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Abstract: Chronic obstructive pulmonary disease (COPD) is one of the leading causes of mortality
and contributes to high morbidity worldwide. Patients with COPD have a higher risk for acute
respiratory failure, ventilator dependence, and mortality after hospitalization compared with the
general population. Accurate and early risk detection will provide more information for early
management and better decision making. This study aimed to build prediction models using patients’
characteristics, laboratory data, and comorbidities for early detection of acute respiratory failure,
ventilator dependence, and mortality in patients with COPD after hospitalization. We retrospectively
collected the electronic medical records of 5061 patients with COPD in three hospitals of the Chi Mei
Medical Group, Taiwan. After data cleaning, we built three prediction models for acute respiratory
failure, ventilator dependence, and mortality using seven machine learning algorithms. Based on
the AUC value, the best model for mortality was built by the XGBoost algorithm (AUC = 0.817), the
best model for acute respiratory failure was built by random forest algorithm (AUC = 0.804), while
the best model for ventilator dependence was built by LightGBM algorithm (AUC = 0.809). A web
service application was implemented with the best models and integrated into the existing hospital
information system for physician’s trials and evaluations. Our machine learning models exhibit
excellent predictive quality and can therefore provide physicians with a useful decision-making
reference for the adverse prognosis of COPD patients.

Keywords: chronic obstructive pulmonary disease; machine learning; prediction model; acute
respiratory failure; ventilator dependence; mortality

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a long-term, systemic inflammatory
disease. It leads to the destruction of the lung parenchyma, small airway inflammation, and
fibrotic changes [1]. After the lung tissue becomes damaged and scarred, pulmonary fibrosis
ensues, resulting in irreversible airflow and airway obstructions even after bronchodilator
treatment [2]. COPD is the third leading cause of death in the world with 3.23 million
mortalities in 2019 alone [3]. One of the most important treatment goals for patients with
COPD is to reduce the occurrence of acute exacerbations [4]. Frequent acute exacerbation
results in the rapid decline of lung function [5], leading to frequent hospital admission,
acceleration of disease progression, acute respiratory failure, ventilator dependence, and
increased risk for mortality [6]. Previous studies used different factors to predict acute
respiratory failure [7], ventilator dependence [8], and mortality [9].

Many healthcare systems and design practitioners need an evidence-based approach to
facilitate treatment planning and decision making [10]. Artificial intelligence and machine
learning improving access to care, increasing accuracy, decreasing cost, and providing the
greatest value enable physicians more efficiency to treat patients [11,12].
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Over the past years, artificial intelligence and machine learning approaches have
been acceleratingly applied in medicine and the health care system. Machine learning
approaches can improve care allocation and risk prediction in breast cancer [13], stroke
imaging [14], heart failure diagnosis, classification [15], and readmission risk [16] and
assessment of coronary artery disease in cardiac computed tomography [17]. Computer
science is drastically improving and being combined with new algorithms based on neural
network methods, allowing enormous progress in the development of machines capable of
performing tasks for disease research and prediction [18]. Previous studies used artificial
intelligence for the respiratory medicine [19–23] and diagnosis of COPD [24], while some
looked into environmental factors, lifestyle data, and symptoms for the early detection of
acute exacerbation in COPD [25]. However, there is currently no study that investigated the
possibility of having acute respiratory failure, ventilator dependence, and mortality after
hospitalization in patients with COPD using modern artificial intelligence and machine
learning. Our study aims to characterize high-risk COPD patient groups and identify the
factors that potentially increase the risk for acute respiratory failure, ventilator dependence,
and mortality using machine learning for patients with COPD.

2. Materials and Methods
2.1. Study Design, Setting, and Samples

This retrospective study collected the data of patients with COPD (pulmonary ob-
struction) with either emergency, outpatient, or inpatient orders from the three hospitals
of Chi Mei Medical Group in Taiwan (1 medical center, 1 regional hospital, and 1 district
hospital), from 1 January 2010 to 31 December 2019, whose first six diagnosis codes are
ICD-9: 490, 491,492, 496 or ICD-10: J41, J42, J43, J44. Data of patients who were less than 20
years old at the time of diagnosis and those with incomplete records, missing values, and
ambiguous values were excluded from the study. Overall, data from 5061 patients were
included for the predictive model analysis (Figure 1).
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2.2. Feature and Outcome Variables

We chose 3 outcome variables to establish the prediction models: (1) mortality (in-
hospital), (2) acute respiratory failure (in-hospital), and (3) ventilator dependence (continu-
ous use of a respirator for 21 days during hospitalization).
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Furthermore, based on literature evidence and clinical experience, this study included
multiple factors (features) of demographics and clinical information that affect the three
outcome variables, including age, gender, BMI, vital signs of body temperature (BT), pulse,
Glasgow Coma Scale (GCS) and respiratory rate (RR; the worst record in-hospital), SPO2
(the worst record in-hospital), WBC, Hb, platelet, BUN, CRP, Na, K, PH, Pao2, Paco2, Hco3,
and presence of comorbidities (e.g., diabetes, hypertension, pneumonia, etc.).

2.3. Model Building and Evaluation

For maximizing model performance, we used all the variables (28, usually available in
clinical) to build our prediction models without performing any feature selection process in
advance. The data were randomly stratified into a training dataset for model building (70%)
and a testing dataset for model validation (30%). The overall research process is shown in
Figure 1. Because there were fewer positive classes (outcomes to be predicted such as death,
etc.) in the clinic, the SMOTE method (synthetic minority over-sampling technique) [26]
was used to improve the data imbalance in the training dataset. Each outcome was paired
with 7 machine learning algorithms to build the predictive models. These algorithms
include: (1) logistic regression, (2) random forest, (3) Support Vector Machine (SVM),
(4) K-nearest neighbor (KNN), (5) LightGBM, (6) XGBoost, and (7) multilayer perceptron
(MLP). Python and Scikit.learn machine learning tools were used.

Grid search with 5-fold cross-validation was used for tuning hyperparameters to build
the best models based on the training dataset. Hyperparameter tuning was conducted by
giving ranges of specific hyperparameter values manually, such as {num_iterations: (100,
1000), max_depth: (–1,4), learning_rate: (0, 0.001), feature_fraction: (0.6, 1), num_leaves:
(10, 31)} for LightGBM model, {n_estimators: (100, 200, 500, 700), max_features: (‘auto’,
‘sqrt’, ‘log2’), max_depth: (5, 6, 7, ’None’), criterion: (‘gini’)} for Random Forest model.

After a model was built, we then used the testing dataset to validate the models with
well-defined model performance indicators of accuracy, sensitivity, specificity, and AUC
(area under the receiver operating characteristic curve). The model with the highest AUC
value was regarded as the best model and exported as model file (PKL file in Python) for
further implementing a prediction system for practical use.

3. Results

There were 38,480 raw samples collected; after applying the exclusion criteria, a total
of 5061 were used for model building and analysis. Table 1 shows that the mean age of
patients was 77 years old and that 67% were males while 33% were females. Spearman
correlation analysis (see Figure 2) identifies the correlation between the outcome and each
feature. For mortality and ventilator dependence, the most relevant features were SPO2,
BUN, and GCS, while for acute respiratory failure, the most relevant features were Paco2,
PH, and GCS.
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Table 1. Demographics.

Feature Overall
Mortality

p-Value
Acute Respiratory Failure

p-Value
Ventilator Dependence

p-ValueNo Yes No Yes No Yes

5061 4100 961 4580 481 3980 1081

Age, mean (SD) 77.8 (11.4) 77.3 (11.4) 80.2 (11.2) <0.001 77.9 (11.3) 77.1 (12.2) 0.159 77.2 (11.3) 79.9 (11.4) <0.001
Sex_female, n (%) 1673 (33.1) 1326 (32.3) 347 (36.1)

0.028
1512 (33.0) 161 (33.5)

0.879
1289 (32.4) 384 (35.5)

0.057Sex_male, n (%) 3388 (66.9) 2774 (67.7) 614 (63.9) 3068 (67.0) 320 (66.5) 2691 (67.6) 697 (64.5)
BMI, mean (SD) 23.5 (5.4) 23.8 (5.6) 22.1 (4.5) <0.001 23.5 (5.4) 23.4 (6.1) 0.756 23.8 (5.5) 22.3 (4.8) <0.001
BT, mean (SD) 37.1 (1.1) 37.1 (1.1) 37.0 (1.1) 0.039 37.1 (1.1) 37.0 (1.1) 0.024 37.1 (1.1) 37.0 (1.1) 0.001
Pulse, mean (SD) 101.9 (23.8) 102.0 (22.9) 101.4 (27.3) 0.529 101.2 (23.5) 108.5 (26.0) <0.001 102.0 (22.8) 101.5 (27.3) 0.648
GCS, mean (SD) 13.2 (3.1) 13.4 (2.9) 12.1 (3.7) <0.001 13.4 (2.9) 11.6 (4.2) <0.001 13.5 (2.9) 12.1 (3.7) <0.001
RR, mean (SD) 21.7 (6.0) 21.4 (5.5) 22.8 (7.8) <0.001 21.5 (5.5) 23.5 (9.3) <0.001 21.3 (5.0) 23.2 (8.7) <0.001
SPO2, mean (SD) 84.9 (16.9) 87.3 (14.6) 74.9 (21.7) <0.001 85.8 (16.0) 77.2 (22.7) <0.001 87.8 (13.8) 74.5 (22.2) <0.001
Lab data

WBC, mean (SD) 10.3 (4.8) 10.2 (4.7) 10.7 (5.1) 0.01 10.3 (4.8) 11.1 (5.2) 0.001 10.2 (4.8) 10.7 (5.0) 0.003
Hb, mean (SD) 12.1 (2.4) 12.3 (2.4) 11.3 (2.5) <0.001 12.1 (2.4) 12.5 (2.6) 0.001 12.3 (2.4) 11.4 (2.5) <0.001
Platelet, mean (SD) 174.1 (49.3) 176.1 (47.7) 165.6 (54.5) <0.001 173.5 (49.6) 179.7 (46.1) 0.006 176.1 (47.7) 167.0 (54.2) <0.001
BUN, mean (SD) 28.4 (18.0) 26.4 (16.4) 37.0 (21.7) <0.001 28.4 (18.1) 28.5 (16.9) 0.952 26.3 (16.3) 36.3 (21.6) <0.001
Creatinine, mean (SD) 1.5 (1.3) 1.4 (1.2) 1.7 (1.5) <0.001 1.5 (1.3) 1.4 (1.2) 0.173 1.4 (1.2) 1.7 (1.5) <0.001
CRP, mean (SD) 53.5 (63.9) 50.2 (62.4) 67.5 (68.3) <0.001 53.5 (63.7) 53.7 (66.0) 0.958 50.0 (62.4) 66.4 (67.7) <0.001
Na, mean (SD) 135.2 (6.9) 135.5 (6.4) 133.7 (8.6) <0.001 135.1 (6.9) 135.6 (7.6) 0.232 135.5 (6.4) 133.8 (8.5) <0.001
K, mean (SD) 3.96 (0.69) 3.92 (0.67) 4.11 (0.77) <0.001 3.94 (0.68) 4.15 (0.76) <0.001 3.92 (0.66) 4.10 (0.78) <0.001
ALT, mean (SD) 42.3 (138.7) 39.7 (132.8) 53.5 (161.0) 0.014 40.2 (114.1) 62.1 (279.5) 0.089 39.4 (133.5) 53.2 (155.9) 0.008
Glucose, mean (SD) 166.3 (86.2) 165.6 (85.7) 169.2 (88.6) 0.253 165.3 (87.3) 175.2 (75.3) 0.007 165.6 (85.8) 168.7 (87.8) 0.3
PH, mean (SD) 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) 0.018 7.4 (0.1) 7.3 (0.1) <0.001 7.4 (0.1) 7.4 (0.1) <0.001
Pao2, mean (SD) 139.4 (78.5) 140.9 (78.2) 133.1 (79.5) 0.006 138.6 (76.9) 147.2 (92.0) 0.049 140.6 (77.6) 135.1 (81.5) 0.045
Paco2, mean (SD) 40.0 (16.8) 40.2 (16.7) 38.9 (17.5) 0.036 38.3 (14.1) 56.1 (28.3) <0.001 39.9 (16.2) 40.3 (19.0) 0.517
Hco3, mean (SD) 24.4 (6.6) 24.6 (6.5) 23.4 (7.1) <0.001 24.0 (6.2) 27.7 (9.0) <0.001 24.5 (6.4) 23.9 (7.4) 0.006

Comorbidity
DM, n (%) 1775 (35.1) 1412 (34.4) 363 (37.8) 0.056 1614 (35.2) 161 (33.5) 0.47 1366 (34.3) 409 (37.8) 0.035
Hypertension, n (%) 2920 (57.7) 2375 (57.9) 545 (56.7) 0.516 2670 (58.3) 250 (52.0) 0.009 2308 (58.0) 612 (56.6) 0.437
CVA, n (%) 839 (16.6) 657 (16.0) 182 (18.9) 0.032 774 (16.9) 65 (13.5) 0.066 642 (16.1) 197 (18.2) 0.111
CHF, n (%) 1293 (25.5) 1035 (25.2) 258 (26.8) 0.325 1173 (25.6) 120 (24.9) 0.793 1009 (25.4) 284 (26.3) 0.565
Pneumonia, n (%) 3251 (64.2) 2617 (63.8) 634 (66.0) 0.226 2915 (63.6) 336 (69.9) 0.008 2542 (63.9) 709 (65.6) 0.313

Note: SD, standard deviation.
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In this study, three outcome prediction models were established for predicting mortal-
ity, acute respiratory failure, and ventilator dependence. We used seven machine learning
algorithms to build the three models. We used grid search with 5-fold cross-validation for
each algorithm to obtain the best hyperparameters and build the final production models.
The results showed that the XGBoost algorithm obtained the highest AUC value (0.817) for
mortality as its prediction model (see Table 2 and Figure 3), the random forest algorithm
had the highest AUC value (0.804) for acute respiratory failure (see Table 3 and Figure 4),
and LightGBM algorithm had the highest AUC value (0.809) for ventilator dependence
(see Table 4 and Figure 5).

Table 2. Testing results of the predictive models for mortality.

Algorithm Accuracy Sensitivity Specificity AUC

Logistic Regression 0.733 0.733 0.733 0.793
Random Forest 0.735 0.736 0.734 0.811

SVM 0.768 0.691 0.786 0.789
KNN 0.633 0.483 0.668 0.604

LightGBM 0.744 0.743 0.744 0.811
MLP 0.683 0.681 0.683 0.758

XGBoost 0.727 0.733 0.726 0.817
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Table 3. Testing results of the predictive models for acute respiratory failure.

Algorithm Accuracy Sensitivity Specificity AUC

Logistic Regression 0.738 0.736 0.738 0.791
Random Forest 0.747 0.75 0.747 0.812

SVM 0.784 0.604 0.803 0.772
KNN 0.694 0.451 0.719 0.616

LightGBM 0.756 0.75 0.756 0.804
MLP 0.71 0.708 0.71 0.766

XGBoost 0.723 0.722 0.723 0.785
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Table 4. Testing results of the predictive models for ventilator dependence.

Algorithm Accuracy Sensitivity Specificity AUC

Logistic Regression 0.72 0.719 0.72 0.79
Random Forest 0.733 0.735 0.733 0.803

SVM 0.755 0.596 0.798 0.765
KNN 0.647 0.472 0.695 0.618

LightGBM 0.739 0.738 0.739 0.809
MLP 0.699 0.704 0.698 0.759

XGBoost 0.724 0.719 0.725 0.788

In addition, feature importance graph refers to techniques that assign a score to input
features based on how useful they are at predicting a target variable in graphic form.
Thus, during the model training process, the feature importance graph with criteria of
information gain was utilized in Python to judge the importance of each feature to the
model. It showed that the SPO2, GCS, and gender were the three most important features
of the mortality model (see Figure 6); PH, SPO2, and GCS were the most important features
of the acute respiratory failure model (see Figure 7); and SPO2, GCS, and RR were the most
important features of the ventilator dependence model (see Figure 8).
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To verify the usefulness and feasibility of our models in clinical, we asked the hospital’s
information system department to design a web service application with our best models
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and integrate it into the existing hospital information system (HIS, here, is inpatient
physician ordering system). The predictive models were implemented in Python language,
while the web service was implemented in MS Visual Studio .NET tool. Figure 9 shows the
snapshot of the web service application.
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Figure 9. A snapshot of AI web service application for predicting outcomes of in-hospital COPD patients.

Once a COPD patient is hospitalized, the physician can press the “AI button” in the
existing inpatient physician ordering system when they need AI assistance, and a risk
prediction webpage of the patient will automatically appear (Figure 9) without the need
to manually enter patient information (features). The webpage graphically displays the
risk probabilities of death, MV dependence, and acute respiratory failure; the probability
greater than or equal to 50% means the risk tends to occur while less than 50% means tends
not to occur—the greater the probability, the higher the risk. As shown in Figure 9, the
AI predicts the patient will not die or have MV dependence and acute respiratory failure
while hospitalized because the risks are all below 50%.

We demonstrated this AI web service application to three thoracic physicians for
evaluation and trial. They all gave a high degree of acceptance relating to the graphic
interface and reasonable risk values and believed that it was a significant help for clinical
decision making.

4. Discussion

The features in this study included the most demographic data and clinical informa-
tion, such as body mass index, gender, age, blood pressure, body temperature (BT), pulse,
respiratory rate (RR), oxygen saturation level, GCS, and laboratory data (i.e., white blood
cell, hemoglobin, platelet, blood urea nitrogen, creatinine, C-reactive protein, sodium, potas-
sium, Alanine transaminase, glucose, PH, PaO2, PaCO2, and HCO3). We also included
common and important comorbidities such as diabetes, hypertension, cardiovascular
disease, congestive heart failure, and pneumonia. All of the mentioned features were
employed to predict the outcome models (in-hospital mortality, acute respiratory failure
during hospitalization, and ventilator dependence). These features are commonly used in
clinical practice and are important markers in a patient’s health; thus, there was no need
for the physician to deliberately arrange the examination. Moreover, this study analyzed
systemic diseases and applied them to predict the prognosis of patients with COPD.
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To our knowledge, this is one of few studies that used machine learning and big data
techniques to practically predict the likelihood of patients with COPD to acquire acute
respiratory failure, become ventilator dependent, and have increased chances for mortality
after hospitalization. This study was the first to analyze the daily available data on patients
with COPD from the system of three Chi Mei hospitals, including the medical center,
regional hospital, and community hospital using different machine learning approaches
(i.e., logistic regression, random forest, SVM, KNN, LightGBM, ML, and XGBoost) to select
the best models to predict a patient’s outcome (i.e., acute respiratory failure, ventilator
dependence, and mortality). The performance of each model was assessed using sensitivity,
specificity, and AUROC metrics. This is by far the most comprehensive study that used
machine learning models to predict COPD outcomes.

Goto et al. [27] used the National Hospital and Ambulatory Medical Care Survey ED
data to identify patients with COPD exacerbation. They employed routinely available triage
data as predictors (e.g., patient characteristic, arrival mode, vital signs, chief complaint,
comorbidities, etc.) and four machine learning-based models (i.e., Lasso regression, random
forest, boosting, and deep neural network) and compared them with traditional logistic
regression. In addition to patient characteristics, vital signs, and comorbidities, our study
added more laboratory data, utilized seven machine learning-based models, and focused
on acute respiratory failure, ventilator dependence, and mortality as outcomes.

Peng and colleagues [28] used C5.0 decision tree classifier to predict the prognosis
of patients with COPD with acute exacerbation. Their overall accuracy was 80.3%, with
95% CI (0.6991, 0.8827) and Kappa of 0.6054. The models established in this study had an
accuracy of more than 80%.

In addition, Shah et al. [29] recruited 110 patients and followed them for more than
35,000 days. They used a finite-state machine-based approach to predict the acute exac-
erbation of COPD during home monitoring. They found that vital signs obtained from
a pulse oximeter (i.e., respiratory rate, pulse rate, and oxygen saturation) could predict
exacerbation events and that oxygen saturation was more predictive than respiratory rate
and pulse rate. Our study also integrated these vital signs and the results showed that they
improved the positive predictive accuracy of the machine learning. We summarized the
comparison of these works in Table 5.

Previous studies mostly focused on acute exacerbation of COPD [30–32] and little
attention has been paid to the impact of acute respiratory failure, ventilator dependence,
and mortality. All of these outcomes are important for patients, patient’s families, and the
medical team. The lack of patient-centered care and early prediction of respiratory failure
and mortality could contribute to poor outcomes, suboptimal use of medical resources,
and deteriorated psychological sequelae of patients and family members [33]. In addition
to appropriate diagnosis and management of COPD [34], it is important to determine
the possible outcomes of patients with COPD after hospitalization as early as possible
so that prompt and effective treatment could be given to improve their prognosis. One
of the most important tasks of a physician is to inform the patient and their loved ones
about the seriousness of their condition [35]. The information may alter a patient’s view of
their future and cause additional stress [36]. Therefore, more precise and early detection
methods are needed to ensure that the information about a patient’s prognosis is as accurate
as possible so as not to add more stress and anxiety to the patient and their family [37].
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Table 5. A comparison with related studies.

Study This Study [27] [28] [29]

Patient type Inpatient COPD
Emergency department,

Asthma or COPD
exacerbation

Inpatient AECOPD COPD at home

Patient number 5061 3206 410 110

Outcome

1. Ventilator
dependence

2. Respiratory failure
3. Mortality

1. Critical care outcome
2. Hospitalization

outcome

Classifying the severity
of AECOPD

Predicting COPD
exacerbations

Study method Seven machine leaning
methods

Four machine leaning
methods

Four machine leaning
methods

One machine leaning
method

Real world
implementation

Yes.
A predictive

application with AI
models was

implemented and
integrated into the

existing HIS

N/A N/A N/A.

Input data

Patient demographic,
vital signs, Glasgow
Coma Scale (GCS),

blood gases, laboratory
results, comorbidities

Age, sex, mode of
arrival, vital signs,

common chief
complaints, asthma or

COPD status,
comorbidities

Vital signs, medical
history, comorbidities,
various inflammatory
indicators, laboratory

results

Vital signs

Testing results (AUC)

Ventilator dependence
(0.618–0.809)

Critical care outcome
(0.76–0.80)

Predicting the
prognosis

(0.667–0.803)

Predicting COPD
exacerbations

(0.682)

Acute respiratory
failure

(0.616–0.812)

Hospitalization
outcome

(0.82–0.83)

Mortality
(0.604–0.817)

Year 2021 2018 2020 2017

The current study used common and important features to predict COPD prognosis.
Further, the machine learning techniques that we established could provide physicians
an opportunity to develop algorithms that integrated complex interaction factors to offer
different possible prognoses to patients with COPD [38]. The addition of patient demo-
graphics, laboratory data, and comorbidities in this study to predict the possible outcomes
of patients with COPD was successfully modeled. From the optimal models, we were also
able to identify the important features that could affect the patients’ outcomes. The results
indicated that SpO2 and GCS were the most important features for acute respiratory failure
and ventilator dependence with the addition of gender for mortality; thus, compared with
other features, they are the most crucial outcome predictors.

Our study also has some limitations that need to be addressed. First, although our data
included different hospital levels, from a medical center to a regional hospital, to represent
different disease severity, these only came from three hospitals in Taiwan. Future studies
could include more hospitals for a more representative sample. Second, the models were
constructed based on the Asian population with COPD; thus, it may not be accurate for the
Caucasian population. Third, smoking history and duration were considered important
risk factors in COPD prognosis; however, this study was not able to include them because
of failure to accurately retrieve this information from the electronic health record.
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5. Conclusions

To build a generic machine model to help physicians and support their diagnosis of
disease progression and risk of death for patients with COPD, this study developed a ma-
chine learning classifier using patients’ features such as basic health indicators, comorbidity
indicators, and inflammatory indicators. We also implemented and integrated a web-based
predictive application into the existing HIS and obtained high acceptance from physicians
after initial use. We believe that predicting the adverse outcomes of patients with COPD
using machine learning algorithms is a promising research approach to help physicians
assess the severity of the disease after hospital admission at the earliest possible time.
These could guide them in choosing the most appropriate treatment strategies to improve
the prognosis of their patients. For follow-up study, researchers can include more potential
variables and perform a feature selection process to improve the quality of the models.
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