩

1 if ρij > T

0 otherwise,
(5)

where Eij = 1 indicates an edge between the ith and jth features,
Eij = 0 indicates no edge, 1(·) is an indicator function and ρij

is the Pearson correlation between the pair of features. Unless
otherwise stated, we set T = 0.9 in these assessments.

TCGA Data

We obtained 57 triple negative breast invasive carcinoma
samples and 7 normal breast tissue samples from The Cancer
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Genome Atlas (TCGA) [20] via the TCGABiolinks Bioconductor
package [7]. All samples were from white female individuals. The
sample IDs are listed in Supplementary Table 1. These tumor
samples have been previously shown to have variable purity
[3, 35]. The ISOpure deconvolution algorithm was applied to
these samples using the normal samples as a surrogate for the
stromal component of the tumor samples. This represents the
standard usage of the ISOpure algorithm.

Gene Set Analysis

Gene set analyses were performed using g:Profiler (database
updated on 6 May 2019; version e96_eg43_p13_563554d) [25].
g:Profiler queries the following databases: GO molecular
function, GO cellular component, GO biological process, KEGG,
Reactome, WikiPathways, TRANSFAC, miRTarBase, Human
Protein Atlas, CORUM and HP.

Assessments of performance

We used ROC curves [11] and area under curve (AUC) statistics to
assess network estimation based on correlation measures. The
ROC curve shows the relationship between the true positive rate
(TPR) and the false positive rate (FPR) for a range of correlation
thresholds, where

TPR = TP
TP + FN

and FPR = FP
FP + TN

.

At each threshold, correlation values above the threshold are
considered as positives (i.e. edges in a network), and correlation
values below the threshold are negatives (i.e. no edge). In the
simulations, true edges are defined as any non-zero off-diagonal
element in �1.

An ROC curve close to the top-left corner of the plotted area
indicates high TPR and low FPR. On the contrary, if a curve
is close to the diagonal line, it suggests that the performance
is roughly the same as random chance. The AUC statistic is
a quantitative summary of the ROC curve, which ranges from
0 to 1. As the ROC curve approaches the top-left corner, the
corresponding AUC statistic approaches 1.

Additionally, we considered the MSE of the correlation matrix
itself. Specifically, we used the integrated (cumulative) MSE,
defined as the summation of all element-wise mean squared dif-
ferences of two matrices, to summarize the discrepancy between
the estimated correlation matrix from the mixed or deconvo-
luted samples and the correlation matrix from the pure samples.

While the MSE does not quantify the quality of the co-expression
network, it does provide the most direct assessment of the
underlying correlation estimation.

Results
An illustrative model of tissue-level gene expression

Consider the following model of tissue-level gene expression
arising from a mixture of two cell types:

Y = ZX(1) + (1 − Z)X(2)

X(1) ∼ N(μ(1), �(1)) (6)

X(2) ∼ N(μ(2), �(2)),

where Y is a vector of tissue-level gene expression, X(1) and
X(2) are random vectors of gene expression in cell types 1 and
2, respectively, and Z is a scalar random variable denoting the
proportion of cell type 1 in the tissue. In contrast to a Gaussian
mixture model, in which each observation comes from only one
of the mixture components, i.e. Z ∈ {0, 1}, here each observation
is a convex combination of cell-type-specific expression vectors,
i.e. Z ∈ (0, 1). Note that conditional on the mixing proportion,

Y|Z ∼ N(μ, �),

where

μ = Zμ(1) + (1 − Z)μ(2)

� = Z2�(1) + (1 − Z)2�(2).

Thus, the covariance between any two genes Y1 and Y2 can be
expressed as shown in Equation Box A. If tissue composition
is variable, i.e. var(Z) > 0, the covariance between genes in
the mixed tissue depends on the covariances in each cell type,
as well as the difference in expression between the cell types.
Finally, the correlation between any two genes Y1 and Y2 can be
expressed as shown in Equation Box B.

Note that even if the genes are positively correlated in both
cell types, their tissue-level correlation can be negative if the
differences in average expression between cell types for the two
genes differ in sign and the variance in the mixing proportion is
sufficiently large.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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To further examine the effect of variable composition on
tissue-level gene expression correlation, consider the following
simplifications:

• �
(1)

1,1 = �
(2)

1,1 = �
(1)

2,2 = �
(2)

2,2 = 1: the cell-type variances are all
equal to 1.

• �
(1)

1,2 = ρ
(1)

1,2: the two genes are correlated in cell type 1 and have
correlation magnitude equal to some non-zero ρ

(1)

1,2.
• �

(2)

1,2 = 0: the two genes are not correlated in cell type 2.
• μ

(1)

1 − μ
(2)

1 = μ
(1)

2 − μ
(2)

2 = �: the differences in expression
between cell types are equal to �.

In this case, the tissue-level correlation can be expressed as
shown Equation Box C. The 1st part of the summation represents
the attenuated correlation due to the cell-type mixture. The 2nd
part of the summation represents the correlation induced by
variation in the mixing proportion. To be noted, the induced
correlation also depends on how differently these genes are
expressed in the different cell types.

Figure 2 provides an illustrative example of between-gene
correlation induced by variable mixing of cell types in tissue
samples. In this simulated experiment, we consider 10 genes

(a–j) measured in two cell types (100 samples per cell type),
where five of the genes are differentially expressed between the
two cell types (Figure 2A). As in Equation (6), we assume that
gene expression in each cell type follows a multivariate normal
distribution. For illustrative purposes, we assume that �(1) is
block diagonal and �(2) is the identity matrix (Figure 2B and C).
We set ρ(1) = 0.7 for the correlated gene pairs, μ(1) − μ(2) = 5 for
the differentially expressed genes and var(Z) = 0.03. Between the
three mixtures (Figure 2D–F), we only vary the expected value of
the mixing proportion, E(Z). Specifically, we consider generating
the mixing proportions from three beta distributions (Figure 2G–
I). As expected, in the mixed tissue samples, one can clearly
see the effects of both the cell-type-specific correlation and the
correlation induced by the mixing of cell types (comparison
between Figure 2B and C and Figure 2D and F). For genes g–
i, which are not differentially expressed between the two cell
types, we observe a clear attenuation of the correlation struc-
ture as the proportion of cell type 1 decreases (moving from
Figure 2D to Figure 2F). For genes a–e, which are differentially
expressed between the two cell types, the correlation induced
by the mixture masks the cell-type-specific correlation even in

Figure 2. An example of correlation induced by cell type mixture. Consider 10 hypothetical genes (namely, a–j) that are expressed in two cell types. Expression profiles

of 100 samples for each cell type are plotted in panel A. The 1st five genes (a–e) are differentially expressed between the two cell types, and the other five genes (f–j)

are not differentially expressed. Panels B–F are heatmaps of correlations. These genes form three co-expression blocks in cell type 1 (panel B) and are not co-expressed

in cell type 2 (panel C). We generated three mixtures (panels D–F) with varying proportions of cell type 1 drawn from beta distributions (panels G–I).



The effect of tissue composition 133

an equal mixture of the two cell types (Figure 2E). Finally, the
amount of correlation induced by the mixture also depends on
the statistical properties of the mixing distribution. Specifically,
it is a non-monotone function of the 1st two moments of the
distribution of the mixing proportion.

Co-expression estimation in pure, mixed and
deconvoluted samples

Figure 3 shows the performance of two correlation-based net-
work estimators on simulated data from pure cell-type sam-
ples, samples from a variable mixture of two cell types and
the corresponding deconvoluted samples, with three types of
co-expressed features. Both estimators performed best on the
pure cell-type data (AUC ≥ 0.94), which suggests that both cor-
relation measures are able to capture the co-expression sig-
nal well in pure samples. Compared to the pure samples, the
mixed samples largely deviate from the true signals and have
poor performance. Figure 3A shows the results when only the
most differentially expressed features are co-expressed. Using
the Pearson correlation, the mixed ROC curve is close to the
pure curve. This is because the Pearson correlation is increased
due to the correlation induced by the cell-type mixture, which
does not represent cell-type-specific co-expression. In contrast,
the shrinkage correlation estimator (Figure 3D) is a more con-
servative measure, which regularizes the empirical covariance
matrix toward a diagonal matrix. This appears to greatly reduce
the effect of the induced correlation. Finally, the deconvolution

produces modest to substantial improvement over the mixed
samples, except in the situation noted above. Across all scenar-
ios, the deconvoluted samples result in stable performance (AUC
> 0.8).

To further evaluate the deconvolution performance, we
plotted the estimated proportions against the true proportions
for the target cell type in Supplementary Figure S1. Recall that
the true proportions in this simulation are equally spaced from
0 to 1. Based on the error measures, mean absolute difference
and the root mean squared distance [19], the deconvolution
estimation of mixing proportions appears stable and robust to
the choice of co-expression features. However, the estimated
proportions appear to consistently under-estimate the true
proportions.

Additionally, we conducted simulation studies with mixing
proportions randomly generated from a beta distribution. We
show results similar to Figure 3 for these simulations in Sup-
plementary Figures S2, S3 and S4. Overall, they reveal a similar
pattern as that seen in Figure 3. The performance of the decon-
voluted curves is stable across different scenarios and robust to
the selection of co-expression features. They effectively recover
the true co-expression signal from cell-type mixtures. Without
deconvolution, the mixed curves vary dramatically from case
to case. When only a small proportion of the target cell type is
present in the mixture, the mixed curve is close to the diagonal
line (Figure S2); when a large proportion of the target cell type
is present in the mixture, the mixed curve performs similarly to
the deconvoluted curve (Figure S4).

Figure 3. ROC curves from a simulation study with number of blocks = 3, block size = 10, number of samples = 20, and correlation magnitude = 0.7. The mixture

proportions of cell type 1 were equally spaced from 0 to 1. Block correlation structure was imposed on the most differentially expressed features (left column), randomly

selected features (middle column), and the least differentially expressed features (right column). Differential expression was quantified by the absolute difference

between the cell type-specific mean vectors. Two measures of co-expression were used: the Pearson correlation (top row) and the shrinkage correlation implemented

by GeneNet (bottom row). In each panel, the ROC curves for the pure samples (gray curve), the mixed samples (yellow curve), and the ISOpure deconvoluted samples

(blue curve) are shown.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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Figure 4. AUC values are reported with varying block size, number of samples and correlation magnitude. Co-expression association is measured by Pearson correlation.

When one parameter is varied, the others are fixed at block size = 10, number of samples = 20 and correlation magnitude = 0.7. As before, three correlated blocks are

generated with the mixture proportions of cell type 1 equally spaced from 0 to 1.

Appropriate cases for deconvolution

In order to further evaluate the situations in which deconvolu-
tion is able to recover the pure sample co-expression, we gen-
erated more simulation scenarios by varying block size, number
of samples, and correlation magnitude in the same simulation
design. While one parameter is varied, other parameters are kept
fixed as before. The resulting AUC values are shown in Figure 4,
and the corresponding MSE values for the correlation matrices
are provided in Supplementary Table 2.

In the 1st column of Figure 4, in which the most differentially
expressed genes are also those that are co-expressed, the AUC
values for the mixed samples are higher than those for the
deconvoluted samples and sometimes even higher than that
of the pure samples. As shown in Equation Box C, if the cor-
related features are also differentially expressed between the
two cell types, the differential expression (�) induces correlation
in the mixture if the mixture proportion varies across samples.
The high AUC values are attributable to the induced correla-
tion. When the true correlations are difficult to estimate due
to small sample size (Figure 4D) or small magnitude (Figure 4G),
the induced correlation dominates the attenuated co-expression

signal in the mixture. This results in the mixed samples having
higher AUC than the pure samples.

In the 2nd and 3rd columns of Figure 4, in which the co-
expressed features are randomly selected or the least differ-
entially expressed, the AUC values are always higher for the
pure samples than the deconvoluted samples, which in turn
are higher than the mixed samples. Overall, the AUC values
increase as the number of samples or the correlation magnitude
increases. The block size does not appear to impact the co-
expression network estimation performance.

Deconvolution results in a decrease in the MSE of the cor-
relation matrix for all situations (Supplementary Table 2). The
MSE decreases substantially as the number of samples increases.
However, the MSE appears to increase slightly as the block size
increases and does not appear to be affected by changes in the
correlation magnitude.

In summary, the ISOpure deconvolution method recovers
the true co-expression signal from mixed samples. If the co-
expressed features are differentially expressed between the two
cell types, the induced correlation may lead to better estimation
of the co-expression network; however, caution is required in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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Figure 5. Deconvolution performance on real data. Top row: mixing proportions equally spaced from 0 to 1. Bottom row: mixing proportions equally spaced from 0.4

to 0.6. Panels A and C show the estimated proportions versus the true proportions; the gray line is the reference line for both proportions being equal. By defining a

true edge if absolute correlation ¿ 0.9, panels B and D show dominating ROC curves for the deconvoluted samples over the mixed samples in the zoomed region where

FPR ¡ 0.5.

interpreting the result as these features would appear corre-
lated in the mixture regardless of whether they were truly co-
expressed in the target cell type.

Co-expression estimation from computationally mixed
and deconvoluted samples of purified cell types

Using the microRNAome data set, we computationally mixed
pure dendritic cells with the same number of pure fat cells
as described in the Methods. This mirrors a common disease
process in which inflammatory cells, such as dendritic cells,
are increased in adipose tissue. Treating the empirical network
in the pure cell-type data as the true network, we plot the
ROC curves for network reconstruction with the mixed and
deconvoluted profiles (Figure 5B and D) with respect to two
mixing proportion schemes. In both ROC plots, we focus on the
region where the FPR is smaller than 0.5 and observe that the
deconvoluted curve is uniformly better than the mixed curve.
Over the whole range of FPR, the AUC statistics are also slightly
higher for the deconvoluted curve in both cases: 0.711 versus
0.723 (Figure 5B) and 0.824 versus 0.845 (Figure 5D). The real data
further demonstrate the improvements gained from deconvo-
lution. For both sequences of mixing proportions, estimation
of very small and very large proportions show less variation
(Figure 5A and C). Of note, when the reference cell type is rare,

it is common for the estimated proportions to overestimate the
purity of the mixed sample (Figure 5A). With regard to network
estimation, the gain from deconvolution is larger when there is
greater variation in the mixture proportions. However, the MSE
of the correlation matrix is larger after deconvolution when the
mixing proportions vary from zero to one (47 415 versus 57 494)
but smaller when the mixing proportions vary from 0.4 to 0.6 (29
982 versus 24 582).

Next, we varied the threshold used to define the true net-
work based on the empirical correlation matrix. Supplementary
Figures S5 and S6 show the performance for thresholds from 0.3
to 0.8. The co-expression estimates based on the deconvoluted
samples are uniformly better than those based on the mixed
samples across all thresholds. However, as the threshold used
to define a true edge decreases, the AUC for both methods
decreases and the difference in AUC decreases as well.

Lastly, we investigated the effect of deconvolution when the
nominally mixed samples do not in fact contain any signal from
the reference cell type. Specifically, we deconvoluted the pure
dendritic cell samples using the fat samples as the reference. The
estimated proportions of dendritic cells in these samples were
all 0.9999997, indicating that ISOpure correctly identified these
samples as essentially lacking any fat cell signal. Comparing
the correlation between features pre- vs post-deconvolution, the
minimum and maximum observed differences were −0.768 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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Figure 6. A real data example of two microRNAs (represented in the axes), which are highly correlated in dendritic cells (panel A) but uncorrelated in fat cells (panel B).

Computationally mixed samples do not preserve the correlation (panel C). After deconvolution, strong correlation is recovered in the estimated expression of dendritic

cells (panel D). Correlation values are shown in corresponding scatter plots. The color of each dot represents the proportion of dendritic cells in that sample, which

were equally spaced between zero and one.

0.740; however, 90% of the differences in correlation fell between
−0.082 and 0.039.

The effect of reference data size

In the previous assessments, we used 15 samples of adipose
tissue as the pure reference data. We now consider the effect
of reducing the number of reference samples (to 10, 5 or 2) on
estimates of co-expression. If the mixing proportions range from
0 to 1, the deconvoluted AUC is always better than the mixed
AUC across all reference data sizes (Supplementary Figure S7
top). On the other hand, if the mixing proportions are restricted
to fall between 0.4 and 0.6, the deconvoluted AUC is less than
the mixed AUC when the number of reference samples becomes
sufficiently small (Supplementary Figure S7 bottom). These rela-
tionships do not appear to depend on the threshold used to
define a ‘true’ edge; however, as seen previously the overall
performance is affected by the edge threshold (Supplementary
Figure S7). The performance following deconvolution for small
reference data sizes appears to depend on the ability of ISOpure
to accurately estimate the mixing proportions. When the mixing
proportions range from 0 to 1, the estimated proportions are

relatively accurate even down to a reference data size of 2 (Sup-
plementary Figure S8). However, when the mixing proportions
range from 0.4 to 0.6, the estimated proportions are become
increasingly inaccurate as the reference data size decreases
(Supplementary Figure S9).

An example of co-expressed microRNAs

Using real data, we illustrate what would happen to a pair
of co-expressed microRNAs when mixing two cell types and
deconvoluting the mixed samples. Figure 6 shows scatter plots
of two microRNAs, hsa-let-7a-5p/7c-5p and hsa-miR-766-3p, in
two different cell types. In dendritic cells (Figure 6A), these two
features are strongly positively correlated (cor ≈ 0.9); in fat
cells (Figure 6B), these two features appear uncorrelated (cor ≈
0). After computationally mixing the two cell types with mix-
ing proportions ranging from zero to one, the mixed samples
(Figure 6C) appear negatively correlated (cor ≈ −0.3), which is
entirely induced by the mixing. Finally, after ISOpure decon-
volution targeting expression in the dendritic cells (Figure 6D),
the positive correlation (cor ≈ 0.9) is re-established between the
same pair of features.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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Figure 7. Heatmaps showing the spearman correlation in the mixed tumor samples (left) and the deconvoluted tumor samples (right) for 116 genes whose spearman

correlation decreased by more than 0.4 with at least 10 other genes following deconvolution. Hierachical clustering was performed using average linkage and one

minus the spearman correlation to define the distance between genes. The clustering of both heatmaps is identical and represents the clustering of the mixed tumor

samples. Horizontal white lines separate the six major subclusters.

Co-expression estimation in breast cancer samples

Using triple negative breast invasive carcinoma data from TCGA,
we compared co-expression estimates before and after decon-
volution with ISOpure. Our analysis focused on co-expression
among the 1414 genes with variance greater than one in the
mixed tumor samples. We identified a subset of these genes
that showed large and frequent changes in their spearman
correlation with other genes after deconvolution. Specifically,
we identified 116 genes whose spearman correlation decreased
by more than 0.4 with at least 10 other genes following decon-
volution (Supplementary Table 3). We also identified 334 genes
whose spearman correlation increased by more than 0.4 with
at least 10 other genes following deconvolution (Supplementary
Table 4).

The 116 genes that were highly correlated in the mixed
tumor samples but mostly uncorrelated following deconvolution
were enriched for collagen, integrin and fibronectin binding
as well as structural and organizational components of the
extracellular matrix (Supplementary Table 5). This suggests that
the observed correlation in the tumor samples is likely due to
variable tumor purity, for which deconvolution is able to mostly
adjust. Closer examination of co-expression patterns of these
genes revealed wide-spread positive correlation before decon-
volution, as well as subsets of these genes that remained highly
correlated following deconvolution (Figure 7). Of particular note,
the small cluster of highly correlated genes present before and
after deconvolution consists of immune response genes (Supple-
mentary Table 6), likely capturing variable immune infiltration,
which was not adjusted for by ISOpure. The 334 genes that were
mostly uncorrelated in the mixed tumor samples but highly
correlated following deconvolution were enriched for nuclear
receptor signaling, triglyceride catabolism and metabolism,
as well as NF-κB and AP-2α binding motifs, in addition
to components of the extracellular matrix (Supplementary
Table 7).

Interactive exploration of correlation induced by tissue
composition

To further explore tissue composition induced co-expression,
we developed a Shiny application that allows the user to easily
evaluate the degree of induced or attenuated correlation due to
cell-type mixtures. The app allows users to select values for the
parameters indicated in Figure 1. The user must first select a
data set to work with, which will automatically update the list
of cell types to choose from in the two dropdown menus for
selecting cell types. The user can then proceed to select other
parameters for the simulation. We have also added the option
to generate beta-distributed proportions, for which the user
can specify the mean and variance. Once all parameters have
been selected, the user can generate an ROC curve to compare
performance based on mixed and pure samples.

An R package containing the web application is hosted
on GitHub at yunzhang813/simDeNet-R-Package-Shiny. A
vignette is available after installation of the package, which
includes a short tutorial describing how to launch and use the
Shiny web application.

Discussion
In the absence of targeted perturbation experiments, measure-
ment of co-expression between genes is the primary method
of assessing gene–gene interactions. The Pearson correlation
between genes is usually the 1st step in co-expression network
reconstruction, such as the widelyused WGCNA algorithm. By
using this fundamental measure, our results are applicable to a
wide range of network algorithms based on the Pearson correla-
tion.

As we have shown, gene co-expression in tissue samples
is often dominated by varying cellular composition. When
applied to tissue gene expression data, methods that rely on
co-expression to define gene modules, primarily identify groups

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz135#supplementary-data
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of genes specific to a given component cell type. Variation in
these gene modules therefore is capturing changing tissue
composition. Some of these compositional differences may arise
from biological variation or disease processes that affect the
entirety of the tissue from which the sample was obtained.
However, others may be due to spatial heterogeneity within
a tissue, such that the proportion of cell types within the
tissue sample is not representative of the proportion of cell
types within the entire tissue. For example, variable sampling
of highly localized cellular structures within in a tissue can
result in substantial variation in tissue sample composition [17].
These latter sources of co-expression reflect technical rather
than biological variation.

In a mixture of two cell types, current deconvolution methods
can be used to estimate cell-type-specific expression within
each sample. Their ability to provide accurate estimates of gene–
gene correlation depends upon the covariance between marker
genes within each component cell type. When the genes used
to identify the abundance of a specific cell type are all highly
correlated with each other (e.g. members of a cell-type-specific
pathway), current methods are unable to distinguish between
changes in composition and changes in expression. Therefore,
ideal marker genes are those that are cell type specific but
uncorrelated within each cell type. The identification of such
ideal marker genes remains an open question; however, it may
be possible to use our current understanding of the biological
pathways and processes to restrict selection to a single gene
from each pathway or process. Alternatively, one could attempt
to identify approximately uncorrelated marker genes via thresh-
olding of the empirical gene–gene correlation matrix for each
component cell type.

The accuracy of correlation-based network estimates fol-
lowing computational deconvolution is dependent on the per-
formance of the deconvolution algorithm as well as factors
that affect network estimation even in pure samples, such as
sample size and the strength of the true co-expression. When
the true network structure was defined to include weaker rela-
tionships (down to a correlation of 0.3), performance decreased
substantially. This may be due to the deconvolution algorithm
performing poorly or a limitation of correlation-based network
estimation with limited sample size. The complex interplay
between deconvolution methodology and correlation-based net-
work estimation warrants further investigation.

In this manuscript, we have focused on correlation-based
network estimation; however, two other co-expression network
estimation categories should be noted: information theoretic
and Bayesian [33]. Mutual information (MI) is an information-
theoretic measure that captures nonlinear dependences
between genes. Another popular network estimation method,
ARACNE [4, 16], begins by calculating the MI between each pair
of genes. Finally, Bayesian networks encode causal relationships
or hierarchical structure between genes in a directed acyclic
graph. A rich collection of Bayesian network learning algorithms
are implemented in the R package bnlearn [29]. We suspect that
these methods of estimating co-expression networks are also
susceptible to tissue-level co-expression induced by variable
cellular composition. It would be relatively straightforward to
apply the assessments described in this manuscript to other
types of co-expression networks.

An alternative to analyzing complex tissue samples is to
measure cellular expression in a more homogeneous population
obtained from cell culture, laser capture microdissection, cen-
trifugation or fluorescence-activated cell sorting. These meth-
ods simplify the assessment of cell-type-specific co-expression;

however, they often fail to determine the true biology of an
organ where cell–cell interactions are critical to transcriptomic
expression. Moreover, these methods often result in residual
compositional heterogeneity, the introduction of technical
artifacts, expression changes due to cell culture and/or RNA
degradation [8, 30]. Therefore, it is often necessary to estimate
cell-type-specific co-expression from tissue gene expression
data.

Key Points
• The observed correlation between genes in tissue sam-

ples can be decomposed into the attenuated cell-type-
specific correlation and the correlation induced by vari-
ance into cellular composition.

• Co-expression in tissue samples is often dominated by
varying cellular composition.

• The ability of current deconvolution methods to provide
accurate estimates of gene–gene correlation depends
upon the covariance between marker genes within each
component cell type.

• Uncorrelated cell-type-specific markers appear to be
ideally suited to deconvolute both the expression and
co-expression patterns of an individual cell type.

Supplementary Data

Supplementary data are available at Briefings in
Bioinformatics.
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