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Gilbert syndrome is assoCiated with 
lower Gain in fat mass durinG later life
Gilbert syndrome (GS) is characterised by a 
lifelong genetically determined elevation of 
plasma unconjugated bilirubin levels.1 This 
typically entails decreased hepatic expres-
sion of the enzyme that conjugates free bili-
rubin to glucuronic acid, uridine-diphos-
phoglucuronate glucuronosyltransferase 
1A1 (UGT1A1); this decreased activity 
reflects homozygosity for variant alleles in 
which promoter mutations decrease but 
do not eliminate transcription. In addi-
tion, genetic upregulation of bilirubin 
production—reflecting upregulation of 
haem oxygenase activity or increased haem 
synthesis—also contributes to the eleva-
tion of unconjugated bilirubin observed in 
subjects with GS.1–3 Diagnosis of GS gener-
ally requires a plasma bilirubin of 20 µM or 
above—alternatively, 1.2 mg/dL—but this 
diagnosis is not entirely objective, as non-ge-
netic factors such as fasting status, gastro-
intestinal motility, enterohepatic bilirubin 
reabsorption/secretion and degree of light 
exposure can cause bilirubin levels to vary 
considerably over time. Moreover, many 
individuals carrying genetic variants which 
decrease hepatic UGT1A1 activity maintain 
plasma bilirubin levels below the cut-off 
limits for GS diagnosis; these variants alone 
are not sufficient to guarantee a GS diag-
nosis. In any case, the key point to recognise 
is that tissues of properly diagnosed subjects 
with GS are exposed to quite significantly 
elevated unconjugated bilirubin levels over 
the course of their lives.

A recent cross-sectional epidemiolog-
ical study evaluating subjects with GS has 
achieved some remarkable findings.4 This 
study enrolled 124 subjects with GS (average 
plasma unconjugated bilirubin 30.7 µM) 
and 124 age-matched and gender-matched 
controls (8.7 µM). This study was unique in 

that it segregated the groups by age; subjects 
under and over age 35 were analysed sepa-
rately. One of the most striking findings was 
this: whereas among the subjects under 35 
body mass index (BMI) was only slightly but 
significantly lower in the GS group (22.5 vs 
23.5, p<0.05), among those over 35 there 
was a large disparity: 23.8 vs 27.2 (p<0.001). 
The difference in body fat content in the 
over-35 group was even more stark: 21.8% 
in the subjects with GS vs 29.3% in the 
controls (p<0.01). These findings suggest 
that elevated unconjugated bilirubin—and/
or possibly genetic upregulation of haem 
oxygenase activity—somehow prevents gain 
of body fat during ageing.

A recent study of diet-induced obesity 
in rats provides some confirmation of this 
idea.5 Rats fed a diet high in fats and sugar 
were injected intraperitoneally with bili-
rubin or vehicle for 14 days. Bilirubin treat-
ment prevented a deterioration in glucose 
tolerance and suppressed weight gain. In 
addition, compared with control mice, 
bilirubin-treated mice had reductions in 
total cholesterol and leptin and increases 
in adiponectin. A trend towards decreased 
calorie consumption in the bilirubin-treated 
rats also nearly achieved statistical signifi-
cance (p=0.06).

Gunn rats, like humans with GS, are 
characterised by a genetically determined 
deficit of hepatic UGT1A1 activity and a 
lifelong elevation of unconjugated plasma 
bilirubin.6 It therefore is pertinent to note 
that aged Gunn rats are characterised by 
a lower level of visceral fat than is seen in 
littermates with normal hepatic UGT1A1 
activity.7 Moreover, these rats enjoy better 
glucose tolerance, reduced oxidative stress 
and decreased serum levels of proinflam-
matory cytokines, suggesting that metabolic 
syndrome and systemic inflammation are 
ameliorated in such rats.
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unConjuGated bilirubin funCtions physioloGiCally to 
inhibit nadph oxidase Complexes
Physiological intracellular levels of unconjugated bili-
rubin have been shown to inhibit certain common 
isoforms of NADPH oxidase.8–12 This phenomenon 
likely explains the profound antioxidant activity of 
haem oxygenase, which cleaves haem to yield biliverdin, 
carbon monoxide and free iron; biliverdin is then rapidly 
reduced by the ubiquitously expressed enzyme biliverdin 
reductase to yield bilirubin. Expression of inducible form 
of haem oxygenase, HO-1, can be boosted by oxidative 
stress—often derived from NADPH oxidase activity; the 
resultant production of bilirubin feeds back to quell 
this oxidative stress.11 Although bilirubin can also act 
as a direct oxidant scavenger, its physiological intracel-
lular level—in the low nanomolar range—is too low to 
compete in this regard with other intracellular scaven-
gers (eg, glutathione, ascorbate) present in millimolar 
concentrations.13

Oxidative stress in adipocytes, stemming largely from 
NADPH oxidase activity, appears to play a key role in the 
induction of insulin resistance and the skewing of adipo-
kine and cytokine production in hypertrophied adipo-
cytes.14–19 Hence, bilirubin and haem oxygenase activity 
could be expected to aid maintenance of adipocyte 
insulin sensitivity. Indeed, plasma levels of unconjugated 
bilirubin have been found to correlate inversely with 
risk for metabolic syndrome and diabetes in prospec-
tive epidemiological studies, as confirmed in a recent 
meta-analysis.20 However, insulin induces uptake and 
retention of fatty acids by adipocytes; hence, bilirubin’s 
presumed ability to aid maintenance of adipocyte insulin 
sensitivity would be expected to boost body fat content, 
not decrease it. Hence, we need to look elsewhere for 
an explanation of the decreased risk for body fat gain in 
subjects with GS.

miCroGlial aCtivation as a mediator of hypothalamiC 
leptin resistanCe: a tarGet for bilirubin?
One of the phenomena that promote weight gain as 
people grow older is the development of hypothalamic 
leptin resistance.21 The hormone leptin is produced 
primarily in adipocytes, and its plasma levels rise as 
body fat mass increases. Leptin functions to counteract 
inappropriate weight gain by acting on leptin-respon-
sive neurons in the hypothalamus to suppress appe-
tite while also boosting metabolic rate via sympathetic 
activation.22–24 Of particular interest in this regard are 
leptin-responsive neurons in the arcuate nucleus of the 
mediobasal hypothalamus (MBH); the MBH has a poorly 
developed blood–brain barrier, and hence hormones, 
free fatty acids and other plasma components have ready 
access to it.25 Leptin-responsive neurons in the arcuate 
nucleus boost anorexic signalling by increasing neuronal 
release of pro-opiomelanocortin, while suppressing 
release of the orexigenic hormones neuropeptide Y 
and agouti-related peptide within this nucleus. The 

physiological importance of this mechanism, at least in 
mice, is confirmed by the fact that genetic strains of mice 
which are incapable of making either leptin (ob/ob) or 
functional leptin receptors (db/db) overeat and become 
obese and diabetic.26 27

Unfortunately, efforts to develop injectable leptin as an 
antiobesity drug have not been successful, as overweight 
subjects are resistant to its suppressive impact on appetite. 
Studies in rodents with diet-induced obesity suggest that 
this phenomenon reflects a loss of leptin responsiveness 
that is specific to the arcuate nucleus.21 28–30 Activated 
leptin receptors trigger JAK2-mediated phosphorylation 
of STAT3, which then migrates as a homodimer to the 
nucleus to modulate gene transcription. In lean chow-fed 
rodents, a leptin injection rapidly boosts pSTAT3 levels in 
the arcuate nucleus and suppresses feeding; this response 
is substantially blunted in obese rodents. In contrast, 
leptin is able to raise pSTAT3 levels in other leptin-re-
sponsive regions of the brain in obese rodents.31

Although the molecular biology underlying hypo-
thalamic leptin resistance in obesity is still somewhat 
obscure, studies focusing on high-fat/high-sugar diet-in-
duced obesity in rodents have yielded some intriguing 
findings. In particular, activation and proliferation of 
microglia in the MBH are noted in rodents with diet-in-
duced obesity.32–34 The microglial activation noted in this 
situation appears to be mediated primarily by saturated 
fatty acids interacting with toll-like receptor-4 (TLR4) 
expressed by microglia.32 35 36 (Plasma-derived fetuin-A 
forms a trimeric complex with fatty acids and TLR4, cata-
lysing this interaction.37–39) Hence, TLR4 antagonists—
but not TLR2 antagonists—prevent microglial activation 
and development of leptin resistance in rats fed a fatty 
diet.35 Microglial proliferation is also noted in this circum-
stance, and measures which prevent microglial prolifera-
tion have likewise been found to prevent development of 
leptin resistance in rodents.32 33 How activated microglia 
act to impair leptin responsiveness in the arcuate nucleus 
is still unclear.

A key role for saturated fatty acids in driving leptin 
resistance might help to explain why risk for obesity is 
lower in those who habitually consume plant-based or 
‘Mediterranean’ diets in which saturated fats constitute 
a relatively low percentage of total fatty acids.40–47 Risk 
for type 2 diabetes has been found to be markedly lower 
in individuals who follow a plant-based diet.48 Increased 
hepatic production of fibroblast growth factor 21 may 
also contribute to the obesity prevention associated with 
plant-based diets of modest protein content.49–51

Activation of microglia via TLR4—as with lipopoly-
saccharides—has been shown to entail activation of 
Nox2-dependent NADPH oxidase.52–54 Moreover, this 
activation is required for production of toxic oxidants 
such as peroxynitrite, and increased production of 
proinflammatory cytokines and prostanoids. Hence, 
it is straightforward to propose that bilirubin may have 
the ability to downregulate microglial activation by 
diminishing NADPH oxidase activation.55 In light of the 
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foregoing discussion, a corollary of this is that elevated 
bilirubin—whether derived from plasma or from local 
haem oxygenase activity—may oppose the evolution of 
leptin resistance by inhibiting the activation (and likely 
proliferation) of microglia in the MBH. The ability of the 
HO-1 inducer haemin to alleviate hyperleptinaemia—a 
marker for leptin resistance—in fat-fed rats appears 
consistent with this possibility.56

With respect to bilirubin and microglia, it should be 
noted that, when unconjugated bilirubin exceeds its 
solubility limit (70 nM), it can disrupt membranes and 
promote microglial activation.57 58 This explains the 
neural damage and microglial activation associated with 
perinatal bilirubin encephalopathy, which can occur in 
newborns whose livers have limited capacity to conjugate 
bilirubin at a time when the blood–brain barrier is poorly 
formed. Analogously, bilirubin neurotoxicity is seen 
in Crigler-Najjar syndrome, in which mutations of the 
UGT1A1 render it non-functional, and plasma bilirubin 
levels are roughly an order of magnitude higher than 
those seen in GS.59 The concentrations of unconjugated 
bilirubin which result from haem oxygenase induction 
appear to be below its solubility limit, as such induction 
tends to suppress microglial activation and provide neuro-
protection in rodent or cell culture models.60 In endothe-
lial cells, bilirubin’s antioxidant activity has been found to 
be half-maximal at 11 nM; hence, bilirubin can function 
physiologically as an important intracellular antioxidant 
in concentrations far below its solubility limit.

One of the cytokines whose expression by microglia 
is contingent on Nox2 activity is tumour necrosis factor-
alpha (TNFα).52 53 TNFα, via Nuclear factor-kappa beta 
(NF-kappaB) activation, provokes increased hypotha-
lamic expression of phosphotyrosine phosphatase-1A 
(PTP1B), which functions as an antagonist of leptin 
signalling by reversing activating tyrosine phosphoryla-
tion of JAK2.61–64 Hypothalamic PTP1B activity increases 
in response to high-fat diets in rodents, and neuronal 
PTP1B knockout mice fail to develop leptin resistance 
and obesity when fed such diets; a similar effect is seen 
when hypothalamic PTP1B activity is inhibited with anti-
sense oligonucleotides.61 65 66 Hence, the TNFα produced 
by microglia—and possibly other cytokines capable of 
inducing PTP1B in neurons—likely contributes to leptin 
resistance by boosting PTP1B expression.

Additionally, there is evidence that hypothalamic TNFα 
can oppose leptin resistance by additional mechanisms, 
likely including increased expression of suppressor 
of cytokine signalling-3 (SOCS-3).62 This protein, via 
an inhibitory interaction with JAK2, blocks all known 
signalling pathways activated by the leptin receptor. It 
is elevated in the hypothalamus of fat-fed rodents, and 
mice that are heterozygous for SOCS-3 gene deletion are 
resistant to diet-induced obesity.67 68 SOCS-3 is induced at 
the transcriptional level by leptin, and thus provides feed-
back regulation of leptin activity.69 TNFα can increase 
its expression by boosting the half-life of its mRNA, 
thereby amplifying the efficacy of this negative feedback 

mechanism.70 In obese mice whose leptin is clamped at 
a lower level similar to that of lean mice, an injection of 
leptin causes a normal rise in arcuate pSTAT3; this might 
reflect the fact that their baseline level of SOCS-3 in 
leptin-responsive arcuate neurons is relatively low.71

If we presume, not unreasonably, that hypothalamic 
leptin resistance tends to evolve and worsen gradually 
over a lifetime—possibly reflecting proliferation of acti-
vated microglia in the arcuate nucleus—then the fact 
that body composition is only slightly modified in young 
subjects with GS relative to controls may simply reflect 
the fact that bilirubin cannot influence leptin activity 
until leptin resistance begins to develop.

bilirubin-mimetiC strateGies for obesity prevention
These considerations may be of more than just theoret-
ical interest. Although bilirubin is too insoluble to be 
useful as a nutraceutical, and its precursor biliverdin is 
quite expensive to synthesise, the biliverdin derivative 
and homologue phycocyanobilin (PhyCB) is a prominent 
light-harvesting chromophore in many cyanobacteria 
and blue-green algae. Spirulina, a cyanobacterium tradi-
tionally used as a food in certain cultures, can contain 
about 0.6% PhyCB by dry weight.72 This likely explains 
why oral administration of spirulina—or of phycocyanin, 
the blue algal protein which carries PhyCB as a cova-
lently attached chromophore—has been found to exert 
profound antioxidant and anti-inflammatory effects in 
rodent models of a wide range of health disorders.72–74 
Protective effects of oral spirulina in rodent models of 
neurodegeneration may indeed reflect, in part, dimin-
ished activation of microglia; in particular, spirulina is 
effective in rodent models of Parkinson’s disease, in 
which activated microglia are suspected to play a key 
role in the destruction of dopaminergic neurons.55 75–78 
Although intakes of spirulina sufficiently high to exert 
important antioxidant activity are difficult to achieve in 
humans owing to the undesirable flavour and especially 
odour of spirulina, the development of PhyCB-enriched 
spirulina extracts suitable for nutraceutical use may make 
it far easier to achieve the benefits of PhyCB clinically.72

It may be noted that, in one of the very few controlled 
clinical studies in which ample doses of spirulina were 
administered—protease inhibitor-treated patients with 
HIV preselected for insulin resistance received 19 g daily 
of spirulina or soy protein—insulin sensitivity in the spir-
ulina-treated subjects, assessed by a short intravenous 
insulin tolerance test, roughly tripled.79 (The study was 
however marred by a high dropout rate in the spirulina 
group, as many of the subjects could not tolerate spiruli-
na’s flavour.)

Alternatively, it may prove feasible to induce an ‘iatro-
genic Gilbert syndrome’ by administering drugs or nutra-
ceuticals that inhibit UGT1A1 activity.13 80

If the hypothesis presented here is correct, the far 
lower body fat in older subjects with GS reflects the ability 
of bilirubin to suppress the activation and proliferation of 
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microglia in the MBH. The extent to which this expansion 
of activated microglia—and the associated impact on the 
function of leptin-responsive neurons—can be reversed 
by elevation of bilirubin (or administration of PhyCB) 
in patients who have already developed obesity with 
leptin resistance remains to be seen. Particularly because 
microglial mass increases, it may be rash to assume that 
this syndrome is fully reversible.81 If PhyCB does prove to 
have utility for controlling hypothalamic inflammation, 
its greatest impact on obesity will likely be achieved by 
long-term administration in a preventive mode.

In any case, studies evaluating the impact of bilirubin 
or PhyCB administration on the development of hypo-
thalamic leptin resistance in fat-fed rodents appear to be 
warranted. These studies could assess whether leptin’s 
ability to amplify pSTAT3 levels in the arcuate nucleus 
of fat-fed rats—while suppressing feeding—is boosted by 
concurrent administration of bilirubin or PhyCB.

Two studies have been published very recently in which 
inclusion of spirulina in the diet has been shown to 
inhibit gain in body weight and fat in rats fed a high-fat 
diet; these appear to be the first studies to have evaluated 
spirulina’s impact in this regard.82 83 Although neither 
of these studies focused on leptin function, the fact that 
markers of adipose tissue browning were higher in rats 
receiving spirulina is consistent with effective leptin func-
tion in these rats. Moreover, a double-blind, placebo-con-
trolled clinical trial has also emerged, in which spirulina 
supplementation (at only 2 g daily) was found to poten-
tiate loss of body fat, body weight, waist circumference 
and BMI in overweight subjects placed on a calorie-re-
stricted diet; reductions in triglycerides and C reactive 
protein were also greater in the spirulina group.84

preservinG and upreGulatinG hypothalamiC leptin 
siGnallinG as a strateGy for metaboliC health
Bilirubin mimesis may represent one example of a more 
general strategy for preventing or reversing inappropriate 
weight gain: counteracting hypothalamic leptin resist-
ance or upregulating hypothalamic leptin signalling.59 85

For example, histamine, acting via H1 receptors, func-
tions as a downstream mediator of hypothalamic leptin 
signalling, and this signalling can be upregulated by 
histidine supplementation.86 87 Rodent studies indicate 
that an increase in dietary histidine can increase hypo-
thalamic histamine levels, boost hypothalamic expres-
sion of histidine decarboxylase, inhibit food intake, 
increase sympathetic activity in fat tissue and decrease 
the size of the retroperitoneal fat pad.88–91 In rats fed a 
high-fat diet, an increase in dietary histidine attenuated 
weight gain and decreased markers for inflammation in 
adipose tissue.92 In a controlled clinical trial, overweight 
women with metabolic syndrome were supplemented 
with 4 g histidine daily or matching placebo for 12 
weeks; the group receiving histidine lost 2.7 kg of body 
fat and achieved improvements in insulin sensitivity 
and other parameters related to metabolic syndrome, 

changes that were significant relative to negligible 
changes in the placebo group.93 Moreover, cross-sec-
tional epidemiology has correlated increased dietary 
intake of histidine (absolutely or as a fraction of total 
protein) with lower daily calorie intake and decreased 
BMI and waist circumference.94 95 Conversely, chronic 
use of prescription H1-antagonist antihistamines has 
been linked to increased risk for obesity.96 Hence, histi-
dine supplementation may emerge as an additional 
strategy for aiding weight control by optimising leptin 
signalling.97

Maintaining effective androgen activity may support 
hypothalamic leptin signalling in men. The activated 
androgen receptor in neurons functions to suppress 
NF-kappaB-mediated induction of PTP1B.98 Hence, 
hypothalamic androgen activity may blunt the ability 
of activated microglia to induce leptin resistance. 
Reduction of testosterone levels associated with ageing 
(andropause), as well as androgen deprivation therapy 
in patients with prostate cancer, are known to increase 
the risk of weight gain and metabolic syndrome; 
conversely, restoration of youthful testosterone levels 
in ageing men has been found to be protective in these 
respects.99–103

Additional potential strategies for boosting hypo-
thalamic leptin signalling have been proposed. Orally 
available selective inhibitors of PTP1B may have poten-
tial as pharmaceuticals for restoring leptin responsive-
ness.104 105 In this regard, cinnamon, which contains 
a compound that can inhibit the rat homologue of 
PTP1B, has been shown to inhibit gain of body fat in 
rats fed a high-fat/high-fructose diet, and also has been 
found to reduce the BMI of women with polycystic 
ovary syndrome in a recent controlled study.106–108
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