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Background: Carotid atherosclerosis (CAS) is an important cause of stroke. Although
interactions between the gut microbiome and metabolome have been widely
investigated with respect to the pathogenesis of cardiovascular diseases, information
regarding CAS remains limited.

Materials and Methods: We utilized 16S ribosomal DNA sequencing and untargeted
metabolomics to investigate the alterations in the gut microbiota and plasma metabolites
of 32 CAS patients and 32 healthy controls. The compositions of the gut microbiota
differed significantly between the two groups, and a total of 11 differentially enriched
genera were identified. In the metabolomic analysis, 11 and 12 significantly changed
metabolites were screened in positive (POS) and negative (NEG) modes, respectively.
α-N-Phenylacetyl-L-glutamine was an upregulated metabolite in CAS patients detected
in both POS and NEG modes and had the highest | log2(fold change)| in POS mode. In
addition, transcriptomic analysis was performed using the GSE43292 dataset.

Results: A total of 132 differentially expressed genes (DEGs) were screened. Among the
upregulated DEGs in CAS patients, FABP4 exhibited the highest | log2(fold change)|.
Furthermore, FABP4 was positively associated with Acidaminococcus and had the
highest Spearman’s correlation coefficient and the most significant p-value among the
microbiota–DEG pairs.

Conclusion: In this study, we investigated the potential “microbiota–metabolite–gene”
regulatory axis that may act on CAS, and our results may help to establish a theoretical
basis for further specialized study of this disease.
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INTRODUCTION

Atherosclerosis (AS) is a diffuse, slowly progressing disease
that affects large- and medium-sized arteries. Advanced
atherosclerotic plaques can invade the arterial lumen, impeding
blood flow, and resulting in tissue ischemia (Faxon et al., 2004;
Libby et al., 2019). Carotid atherosclerosis (CAS) is a preventable
cause of 20–30% of stroke, approximately 21% of people aged
30–79 years have carotid plaque, and 1.5% have carotid stenosis
(Petty et al., 2000; Song et al., 2020). The pathophysiological
features of AS are primarily linked to lipid accumulation, chronic
inflammation, calcification, and thrombosis (Libby et al., 2019).
Many studies have vastly improved our understanding of the
pathogenesis of AS, but, despite these advances, we still lack
definitive evidence to translate basic results to the bedside (Weber
and Noels, 2011). Although AS is a systemic disease sharing
common major risk factors, differences exist in the strength
and impact per arterial site (Aboyans et al., 2018). Medical
interventions that result in the prevention of CAS are especially
centered on statins, but which are not targeted enough when
CAS is regarded as a unique form of AS (Artom et al., 2014).

Findings from the past decade have suggested that the
structure and composition of the gut microbiota are associated
with AS in humans and animal models (Jonsson and Backhed,
2017). The contributions of the gut microbiota to AS can
be divided into three main categories. First, local or distant
infections might aggravate atherogenesis. Second, patients with
AS have altered lipid metabolism, and bacterial taxa in the
gut were observed to correlate with plasma cholesterol levels
(Koren et al., 2011). Third, diet and specific components that
are metabolized by gut microbiota can have various effects
on AS. Metabolites filtered or produced by gut microbiota,
such as trimethylamine-N-oxide, short-chain fatty acids (SCFAs),
and secondary bile acids, have been observed to affect the
development of AS (Wang et al., 2011; Wahlstrom et al.,
2016; Chen et al., 2018). Most studies of the relationship
between CAS and microbiota could be classified into the first
category mentioned earlier. A wide variety of microbial DNA
has accordingly been found in carotid atherosclerotic plaques in
different populations (Ziganshina et al., 2016; Lindskog Jonsson
et al., 2017). Bacteria observed in the atherosclerotic plaques are
also detected at other body sites, predominantly the gut, which
might thus serve as reservoirs of these potentially pathogenic
microorganisms (Jonsson and Backhed, 2017). However, limited
information is available focusing on the gut microbiota

Abbreviations: AS, atherosclerosis; CAS, carotid atherosclerosis; CKD, chronic
kidney disease; DEG, differentially expressed gene; EPA, eicosapentaenoic acid;
GEO, Gene Expression Omnibus; GO-BP, gene ontology-biological process;
KEGG, Kyoto Encyclopedia of Genes and Genomes; LDA, linear discriminant
analysis; LEfSe, linear discriminant analysis effect size; NEG, negative mode;
NF-κB, nuclear factor kappa-B; OTU, operational taxonomic unit; PAGly,
phenylacetylglycine; PCA, principal component analysis; PERMANOVA,
permutational multivariate analysis of variance; PICRUSt, phylogenetic
investigation of communities by reconstruction of unobserved states; POS, positive
mode; QIIME, quantitative insights into microbial ecology; RF, random forest;
ROC, receiver operating characteristic; SCFA, short-chain fatty acid; UHPLC-
QTOFMS, ultra-high-performance liquid tandem chromatography/quadrupole
time-of-flight mass spectrometry.

composition in CAS patients. With respect to metabolomics,
several studies have found a number of metabolites associated
with CAS on the different stages (Vojinovic et al., 2018; Lee
T. H. et al., 2019), which were used as non-causal biomarkers,
but further study is necessary to elucidate the pathogenesis of
CAS. Also, considerable uncertainty remains concerning the
relationship between CAS and metabolites.

Taken together, both human and animal studies have indicated
that alterations of the gut microbiota and plasma metabolites
might be involved in the progression of AS, but the details
of these alterations in patients with CAS have not been fully
characterized. To address this question, we performed multi-
omics combined 16S ribosomal DNA (rDNA) gene sequencing
using fecal samples and untargeted liquid chromatography–
mass spectrometry using plasma samples from 32 CAS patients
and 32 healthy controls with gene expression profiling from
the Gene Expression Omnibus (GEO) database to characterize
the gut microbial community and plasma metabolic profiles.
Also, we performed an integrated analysis of the microbiome,
metabolome, and transcriptome. These results may ultimately
provide a more in-depth understanding of the “microbiota–
metabolite–gene” axis in the pathogenesis of CAS.

MATERIALS AND METHODS

Medical Ethics
The Ethics Committee of the Peking Union Medical College
Hospital (PUMCH) has approved this study (institutional
approval number: JS-2629). Each participant provided signed
informed consent before participating in the present study.

Patients Recruitment
CAS patients were recruited from the Department of Vascular
Surgery, Peking Union Medical College Hospital. The inclusion
criteria for recruitment were as follows: (1) Diagnosis with
carotid atherosclerosis by ultrasound or CT angiography; (2)
age ≥ 45 years; the exclusion criteria were applied to both
CAS patients and healthy controls: (1) Antibiotic usage within
6 months; (2) probiotic usage within 6 months; (3) history of
gastrointestinal diseases (such as inflammatory bowel disease);
(4) history of abdominal surgery (such as gastrectomy); (5) major
dietary change 1 week before sample collection.

We first recruited 71 CAS patients and 39 healthy controls.
Next, 39 CAS patients were excluded due to antibiotic usage
(n = 14), probiotic usage (n = 6), digestive disease (n = 8), and
abdominal surgery (n = 11). Meanwhile, seven healthy controls
were excluded due to antibiotic usage (n = 4), probiotic usage
(n = 2), and abdominal surgery (n = 1). Finally, each group had
32 subjects for further analysis.

Sample Collection
Peripheral blood and stool samples were collected in the morning
after an overnight fast (≥ 8 h). Plasma samples were obtained
by centrifugation at 3,000 rpm for 10 min at room temperature.
All plasma and stool samples were rapidly frozen and stored at
−80◦C until analysis.
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Genomic DNA Extraction and 16S
Ribosomal DNA Sequencing
Genomic DNA extraction was performed using QIAamp R© Fast
DNA Stool Mini Kit (Qiagen, Hilden, Germany) and examined
using Thermo NanoDrop 2000 (Thermo Fisher Scientific,
New York, NY, United States). The V3-V4 region of the bacterial
16S rDNA was amplified using KAPA HiFi Hotstart ReadyMix
PCR Kit (KAPA Biosystems, Wilmington, MA, United States)
with the primers 314F (CCTACGGGRSGCAGCAG) and 806R
(GGACTACVVGGGTATCTAATC) and sequenced using an
Illumina PE250 platform (Illumina, California, United States).

Ultra-High-Performance Liquid Tandem
Chromatography/Quadrupole
Time-of-Flight Mass Spectrometry
Metabolomic Profiling of Patient Plasma
Samples
Plasma samples of patients were prepared for ultra-high-
performance liquid tandem chromatography/quadrupole time-
of-flight mass spectrometry (UHPLC-QTOFMS) analysis by
application of validated protocols (Dunn et al., 2011). The
UHPLC separation was carried out using a 1290 Infinity
series UHPLC System (Agilent Technologies Inc., Santa Clara,
California, United States), equipped with a UPLC BEH Amide
column. The TripleTOF 6600 mass spectrometry (AB Sciex,
Foster City, CA, United States) was used for its ability to acquire
tandem mass spectrometry spectra on an information-dependent
basis during a liquid chromatography–mass spectrometry
experiment. Both positive ion mode (POS) and negative ion
mode (NEG) were used to obtain maximal coverage for
plasma metabolites.

Transcriptomic Profiling of
Atherosclerotic Samples From the Gene
Expression Omnibus Database
To have a comprehensive understanding of CAS pathogenesis
from a multi-omics perspective, we also acquired transcriptomic
profiling data of CAS samples from the GEO database
(GSE43292) (Edgar et al., 2002). The transcriptomic dataset was
not measured from the same cohort of patients from whom the
16S and metabolomic datasets were generated. The probes in
the series matrix file were annotated by gene symbols using the
platform data table (GPL6244), and a gene expression matrix was
obtained for further transcriptomic analysis.

Statistical Analysis
Operational taxonomic units (OTUs) were obtained by ultra-fast
sequence analysis (USEARCH) v11.0 with a sequence similarity
of 0.97 (Edgar, 2013). α- and β-diversities were calculated using
Quantitative Insights Into Microbial Ecology (QIIME, version
1.7.0) based on OTU counts (Caporaso et al., 2010). The “vegan”
package in R version 3.6.2 was used to perform a permutational
multivariate analysis of variance (PERMANOVA) to compare
β-diversity between the two groups. Next, we performed a
differential abundance analysis using the linear discriminant

analysis (LDA) method on the LDA effect size (LEfSe) platform
and the Wilcoxon rank-sum test (Segata et al., 2011). To
determine the functional alterations in the gut microbiota of
CAS patients, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was conducted through phylogenetic
investigation of communities by reconstruction of unobserved
states (PICRUSt) to predict the functional composition profiles
of microbiota based on OTUs (Langille et al., 2013).

UHPLC-QTOFMS data were analyzed by SMICA (version
15.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden) to
conduct multivariate statistical analysis. Differential metabolites
were obtained by comparing CAS patients and healthy controls
using a t-test. KEGG pathway analysis was also conducted for
these different metabolites.

For transcriptomic profiling data, differentially expressed gene
(DEG) analysis was performed based on gene expression matrix
using the “limma” R package. A | log2(fold-change)| of > 1 and
an adjusted p-value < 0.01 were selected as the threshold for DEG
screening. In addition to KEGG pathway analysis, gene ontology-
biological process (GO-BP) analysis was conducted using the
Database for Annotation, Visualization and Integrated Discovery
version 6.81; the enrichment analysis was also conducted using
Reactome version 752 to further demonstrate the biological
functions of DEGs.

To integrate the multi-omics data, Spearman’s correlation
indices between differential omics data were calculated and
visualized by heatmap (Shannon et al., 2003). Finally, receiver
operating characteristic (ROC) analysis was performed using
Statistical Product and Service Solutions version 25.0 (SPSS
Inc., 2017, Chicago, IL, United States). Random forest (RF)
analysis was conducted using the Biomarker analysis section
of MetaboAnalyst version 3.0 (www.metaboanalyst.ca). The
area under the curve was calculated to demonstrate the
potential diagnostic value of differentially enriched genera,
metabolites, and genes.

To further improve the accuracy of the analyses of
microbiome and metabolome, the adjustment for covariates
in differential genera and metabolites was performed. First, in
the microbiome analysis, the associations between genera and
clinical characteristics of CAS patients and healthy controls
were evaluated using a generalized linear model, and p < 0.05
was considered to be statistically significant (Qian et al., 2018).
Second, in the metabolome analysis, PERMANOVA was used
to test the statistically significant differences between metabolic
profiles and clinical characteristics. The p-value was corrected for
multiple tests using a cutoff of 0.05.

RESULTS

Flowchart of Our Study
The workflow of our study is shown in Figure 1. A total
of 32 CAS patients and 32 healthy controls were included
in our study. Fecal and plasma samples were taken for

1https://david.ncifcrf.gov/
2https://reactome.org/
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FIGURE 1 | Workflow of our study. *A total of 39 patients were exclude in CAS Group, due to antibiotic usage (n = 14), probiotic usage (n = 6), digestive disease
(n = 8), and abdominal surgery (n = 11). A total of seven healthy controls were excluded due to antibiotic usage (n = 4), probiotic usage (n = 2), and abdominal
surgery (n = 1).

microbiome and metabolome analysis, respectively. Differentially
enriched microbiota and metabolites were identified. KEGG
pathways were predicted to show the functional composition
profiles of differentially enriched microbiota and metabolites.
Then, DEG and related functional annotation analyses were
conducted based on a messenger RNA (mRNA) microarray
dataset (GSE43292) to explore the differences between CAS
patients and healthy controls from a transcriptomic level.
Furthermore, correlation analyses were performed between
differentially enriched microbiota, metabolites, and DEGs to
integrate omics. Finally, the potential clinical significance of
differentially enriched microbiota, metabolites, and DEGs was
determined by ROC and RF analyses.

Clinical Characteristics of Carotid
Atherosclerosis Patients and Controls
For microbiome and metabolome analysis, 64 fecal and plasma
samples were used for 16S rDNA sequencing and untargeted
metabolomic analysis (UHPLC-QTOFMS). The baseline of our
study cohort is shown in Table 1. Although the body mass index is
marginally higher in the CAS group (24.7 ± 2.7 for CAS patients
and 23.2 ± 2.2 for healthy controls, p = 0.047), there were no
significant differences in age and sex between CAS patients and
healthy controls.

Microbial Profiling of Carotid
Atherosclerosis Patients and Controls
Gut Microbiota Richness, Composition, and Diversity
We used 2,300,644 high-quality reads from 64 patients
for downstream analysis. The rarefaction curves of richness
(observed_species and chao1) were plotted. Curves for the

TABLE 1 | Characteristics of study cohort.

Control (n = 32) CAS (n = 32) p-value

Age (years) 66.2 ± 4.8 64.5 ± 6.7 0.263

Male (%) 28 (87.5) 28 (87.5) > 0.999

BMI (kg/m2) 23.2 ± 2.2 24.7 ± 2.7 0.047*

Hypertension (%) 6 (18.8) 12 (37.5) 0.095

Diabetes (%) 3 (9.4) 6 (18.8) 0.281

Coronary heart disease (%) 0 (0) 9 (28.1) < 0.001*

White blood cell (× 109/L) 6.5 ± 1.3 6.2 ± 1.5 0.420

Monocyte (× 109/L) 0.37 ± 0.15 0.38 ± 0.10 0.136

Hcy (µmol/L) 16.5 ± 7.0 16.6 ± 6.3 0.958

TC (mmol/L) 4.5 ± 1.3 3.2 ± 0.7 < 0.001*

TG (mmol/L) 1.3 ± 0.8 1.2 ± 0.6 0.754

HDL-C (mmol/L) 1.3 ± 0.3 1.0 ± 0.2 < 0.001*

LDL-C (mmol/L) 2.9 ± 0.6 1.8 ± 0.6 < 0.001*

Normally distributed variables between two groups were analyzed by Student’s t-
test. Mann–Whitney U test was applied for data of this type that were not normally
distributed. χ2-Square test or Fisher’s exact test compared categorical variables.
*p < 0.05.

CAS and control groups were near saturation as the reads
increased, suggesting that the sequencing depth was adequate
(Supplementary Figures 1A,B). The Venn diagram showed
overlapping and different enriched OTUs in each group
(Supplementary Figure 1C). Next, OTUs were annotated using
the Ribosomal Database Project database3, and the relative
abundance of the gut microbiota is shown (Figure 2A and
Supplementary Figures 1D–G).

3http://rdp.cme.msu.edu/
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FIGURE 2 | Microbial diversity of CAS patients and healthy controls. (A) Relative abundance of gut microbiota for two groups from genus level. (B,C) α-Diversity
(chao1 and observed_species) for two groups showed no significant difference. (D–F) β-Diversity is significantly increased for CAS patients.

The microbial α-diversity is shown in Supplementary Table 1.
The Wilcoxon rank-sum test compared the α-diversity between
the two groups, and no significant difference was found, which
was also consistent with the rarefaction curve (Figures 2B,C).
However, the gut microbiota communities between the CAS
group and healthy control group were significantly different, as
shown by β-diversity (Figures 2D–F).

Differential Gut Microbiota Enriched in
Carotid Atherosclerosis Patients and
Healthy Controls
Using LEfSe analysis, we screened 29 different features at the
phylum (n = 1), class (n = 3), order (n = 5), family (n = 9),

and genus (n = 11) levels with a threshold of LDA > 2
(Figure 3A). The Wilcoxon rank-sum test was also used to
explore changes in microbiota, and 30 differentially enriched taxa
were identified (Figures 3B–D, Supplementary Figure 2, and
Supplementary Table 2). The differential microbiota at the genus
level from the Wilcoxon test were the same as those that we
had screened using LEfSe analysis (Table 2). Acidaminococcus,
Christensenella, and Lactobacillus were enriched in CAS patients;
Anaerostipes, Fusobacterium, Gemella, Parvimonas, Romboutsia,
and Clostridium XVIII/XlVa/XlVb were enriched in healthy
controls. The correlation between different genera was shown by
Spearman’s correlation test (Figure 3E), and these microbiota
genera were further utilized in correlation analysis with
differential metabolites and DEGs.

TABLE 2 | Differentially enriched gut microbiota from genera level.

Gut microbiota Mean (AS) Mean (Con) p-value Median (AS) Median (Con)

g__Acidaminococcus 0.000880977 0.00010395 0.004853071 −10.30582176 −9.853309555

g__Anaerostipes 0.001823025 0.00227001 0.033041905 −11.23182118 −10.38382427

g__Christensenella 4.28794E-05 3.89813E-06 0.027190901 −13.55374927 −12.96878677

g__Clostridium XVIII 0.000165021 0.000632796 0.008816879 −12.96878677 −12.23182118

g__Clostridium XlVa 0.014102131 0.024426975 0.011581483 −6.754083402 −5.596422402

g__Clostridium XlVb 0.001576143 0.00431263 0.000456455 −9.352776212 −8.268347055

g__Fusobacterium 0.000284563 0.002597453 0.043528042 −13.55374927 −12.39278523

g__Gemella 3.89813E-06 2.079E-05 0.014781178 −14.55374927 −14.55374927

g__Lactobacillus 0.004282744 0.000174116 0.001399704 −10.74639435 −11.96878677

g__Parvimonas 1.29938E-06 1.68919E-05 0.012301771 −14.55374927 −14.55374927

g__Romboutsia 0.000267672 0.001351351 0.000467579 −11.74639435 −10.55657256

Acidaminococcus, Christensenella, and Lactobacillus were enriched in CAS patients, whereas other genera were enriched in healthy controls.
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FIGURE 3 | Differentially enriched gut microbiota for CAS patients and healthy controls. (A) A total of 29 different features screened by LEfSe at phylum (n = 1), class
(n = 3), order (n = 5), family (n = 9), and genus (n = 11) level with a threshold of LDA > 2. (B) PCA plot demonstrated that CAS group is significantly different from
control group based on differential genera. (C,D) Differentially enriched gut microbiotas were visualized in heatmap and box plot. (E) Associations between
differential microbiotas were by correlation heatmap. Bluer color indicates a more positive correlation, whereas redder color indicates a more negative correlation.

Different Functional Composition
Profiles of Gut Microbiota Between
Carotid Atherosclerosis Patients and
Healthy Controls
Through PICRUSt, functional composition profiles of gut
microbiota were predicted based on relative abundance and
compared between CAS patients and healthy controls. In total,
65 of 265 differentially enriched KEGG pathways (level 3)
were identified (Supplementary Table 3) with a threshold of
p < 0.05, of which 39 were enriched in the CAS group, whereas
26 were enriched in healthy controls. Different pathways with
the highest relative abundance were visualized by heatmap and
boxplot (Figure 4).

Metabolic Profiling of Carotid
Atherosclerosis Patients and Controls
In total, 1,425 and 1,580 peaks were detected for the POS and
NEG modes of UHPLC-QTOFMS, respectively, after filtering
internal standards and pseudo-positive peaks.

Differential Metabolites Screening
Two multivariate statistical analysis methods, principal
component analysis (PCA) and orthogonal projections to
latent structures-discriminant analysis, were utilized to classify
plasma samples. Both methods showed that plasma samples for
CAS patients and controls were clearly separated (Figures 5A,B
and Supplementary Figures 3A,B). In addition, the permutation
test indicated that the orthogonal projections to latent structures-
discriminant analysis model is valid and that no overfitting exists
(Supplementary Figures 3C,D).

With the thresholds of VIP > 1 and p < 0.05, 165 and
96 significantly changed metabolites were screened in POS
and NEG modes, respectively (Supplementary Figure 3E and
Supplementary Table 4). The patterns of differential metabolism
were visualized by heatmaps and volcano plots (Figures 5C,D
and Supplementary Figures 3F,G). Next, we added | log2(fold-
change)| > 1 as another threshold and combined POS and NEG
modes to select differential metabolites (Table 3) for correlation
analysis with different omics data. With the addition of this
threshold, 11 and 12 metabolites were screened in POS and NEG
modes, respectively. PAGln, upregulated in CAS patients, was the
only metabolite detected in both modes and had the highest |
log2(fold-change)| in POS mode.

Metabolic Pathway Analysis for
Differential Plasma Metabolites
Differential metabolites were subjected to the KEGG database
to analyze the pathways in which these metabolites were
involved. The bubble plot and tree plot demonstrated the p-value
and topological impact of each enriched pathway (Figure 6,
Supplementary Figure 4, and Supplementary Table 5).

Adjustment for Covariates in Differential
Genera and Metabolites
Most of the identified features still remain after performing
adjustments for the covariates, including age and sex. First, in
the differential genera after adjustments using the generalized
linear model. Anaerostipes, Clostridium_XVIII, Gemella, and
Lactobacillus were found to be significantly associated with sex.
Clostridium_XlVa and Parvimonas were found to be significantly
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FIGURE 4 | KEGG pathways (level 3) predicted by PICRUSt. (A,B) Differential
KEGG pathways with top relative abundance were visualized as heatmap and
box plot. Warmer color indicates higher relative abundance, whereas colder
color indicates lower relative abundance.

associated with age and sex. In the differential metabolites after
adjustment using PERMANOVA, no metabolites were found
to be associated with covariates (p > 0.05). The details of the
adjustments for differential genera and metabolites could be,
respectively, seen in Supplementary Tables 6, 7.

Transcriptomic Profiling of Carotid
Atherosclerosis Patients and Controls
Differentially Expressed Gene Screening
There were 32 CAS patients in the GEO datasets we selected
(GSE43292). The gene expression profiles of carotid atheroma
and paired macroscopically intact tissue adjacent to the atheroma
plaque of each patient were shown by mRNA microarray. To
reduce the effect of confounding factors, we performed a paired
DEG analysis, and a total of 132 DEGs were screened, of which 76
were upregulated and 56 were downregulated with the thresholds
of | log2(fold-change)| > 1 and adjusted p< 0.01 (Figures 7A,B).
DEGs with the top-20 | log2(fold-change)| were selected for
correlation analysis (Table 4).

Functional Annotation Analysis for Differentially
Expressed Genes
To obtain the biological functions of the DEGs, GO-BP and
KEGG pathway analyses were performed. Count number > 2
and p-value < 0.05 were selected as the thresholds for
significantly enriched GO-BP terms and KEGG pathways. We
have also performed enrichment analysis on the DEGs using
the Reactome database. These DEGs were mainly associated
with inflammatory and immune responses, as both KEGG
and Reactome pathways enrichment analyses have shown
(Figures 7C,D and Supplementary Tables 8, 9).

Integration of Multi-Omics Data
Spearman’s correlation test was conducted between differentially
enriched genera, differential metabolites, and DEGs to investigate
the associations among multi-omics results (Supplementary
Table 10). The results were visualized as correlation heatmaps
(Figures 7E–G). The correlation analysis was also adjusted
by using FDR (Supplementary Figure 5 and Supplementary
Table 10).

Finally, to show the potential diagnostic value of multi-
omics data to discriminate CAS patients and healthy controls,
we performed ROC and RF analyses for differentially enriched
genera, differential metabolites, and DEGs (Figure 8 and
Supplementary Table 11).

DISCUSSION

In this multi-omics study, gut microbiota and metabolite data
were obtained from samples of CAS patients and healthy
controls from PUMCH, and mRNA microarray data were
obtained from GSE43292, which includes 32 atheromas and
32 paired control samples. The microbiome study showed
significantly different β-diversity between CAS patients and
healthy controls, although the α-diversity between the two groups
was not significantly different, suggesting a significant difference
in microbial composition, although there were similarities in
microbial richness. At the genera level, 11 differentially enriched
microbiota were identified (Table 2). In these differentially
enriched microbiota, Acidaminococcus, Christensenella, and
Lactobacillus genera were enriched in CAS patients. The
metabolome analysis screened 165 and 96 differentially expressed
metabolites in the POS and NEG modes, respectively. Next,
22 differential metabolites were further selected for correlation
analysis by adding | log2(fold-change)| > 1 as an additional
threshold (Table 3). In transcriptomic analysis, 76 upregulated
and 56 downregulated genes were screened, and DEGs with top-
20 | log2(fold-change)| were included for correlation analysis
(Table 4). Spearman’s correlation indices showed the association
among different omics results.

In the genus-level analysis of differential gut microbiota,
Acidaminococcus, Christensenella, and Lactobacillus were
more abundant in the CAS group, whereas Anaerostipes,
Clostridium XVIII/XlVa/XlVb, Fusobacterium, Gemella,
Parvimonas, and Romboutsia were enriched in the healthy
controls. Acidaminococcus is known to be a normal commensal
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FIGURE 5 | Differential metabolites screening for CAS patients and healthy controls (POS mode). (A,B) PCA and orthogonal projections to latent
structures-discriminant analysis showed that CAS patients and healthy controls could be clearly separated. (C,D) Patterns of differential metabolites in POS mode
were demonstrated by volcano plot and heatmap.

TABLE 3 | Differential metabolites for correlation analysis.

Metabolites VIP p-value q-value Log2 (fold-change)

POS mode –

Ethanolamine 2.816546298 6.3964E-18 8.96521E-16 −2.509502083

Gly-Pro 2.796795801 1.88336E-19 4.55375E-17 −2.603752686

Propoxur 2.785113538 2.69771E-20 9.78414E-18 −2.406871344

Homocitrate 1.978541617 0.000652259 0.001823948 1.047764919

α-N-Phenylacetyl-L-glutamine 1.762051456 0.000569636 0.001635096 1.436216381

Diethylcarbamazine 1.642884521 0.000557875 0.001607395 1.208993076

Dimethylbenzimidazole 2.347024371 7.03818E-07 9.59896E-06 1.016050071

Eicosapentaenoic acid 1.807845477 4.49425E-05 0.00025414 −1.07267148

Decanoyl-L-carnitine 1.911522868 1.30652E-05 9.80438E-05 −1.289227648

3-Methoxy-4-Hydroxyphenylglycol Sulfate 1.673158751 0.000206213 0.000749297 1.007090541

O-Desmethylnaproxen 2.140136711 9.1044E-09 2.26664E-07 −1.017466992

NEG mode

Salicylic acid 1.734352898 0.01921337 0.0277024 4.145007415

3-Aminopropanesulphonic Acid 1.039813313 0.040379565 0.047806112 1.796022962

6-Hydroxynicotinic acid 1.206818152 0.029194166 0.037505435 2.079415637

Formylanthranilic acid 1.949132714 0.000220127 0.000651909 1.426589827

Xanthopterin 2.153639262 5.0361E-11 1.65249E-09 −1.016011938

N1-Methyl-4-pyridone-3-carboxamide 2.443377406 8.40619E-14 3.7485E-12 −1.180267083

3-Hydroxydodecanoic acid 1.872339097 5.84638E-05 0.000209662 −1.103961553

Salicyluric acid 1.428929548 0.027925205 0.036246094 1.744879658

Phenylacetylglycine 1.609315395 1.20649E-07 1.48763E-06 1.576664728

D-Biotin 2.385066256 4.85697E-11 1.60101E-09 −2.067524087

α-N-Phenylacetyl-L-glutamine 1.701961669 0.000390232 0.001051251 1.214340063

5,10-methylene-THF 1.922624936 8.93527E-07 8.64096E-06 −1.040847640

A threshold of | log2(fold-change)| > 1 was added based on basic threshold of VIP > 1 and p-value < 0.05 to further screen metabolites for correlation analysis.
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FIGURE 6 | KEGG pathway enrichment analysis for differential metabolites (POS mode). (A) Horizontal axis and size of bubble showed topological impact of
pathways. Vertical axis and color of bubble showed p-value of pathways. (B) Size of square showed topological impact of pathways, whereas color of square
showed p-value of pathways.

FIGURE 7 | DEG analysis and correlation between different types of omics data. (A,B) Expression patterns of DEGs were shown by heatmap and volcano plot.
(C,D) GO-BP terms and KEGG pathways with top-10 count number were visualized. Functional enrichment analysis for DEGs showed that these DEGs were mainly
associated with inflammatory and immune response. (E–G) Pairwise correlation between microbiome, metabolome, and transcriptome data. Reder color indicates a
stronger correlation, whereas bluer color indicates a weaker correlation.

of the human gut and has been occasionally related to infective
processes but always associated with polymicrobial infections
(D’Auria et al., 2011). Acidaminococcus was reported to be
enriched in the stool of patients with several inflammatory
diseases, such as rheumatoid arthritis, ankylosing spondylitis,
and ulcerative colitis (Altomare et al., 2019; Lee J. Y. et al., 2019;
Zhou et al., 2020). Moreover, according to a recent study by

Zheng et al. (2020), the abundance of Acidaminococcus is
positively correlated with a pro-inflammatory diet, indicating
that Acidaminococcus may be a pro-inflammatory microbiota
and represent inflammatory status in the development of AS.
Christensenella is a gram-negative, strictly anaerobic short rod
associated with weight loss (Morotomi et al., 2012). Several
studies have indicated that Christensenella was enriched in
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TABLE 4 | DEGs with top-20 | log2(fold-change)|.

Gene symbol Gene name Log2(fold-change) Adjusted p-value

FABP4 Fatty acid binding protein 4 2.454461 1.56E-05

CNTN1 Contactin 1 −1.911032 1.21E-05

IGJ Joining chain of multimeric IgA and IgM 1.893149 0.000118

TPH1 Tryptophan hydroxylase 1 −1.886626 3.76E-05

IGKV1D-33 Immunoglobulin κ variable 1D-33 1.884738 3.34E-05

IGHV3-52 Immunoglobulin heavy variable 3-52 1.8676 3.85E-05

IGKV3D-11 Immunoglobulin κ variable 3D-11 1.851044 6.82E-05

MMP7 Matrix metallopeptidase 7 1.840231 0.000405

MMP9 Matrix metallopeptidase 9 1.817804 8.07E-05

CD36 CD36 molecule 1.802205 0.000134

IBSP Integrin binding sialoprotein 1.794982 9.96E-06

CNTN4 Contactin 4 −1.792332 9.36E-06

IGKV1D-27 Immunoglobulin κ variable 1D-27 1.751979 0.000204

IGHV4-59 Immunoglobulin heavy variable 4-59 1.739775 6.03E-05

IGHV3-43 Immunoglobulin heavy variable 3-43 1.73119 5.12E-05

IGKV1OR2-3 Immunoglobulin κ variable 1/OR2-3 1.674665 9.21E-05

IGKC Immunoglobulin κ constant 1.672012 5.01E-05

CASQ2 Calsequestrin 2 −1.667664 1.07E-05

IGKV3D-20 Immunoglobulin κ variable 3D-20 1.667174 8.07E-05

IGKV2D-26 Immunoglobulin κ variable 2D-26 1.654989 0.000138

FIGURE 8 | Potential diagnostic value of differential gut microbiota, metabolites, and DEG with importance. (A) Microbial predictive model. Gut microbiota
significantly enriched in CAS group were included, and RF algorithm was used to construct this model. (B) Metabolomic predictive model. Phenylacetylglutamine,
phenylacetylglycine, ethanolamine, and eicosapentaenoic acid were included, and RF algorithm was used to construct this model. (C) FABP4 is the DEG with the
highest log2(fold-change), and potential diagnostic value of this gene was shown by ROC analysis.

type 1 diabetes patients with the decreased abundance of the
SCFA-producing microbiota, Roseburia. In addition, whole-
genome sequencing indicated that some genes of Christensenella
were related to lipopolysaccharide biosynthesis, and the
lipopolysaccharide from Christensenella can trigger a weak
inflammatory response through the nuclear factor kappa-B (NF-
κB) signaling pathway (Yang et al., 2018). Although Lactobacillus
is often described as an anti-inflammatory probiotic in many
studies of AS, the role of Lactobacillus in the pathogenesis of AS
remains controversial (Ding et al., 2017). Several Lactobacillus
species significantly reduce the inflammatory response via T
regulatory cells and alleviate arteriosclerotic level, but some
other species of Lactobacillus could promote the inflammatory
response, which may aggravate AS (Smits et al., 2005; Bhathena
et al., 2009; Karimi et al., 2009; Pan et al., 2011; Won et al.,

2011; Shah et al., 2012; Dimitrijevic et al., 2014). The increased
abundance of Lactobacillus in the CAS group may fall into
different species; therefore, additional research is needed to
address this question.

For the genera enriched in healthy controls, Anaerostipes,
Gemella, and Parvimonas were reported to be scarce and
primarily enriched in the healthy gut (Bodkhe et al., 2019; Hong
et al., 2019; Magruder et al., 2020). Clostridium XVIII/XlVa/XlVb,
Fusobacterium, and Romboutsia are all major SCFAs, particularly
butyrate producers in the process of human metabolism (Duncan
et al., 2002; Bui et al., 2014; Neijat et al., 2019). In humans,
SCFAs are produced from dietary fibers and resistant starches
that cannot be decomposed by digestive enzymes through
fermentation by the microbiota in the cecum and colon
(Cummings et al., 1987). SCFAs may suppress inflammation by
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reducing migration and proliferation of immune cells, thereby
reducing many types of cytokines and inducing apoptosis (Ohira
et al., 2017). Furthermore, data from animal experiments found
that compared with the sterile mice, the atherosclerotic plaque
of mice carrying Roseburia was significantly reduced after they
were fed with a high fiber diet. The mechanism was that
SCFAs could inhibit the activation of histone deacetylase, NF-
κB, and tumor necrosis factor-α signaling pathways, reduce the
expression of vascular cell adhesion molecule-1, and protect
endothelial function. On the other hand, SCFAs could promote
the conversion of cholesterol to bile acid, thereby alleviating AS
(Kasahara et al., 2018).

Based on the metabolomic analysis, the upregulated PAGln
was detected in both POS and NEG modes and had the highest
| log2(fold-change)| in POS mode. PAGln is a phenylalanine-
derived metabolite formed from the conjugation of glutamine
and phenylacetate (Aronov et al., 2011). Phenylalanine is one
of the essential amino acids for human metabolism. After
phenylalanine is ingested by the human body, most of this amino
acid is absorbed by the small intestine. Excessive phenylalanine
reaches the colon and can be metabolized into phenylpyruvic acid
further into phenylacetic acid by gut microbiota. Next, glutamine
and this microbial-derived phenylacetic acid are conjugated
in the human liver and kidney, and PAGln is produced (Li
et al., 2008; Witkowski et al., 2020). Increased level of plasma
PAGln was shown to be associated with increased major adverse
cardiac events (myocardial infarction, stroke, or death) by
untargeted metabolomics using a large cohort (n = 1,162) and
a validation cohort (n = 4,000) (Nemet et al., 2020). Bogiatzi
et al. (2018) also discovered that PAGln was elevated in AS
patients. Our results were consistent with the findings of these
previous studies. In addition, the KEGG pathway analysis in
our study found that differential metabolites were significantly
enriched in phenylalanine metabolic pathway for both POS
and NEG modes, suggesting that phenylalanine metabolism
and subsequently generated PAGln play vital roles in CAS
pathogenesis. A recent mechanistic study has shown that PAGln
increases thrombosis potential by activating platelet functions
through multiple approaches such as interacting with α2A,
α2B, and β2 adrenergic receptors (Nemet et al., 2020). Another
upregulated metabolite in the NEG mode, phenylacetylglycine
(PAGly), has a similar function as PAGln and can enhance
platelet function via adrenergic receptors. However, compared
with PAGln, PAGly was a major product in mice found in the
study of Nemet et al. (2020). Our study and previous findings
indicated that PAGln and phenylalanine metabolism are crucial
mediators in CAS pathogenesis and might serve as promising
pharmacotherapeutic targets to slow CAS progression.

Ethanolamine was the differential metabolite with the highest
VIP value in POS mode and downregulated in CAS patients.
The level of ethanolamine in HDL is positively correlated
with cholesterol efflux capacity and negatively associated with
plaque scores in chronic kidney disease (CKD) patients (Maeba
et al., 2018). The finding of downregulated ethanolamine in
CAS patients in our study was consistent with this previous
study and suggested that downregulation of ethanolamine might
promote AS progression. In contrast to this previous study,

the patients in our study were not CKD patients and might
be more representative. Another downregulated metabolite,
eicosapentaenoic acid (EPA), is an omega-3 fatty acid found in
fish oil. EPA and its derivatives were found to have protective
roles against cardiovascular disease in clinical trials (Leaf et al.,
1994; Sacks et al., 1995; Bhatt et al., 2020). EPA can be
enzymatically converted to resolvin E1 (RvE1) in vivo and affect
atherosclerotic inflammation and mediate the immune response
through the EPA/RvE1/ChemR23 pathway, thereby improving
the outcomes of atherosclerosis-related cardiovascular disease
(Carracedo et al., 2019). Our results indicated a deficiency of these
beneficial metabolites in CAS patients, and supplementation with
fish oil might benefit these patients.

In transcriptomic analysis, we observed that DEGs were
mainly associated with inflammatory and immune response
through GO-BP and KEGG pathway enrichment analysis. Our
findings at the transcriptome level agree with the consensus
that atherosclerosis is characterized by low-grade, chronic
inflammation of the arteries and infiltration of immune cells
such as macrophages, mast cells, and T lymphocytes (Hansson,
2005; Galkina and Ley, 2009; Bäck et al., 2019). Furthermore,
FABP4, fatty acid-binding protein 4, is the upregulated DEG
in CAS patients with the highest | log2(fold-change)|. FABP4
is mainly expressed in adipocytes and macrophages. This
protein can serve as an adipokine for the development of
atherosclerosis and insulin resistance (Hotamisligil and Bernlohr,
2015). In macrophages, FABP4 can induce an inflammatory
response through such pathways as NF-κB and JKN/AP-1
(Furuhashi, 2019).

In the correlation analysis between gut microbiota and plasma
metabolites, PAGln was negatively associated with Clostridium
XIVa, which belongs to the Lachnospiraceae family. In early
renal function decline patients, Barrios et al. (2015) found
that PAGln was negatively correlated with several genera in
the Lachnospiraceae family, and in patients with coronary
artery disease, Ottosson et al. (2020) identified one unknown
genus in the Lachnospiraceae family that was also negatively
correlated with PAGln. The results of our study were consistent
with the findings of previous studies and further identified a
new genus in this family that was negatively correlated with
PAGln in CAS patients. Although few studies on this topic
have been conducted, the association between Lachnospiraceae
and PAGln might be one of the microbiota–metabolite axes
mediating AS pathogenesis. EPA, the metabolite with anti-
inflammatory roles in AS patients, was negatively associated with
Acidaminococcus, a potentially pro-inflammatory microbiota
genus. Because a Mediterranean diet, which mainly includes
foods rich in unsaturated fatty acid (such as EPA), can have
an anti-inflammatory effect (Zheng et al., 2020), we could infer
that EPA might reduce atherosclerotic inflammation by targeting
Acidaminococcus.

In the correlation analysis between transcriptomic profiles
and the other two omics datasets, we also obtained some
findings that might deepen the current understanding of AS
pathogenesis. We found that Acidaminococcus was positively
associated with FABP4 and had the highest Spearman’s
correlation coefficient and the most significant p-value among
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all microbiota–DEG pairs (ρ = 0.39, p = 0.0014). Although the
pro-inflammatory roles of Acidaminococcus and FABP4 have
been widely studied (Hotamisligil and Bernlohr, 2015; Altomare
et al., 2019; Butera et al., 2020), our study was the first to
identify the association between them and might provide a new
perspective to explore CAS pathogenesis. Furthermore, in the
correlation analysis for DEGs and metabolites, FABP4 was also
positively associated with pro-atherosclerotic metabolites (PAGln
and PAGly) and negatively associated with anti-atherosclerotic
metabolite (ethanolamine), which implied that this adipokine
was not only associated with crucial gut microbiota but also might
interact with crucial metabolites in CAS pathogenesis.

In this study, we performed microbial and metabolomic
analyses using fecal and plasma samples from CAS patients
in PUMCH. Transcriptomic analysis was conducted based
on one GEO dataset (GSE43292) containing 32 CAS carotid
atheromas and paired controls. Differential gut microbiota,
metabolites, DEGs, and related pathways were identified. Finally,
the associations among various omics data were investigated by
correlation analysis. However, our study has some limitations.
First, the body mass index was marginally higher (24.7 ± 2.7 for
CAS patients and 23.2 ± 2.2 for healthy controls, p = 0.047) in
CAS patients; the risk factor role of obesity might account for this
difference (Rocha and Libby, 2009). Second, patients were only
recruited from PUMCH, and the sample size was small. Future
multicentric studies with large samples are needed to generalize
these findings. Third, transcriptomic data obtained from the
GEO database were not obtained from the same patients as the
microbiome and metabolome data. This difference would result
in batch effects, which need to be verified by the same cohorts.
Furthermore, in vitro and in vivo experiments are warranted to
elucidate further the mechanisms governing how gut microbiota,
plasma metabolites, and DEGs interact with one another.

CONCLUSION

Despite extensive researches investigating AS, in the past
decade, relatively little is known regarding the mechanisms
underlying the pathogenesis of CAS. Accumulating evidence
has shown that the gut microbiota serve as a pivotal
risk factor in cardiovascular diseases by influencing host
metabolism and immune homeostasis (Battson et al., 2018).
However, no direct evidence has established a direct and causal
relationship between altered gut microbiota and CAS. Through
an integrated analysis of multi-omics, we explored the possible
“microbiota–metabolite–gene” regulatory axis that may act on
CAS, thereby helping to establish a theoretical basis for the
further specialized study of CAS.
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Supplementary Figure 1 | Quality control for 16S rDNA sequencing and
microbial diversity of CAS and healthy control samples from different level. (A,B)
Rarefaction curves of richness (observed_species and chao 1) suggested the
sequencing depth is adequate. (C) The Venn diagram showed the overlapping
OTUs in microbiota among CAS patients and healthy controls. (D–G) The relative
abundance of gut microbiota for two groups from phylum, class, order, and family
levels, respectively.

Supplementary Figure 2 | Differentially enriched microbiota for CAS patients and
healthy controls from all levels. (A) The differentially enriched gut microbiotas from
all levels were visualized in heatmap. (B) PCA plot demonstrated that CAS group
is significantly different from control group based on differential microbiotas from
all levels. (C) The differentially enriched gut microbiotas were visualized in box plot.

Supplementary Figure 3 | Differential metabolites screening for CAS patients
and healthy controls (NEG mode) and permutation test for OPLS-DA model. (A,B)
The PCA and OPLS-DA showed that CAS patients and healthy controls can be
clearly separated. (C,D) The permutation test showed that the OPLS-DA model is
valid and no overfitting exist for both POS and NEG mode. (E) The Venn diagram
showed 17 overlapping different metabolites between POS and NEG mode. (F,G)
Patterns of differential metabolites in NEG mode were demonstrated by the
volcano plot and heatmap.

Supplementary Figure 4 | KEGG pathway enrichment analysis for differential
metabolites (NEG mode). (A) The horizontal axis and sized of the bubble showed
the topological impact of pathways. The vertical axis and color of bubble showed
the p-value of pathways. (B) The size of the square showed the topological impact
of pathways while the color of the square showed the p-value of the pathways.

Supplementary Figure 5 | FDR adjustment for correlation between different
types of omics data. (A–C) The FDR adjustment for correlation between
microbiome, metabolome, and transcriptome data. Redder color indicates
stronger correlation while bluer color indicates weaker correlation.

Supplementary Table 1 | The α-diversity for CAS and healthy controls.

Supplementary Table 2 | Differentially enriched microbiota from all levels.

Supplementary Table 3 | Differential KEGG pathways predicted by PICRUSt.

Supplementary Table 4 | All differential metabolites between CAS patients and
healthy controls.

Supplementary Table 5 | KEGG pathways for differential metabolites.

Supplementary Table 6 | Covariates adjustment for differentially enriched genera
between CAS patients and healthy controls using GLM analysis.

Supplementary Table 7 | Covariates adjustment for differential metabolites
between CAS patients and healthy controls using PERMANOVA analysis.

Supplementary Table 8 | Functional enrichment analysis for DEGs.

Supplementary Table 9 | Enrichment analysis on the DEGs using the
Reactome database.

Supplementary Table 10 | Details for correlation analysis.

Supplementary Table 11 | AUCs for differentially enriched gut microbiota,
metabolites, and DEGs.

REFERENCES
Aboyans, V., Ricco, J. B., Bartelink, M. E. L., Bjorck, M., Brodmann, M., Cohnert,

T., et al. (2018). 2017 ESC Guidelines on the Diagnosis and Treatment
of Peripheral Arterial Diseases, in collaboration with the European Society
for Vascular Surgery (ESVS): Document covering atherosclerotic disease of
extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity
arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force
for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European
Society of Cardiology (ESC) and of the European Society for Vascular Surgery
(ESVS). Eur Heart J 39, 763–816. doi: 10.1093/eurheartj/ehx095

Altomare, A., Putignani, L., Del Chierico, F., Cocca, S., Angeletti, S., Ciccozzi, M.,
et al. (2019). Gut mucosal-associated microbiota better discloses inflammatory
bowel disease differential patterns than faecal microbiota. Dig Liver Dis 51,
648–656. doi: 10.1016/j.dld.2018.11.021

Aronov, P. A., Luo, F. J., Plummer, N. S., Quan, Z., Holmes, S., Hostetter, T. H.,
et al. (2011). Colonic contribution to uremic solutes. J Am Soc Nephrol 22,
1769–1776. doi: 10.1681/asn.2010121220

Artom, N., Montecucco, F., Dallegri, F., and Pende, A. (2014). Carotid
atherosclerotic plaque stenosis: the stabilizing role of statins. Eur J Clin Invest
44, 1122–1134. doi: 10.1111/eci.12340

Bäck, M., Yurdagul, A. Jr., Tabas, I., Öörni, K., and Kovanen, P. T. (2019).
Inflammation and its resolution in atherosclerosis: mediators and therapeutic
opportunities. Nat Rev Cardiol 16, 389–406. doi: 10.1038/s41569-019-0169-2

Barrios, C., Beaumont, M., Pallister, T., Villar, J., Goodrich, J. K., Clark, A., et al.
(2015). Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS
One 10:e0134311. doi: 10.1371/journal.pone.0134311

Battson, M. L., Lee, D. M., Weir, T. L., and Gentile, C. L. (2018). The gut microbiota
as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56,
1–15. doi: 10.1016/j.jnutbio.2017.12.010

Bhathena, J., Martoni, C., Kulamarva, A., Urbanska, A. M., Malhotra, M.,
and Prakash, S. (2009). Orally delivered microencapsulated live probiotic
formulation lowers serum lipids in hypercholesterolemic hamsters. J Med Food
12, 310–319. doi: 10.1089/jmf.2008.0166

Bhatt, D. L., Miller, M., Brinton, E. A., Jacobson, T. A., Steg, P. G., Ketchum, S. B.,
et al. (2020). REDUCE-IT USA: Results From the 3146 Patients Randomized
in the United States. Circulation 141, 367–375. doi: 10.1161/circulationaha.119.
044440

Bodkhe, R., Shetty, S. A., Dhotre, D. P., Verma, A. K., Bhatia, K., Mishra, A., et al.
(2019). Comparison of Small Gut and Whole Gut Microbiota of First-Degree
Relatives With Adult Celiac Disease Patients and Controls. Front Microbiol
10:164. doi: 10.3389/fmicb.2019.00164

Bogiatzi, C., Gloor, G., Allen-Vercoe, E., Reid, G., Wong, R. G., Urquhart, B. L.,
et al. (2018). Metabolic products of the intestinal microbiome and extremes of
atherosclerosis. Atherosclerosis 273, 91–97. doi: 10.1016/j.atherosclerosis.2018.
04.015

Bui, T. P. N., de Vos, W. M., and Plugge, C. M. (2014). Anaerostipes
rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J
Syst Evol Microbiol 64(Pt 3), 787–793. doi: 10.1099/ijs.0.055061-0

Butera, A., Di Paola, M., Vitali, F., De Nitto, D., Covotta, F., Borrini, F., et al. (2020).
IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis
Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. J
Crohns Colitis 14, 369–380. doi: 10.1093/ecco-jcc/jjz154

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat Methods 7, 335–336. doi: 10.1038/nmeth.f.
303

Carracedo, M., Artiach, G., Arnardottir, H., and Bäck, M. (2019). The resolution
of inflammation through omega-3 fatty acids in atherosclerosis, intimal
hyperplasia, and vascular calcification. Semin Immunopathol 41, 757–766. doi:
10.1007/s00281-019-00767-y

Chen, Y., Xu, C., Huang, R., Song, J., Li, D., and Xia, M. (2018). Butyrate from
pectin fermentation inhibits intestinal cholesterol absorption and attenuates
atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem 56, 175–182.
doi: 10.1016/j.jnutbio.2018.02.011

Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., and Macfarlane,
G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic
and venous blood. Gut 28, 1221–1227. doi: 10.1136/gut.28.10.1221

D’Auria, G., Galan, J. C., Rodriguez-Alcayna, M., Moya, A., Baquero, F., and
Latorre, A. (2011). Complete genome sequence of Acidaminococcus intestini
RYC-MR95, a Gram-negative bacterium from the phylum Firmicutes. J
Bacteriol 193, 7008–7009. doi: 10.1128/JB.06301-11

Dimitrijevic, R., Ivanovic, N., Mathiesen, G., Petrusic, V., Zivkovic, I., Djordjevic,
B., et al. (2014). Effects of Lactobacillus rhamnosus LA68 on the immune
system of C57BL/6 mice upon oral administration. J Dairy Res 81, 202–207.
doi: 10.1017/S0022029914000028

Frontiers in Physiology | www.frontiersin.org 13 May 2021 | Volume 12 | Article 645212

https://doi.org/10.1093/eurheartj/ehx095
https://doi.org/10.1016/j.dld.2018.11.021
https://doi.org/10.1681/asn.2010121220
https://doi.org/10.1111/eci.12340
https://doi.org/10.1038/s41569-019-0169-2
https://doi.org/10.1371/journal.pone.0134311
https://doi.org/10.1016/j.jnutbio.2017.12.010
https://doi.org/10.1089/jmf.2008.0166
https://doi.org/10.1161/circulationaha.119.044440
https://doi.org/10.1161/circulationaha.119.044440
https://doi.org/10.3389/fmicb.2019.00164
https://doi.org/10.1016/j.atherosclerosis.2018.04.015
https://doi.org/10.1016/j.atherosclerosis.2018.04.015
https://doi.org/10.1099/ijs.0.055061-0
https://doi.org/10.1093/ecco-jcc/jjz154
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1007/s00281-019-00767-y
https://doi.org/10.1007/s00281-019-00767-y
https://doi.org/10.1016/j.jnutbio.2018.02.011
https://doi.org/10.1136/gut.28.10.1221
https://doi.org/10.1128/JB.06301-11
https://doi.org/10.1017/S0022029914000028
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-645212 May 19, 2021 Time: 18:21 # 14

Ji et al. Exploration of CAS via a Multi-Omics Approach

Ding, Y. H., Qian, L. Y., Pang, J., Lin, J. Y., Xu, Q., Wang, L. H., et al. (2017).
The regulation of immune cells by Lactobacilli: a potential therapeutic target
for anti-atherosclerosis therapy. Oncotarget 8, 59915–59928. doi: 10.18632/
oncotarget.18346

Duncan, S. H., Hold, G. L., Harmsen, H. J. M., Stewart, C. S., and Flint, H. J. (2002).
Growth requirements and fermentation products of Fusobacterium prausnitzii,
and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb.
nov. Int J Syst Evol Microbiol 52(Pt 6), 2141–2146. doi: 10.1099/00207713-52-
6-2141

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson,
N., et al. (2011). Procedures for large-scale metabolic profiling of serum
and plasma using gas chromatography and liquid chromatography coupled
to mass spectrometry. Nat Protoc 6, 1060–1083. doi: 10.1038/nprot.2011.
335

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository. Nucleic Acids
Res 30, 207–210. doi: 10.1093/nar/30.1.207

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nat Methods 10, 996–998. doi: 10.1038/nmeth.2604

Faxon, D. P., Fuster, V., Libby, P., Beckman, J. A., Hiatt, W. R., Thompson, R. W.,
et al. (2004). Atherosclerotic Vascular Disease Conference: Writing Group III:
pathophysiology. Circulation 109, 2617–2625. doi: 10.1161/01.CIR.0000128520.
37674.EF

Furuhashi, M. (2019). Fatty Acid-Binding Protein 4 in Cardiovascular and
Metabolic Diseases. J Atheroscler Thromb 26, 216–232. doi: 10.5551/jat.48710

Galkina, E., and Ley, K. (2009). Immune and inflammatory mechanisms of
atherosclerosis (∗). Annu Rev Immunol 27, 165–197. doi: 10.1146/annurev.
immunol.021908.132620

Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease.
N Engl J Med 352, 1685–1695. doi: 10.1056/NEJMra043430

Hong, B. Y., Sobue, T., Choquette, L., Dupuy, A. K., Thompson, A., Burleson,
J. A., et al. (2019). Chemotherapy-induced oral mucositis is associated with
detrimental bacterial dysbiosis. Microbiome 7, 66. doi: 10.1186/s40168-019-
0679-5

Hotamisligil, G. S., and Bernlohr, D. A. (2015). Metabolic functions of FABPs–
mechanisms and therapeutic implications. Nat Rev Endocrinol 11, 592–605.
doi: 10.1038/nrendo.2015.122

Jonsson, A. L., and Backhed, F. (2017). Role of gut microbiota in atherosclerosis.
Nat Rev Cardiol 14, 79–87. doi: 10.1038/nrcardio.2016.183

Karimi, K., Inman, M. D., Bienenstock, J., and Forsythe, P. (2009). Lactobacillus
reuteri-induced regulatory T cells protect against an allergic airway response
in mice. Am J Respir Crit Care Med 179, 186–193. doi: 10.1164/rccm.200806-
951OC

Kasahara, K., Krautkramer, K. A., Org, E., Romano, K. A., Kerby, R. L., Vivas,
E. I., et al. (2018). Interactions between Roseburia intestinalis and diet modulate
atherogenesis in a murine model. Nat Microbiol 3, 1461–1471. doi: 10.1038/
s41564-018-0272-x

Koren, O., Spor, A., Felin, J., Fak, F., Stombaugh, J., Tremaroli, V., et al. (2011).
Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc
Natl Acad Sci U S A 108(Suppl. 1), 4592–4598. doi: 10.1073/pnas.1011383
107

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes,
J. A., et al. (2013). Predictive functional profiling of microbial communities
using 16S rRNA marker gene sequences. Nat Biotechnol 31, 814–821. doi: 10.
1038/nbt.2676

Leaf, A., Jorgensen, M. B., Jacobs, A. K., Cote, G., Schoenfeld, D. A., Scheer, J., et al.
(1994). Do fish oils prevent restenosis after coronary angioplasty? Circulation
90, 2248–2257. doi: 10.1161/01.cir.90.5.2248

Lee, J. Y., Mannaa, M., Kim, Y., Kim, J., Kim, G. T., and Seo, Y. S.
(2019). Comparative Analysis of Fecal Microbiota Composition Between
Rheumatoid Arthritis and Osteoarthritis Patients. Genes (Basel) 10, doi: 10.
3390/genes10100748

Lee, T. H., Cheng, M. L., Shiao, M. S., and Lin, C. N. (2019). Metabolomics
study in severe extracranial carotid artery stenosis. BMC Neurol 19:138. doi:
10.1186/s12883-019-1371-x

Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., et al. (2008).
Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad
Sci U S A 105, 2117–2122. doi: 10.1073/pnas.0712038105

Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt,
M. S., et al. (2019). Atherosclerosis. Nat Rev Dis Primers 5, 56. doi: 10.1038/
s41572-019-0106-z

Lindskog Jonsson, A., Hallenius, F. F., Akrami, R., Johansson, E., Wester, P.,
Arnerlov, C., et al. (2017). Bacterial profile in human atherosclerotic plaques.
Atherosclerosis 263, 177–183. doi: 10.1016/j.atherosclerosis.2017.06.016

Maeba, R., Kojima, K. I., Nagura, M., Komori, A., Nishimukai, M., Okazaki, T.,
et al. (2018). Association of cholesterol efflux capacity with plasmalogen levels
of high-density lipoprotein: A cross-sectional study in chronic kidney disease
patients. Atherosclerosis 270, 102–109. doi: 10.1016/j.atherosclerosis.2018.01.
037

Magruder, M., Edusei, E., Zhang, L., Albakry, S., Satlin, M. J., Westblade, L. F., et al.
(2020). Gut commensal microbiota and decreased risk for Enterobacteriaceae
bacteriuria and urinary tract infection. Gut Microbes 12, 1805281. doi: 10.1080/
19490976.2020.1805281

Morotomi, M., Nagai, F., and Watanabe, Y. (2012). Description of Christensenella
minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct
branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov.
Int J Syst Evol Microbiol 62(Pt 1), 144–149. doi: 10.1099/ijs.0.026989-0

Neijat, M., Habtewold, J., Shirley, R. B., Welsher, A., Barton, J., Thiery, P., et al.
(2019). Bacillus subtilis Strain DSM 29784 Modulates the Cecal Microbiome,
Concentration of Short-Chain Fatty Acids, and Apparent Retention of Dietary
Components in Shaver White Chickens during Grower, Developer, and Laying
Phases. Appl Environ Microbiol 85, doi: 10.1128/AEM.00402-19

Nemet, I., Saha, P. P., Gupta, N., Zhu, W., Romano, K. A., Skye, S. M., et al. (2020).
A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic
Receptors. Cell 180, 862.e–877.e. doi: 10.1016/j.cell.2020.02.016

Ohira, H., Tsutsui, W., and Fujioka, Y. (2017). Are Short Chain Fatty Acids in
Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J
Atheroscler Thromb 24, 660–672. doi: 10.5551/jat.RV17006

Ottosson, F., Brunkwall, L., Smith, E., Orho-Melander, M., Nilsson, P. M.,
Fernandez, C., et al. (2020). The gut microbiota-related metabolite
phenylacetylglutamine associates with increased risk of incident coronary
artery disease. J Hypertens doi: 10.1097/hjh.0000000000002569

Pan, D. D., Zeng, X. Q., and Yan, Y. T. (2011). Characterisation of Lactobacillus
fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with
cholesterol-lowering effects. J Sci Food Agric 91, 512–518. doi: 10.1002/jsfa.4214

Petty, G. W., Brown, R. D. Jr., Whisnant, J. P., Sicks, J. D., O’Fallon, W. M.,
and Wiebers, D. O. (2000). Ischemic stroke subtypes : a population-based
study of functional outcome, survival, and recurrence. Stroke 31, 1062–1068.
doi: 10.1161/01.str.31.5.1062

Qian, Y., Yang, X., Xu, S., Wu, C., Song, Y., Qin, N., et al. (2018). Alteration of the
fecal microbiota in chinese patients with parkinson’s disease. Brain Behavior
and Immunity 70, 194–202. doi: 10.1016/j.bbi.2018.02.016

Rocha, V. Z., and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat
Rev Cardiol 6, 399–409. doi: 10.1038/nrcardio.2009.55

Sacks, F. M., Stone, P. H., Gibson, C. M., Silverman, D. I., Rosner, B., and Pasternak,
R. C. (1995). Controlled trial of fish oil for regression of human coronary
atherosclerosis. HARP Research Group. J Am Coll Cardiol 25, 1492–1498. doi:
10.1016/0735-1097(95)00095-l

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol 12,
R60. doi: 10.1186/gb-2011-12-6-r60

Shah, M. M., Saio, M., Yamashita, H., Tanaka, H., Takami, T., Ezaki, T., et al.
(2012). Lactobacillus acidophilus strain L-92 induces CD4(+)CD25(+)Foxp3(+)
regulatory T cells and suppresses allergic contact dermatitis. Biol Pharm Bull 35,
612–616. doi: 10.1248/bpb.35.612

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res 13, 2498–2504. doi: 10.1101/
gr.1239303

Smits, H. H., Engering, A., van der Kleij, D., de Jong, E. C., Schipper, K., van
Capel, T. M., et al. (2005). Selective probiotic bacteria induce IL-10-producing
regulatory T cells in vitro by modulating dendritic cell function through
dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin.
J Allergy Clin Immunol 115, 1260–1267. doi: 10.1016/j.jaci.2005.03.036

Song, P., Fang, Z., Wang, H., Cai, Y., Rahimi, K., Zhu, Y., et al. (2020). Global
and regional prevalence, burden, and risk factors for carotid atherosclerosis: a

Frontiers in Physiology | www.frontiersin.org 14 May 2021 | Volume 12 | Article 645212

https://doi.org/10.18632/oncotarget.18346
https://doi.org/10.18632/oncotarget.18346
https://doi.org/10.1099/00207713-52-6-2141
https://doi.org/10.1099/00207713-52-6-2141
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1161/01.CIR.0000128520.37674.EF
https://doi.org/10.1161/01.CIR.0000128520.37674.EF
https://doi.org/10.5551/jat.48710
https://doi.org/10.1146/annurev.immunol.021908.132620
https://doi.org/10.1146/annurev.immunol.021908.132620
https://doi.org/10.1056/NEJMra043430
https://doi.org/10.1186/s40168-019-0679-5
https://doi.org/10.1186/s40168-019-0679-5
https://doi.org/10.1038/nrendo.2015.122
https://doi.org/10.1038/nrcardio.2016.183
https://doi.org/10.1164/rccm.200806-951OC
https://doi.org/10.1164/rccm.200806-951OC
https://doi.org/10.1038/s41564-018-0272-x
https://doi.org/10.1038/s41564-018-0272-x
https://doi.org/10.1073/pnas.1011383107
https://doi.org/10.1073/pnas.1011383107
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1161/01.cir.90.5.2248
https://doi.org/10.3390/genes10100748
https://doi.org/10.3390/genes10100748
https://doi.org/10.1186/s12883-019-1371-x
https://doi.org/10.1186/s12883-019-1371-x
https://doi.org/10.1073/pnas.0712038105
https://doi.org/10.1038/s41572-019-0106-z
https://doi.org/10.1038/s41572-019-0106-z
https://doi.org/10.1016/j.atherosclerosis.2017.06.016
https://doi.org/10.1016/j.atherosclerosis.2018.01.037
https://doi.org/10.1016/j.atherosclerosis.2018.01.037
https://doi.org/10.1080/19490976.2020.1805281
https://doi.org/10.1080/19490976.2020.1805281
https://doi.org/10.1099/ijs.0.026989-0
https://doi.org/10.1128/AEM.00402-19
https://doi.org/10.1016/j.cell.2020.02.016
https://doi.org/10.5551/jat.RV17006
https://doi.org/10.1097/hjh.0000000000002569
https://doi.org/10.1002/jsfa.4214
https://doi.org/10.1161/01.str.31.5.1062
https://doi.org/10.1016/j.bbi.2018.02.016
https://doi.org/10.1038/nrcardio.2009.55
https://doi.org/10.1016/0735-1097(95)00095-l
https://doi.org/10.1016/0735-1097(95)00095-l
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1248/bpb.35.612
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.jaci.2005.03.036
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-645212 May 19, 2021 Time: 18:21 # 15

Ji et al. Exploration of CAS via a Multi-Omics Approach

systematic review, meta-analysis, and modelling study. Lancet Glob Health 8,
e721–e729. doi: 10.1016/S2214-109X(20)30117-0

Vojinovic, D., van der Lee, S. J., van Duijn, C. M., Vernooij, M. W., Kavousi, M.,
Amin, N., et al. (2018). Metabolic profiling of intra- and extracranial carotid
artery atherosclerosis. Atherosclerosis 272, 60–65. doi: 10.1016/j.atherosclerosis.
2018.03.015

Wahlstrom, A., Sayin, S. I., Marschall, H. U., and Backhed, F. (2016). Intestinal
Crosstalk between Bile Acids and Microbiota and Its Impact on Host
Metabolism. Cell Metab 24, 41–50. doi: 10.1016/j.cmet.2016.05.005

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al. (2011).
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
Nature 472, 57–63. doi: 10.1038/nature09922

Weber, C., and Noels, H. (2011). Atherosclerosis: current pathogenesis and
therapeutic options. Nat Med 17, 1410–1422. doi: 10.1038/nm.2538

Witkowski, M., Weeks, T. L., and Hazen, S. L. (2020). Gut Microbiota and
Cardiovascular Disease. Circ Res 127, 553–570. doi: 10.1161/circresaha.120.
316242

Won, T. J., Kim, B., Song, D. S., Lim, Y. T., Oh, E. S., Lee, D. I., et al. (2011).
Modulation of Th1/Th2 balance by Lactobacillus strains isolated from Kimchi
via stimulation of macrophage cell line J774A.1 in vitro. J Food Sci 76, H55–H61.
doi: 10.1111/j.1750-3841.2010.02031.x

Yang, Y., Gu, H., Sun, Q., and Wang, J. (2018). Effects of Christensenella minuta
lipopolysaccharide on RAW 264.7 macrophages activation. Microb Pathog 125,
411–417. doi: 10.1016/j.micpath.2018.10.005

Zheng, J., Hoffman, K. L., Chen, J. S., Shivappa, N., Sood, A., Browman, G. J.,
et al. (2020). Dietary inflammatory potential in relation to the gut microbiome:
results from a cross-sectional study. Br J Nutr 124, 931–942. doi: 10.1017/
s0007114520001853

Zhou, C., Zhao, H., Xiao, X. Y., Chen, B. D., Guo, R. J., Wang, Q., et al.
(2020). Metagenomic profiling of the pro-inflammatory gut microbiota in
ankylosing spondylitis. J Autoimmun 107, 102360. doi: 10.1016/j.jaut.2019.102
360

Ziganshina, E. E., Sharifullina, D. M., Lozhkin, A. P., Khayrullin, R. N., Ignatyev,
I. M., and Ziganshin, A. M. (2016). Bacterial Communities Associated with
Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PLoS
One 11:e0164836. doi: 10.1371/journal.pone.0164836

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ji, Chen, Gu, Zhou, Wang, Ren, Wu, Yang and Zheng. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 15 May 2021 | Volume 12 | Article 645212

https://doi.org/10.1016/S2214-109X(20)30117-0
https://doi.org/10.1016/j.atherosclerosis.2018.03.015
https://doi.org/10.1016/j.atherosclerosis.2018.03.015
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1038/nature09922
https://doi.org/10.1038/nm.2538
https://doi.org/10.1161/circresaha.120.316242
https://doi.org/10.1161/circresaha.120.316242
https://doi.org/10.1111/j.1750-3841.2010.02031.x
https://doi.org/10.1016/j.micpath.2018.10.005
https://doi.org/10.1017/s0007114520001853
https://doi.org/10.1017/s0007114520001853
https://doi.org/10.1016/j.jaut.2019.102360
https://doi.org/10.1016/j.jaut.2019.102360
https://doi.org/10.1371/journal.pone.0164836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Exploration of Crucial Mediators for Carotid Atherosclerosis Pathogenesis Through Integration of Microbiome, Metabolome, and Transcriptome
	Introduction
	Materials and Methods
	Medical Ethics
	Patients Recruitment
	Sample Collection
	Genomic DNA Extraction and 16S Ribosomal DNA Sequencing
	Ultra-High-Performance Liquid Tandem Chromatography/Quadrupole Time-of-Flight Mass Spectrometry Metabolomic Profiling of Patient Plasma Samples
	Transcriptomic Profiling of Atherosclerotic Samples From the Gene Expression Omnibus Database
	Statistical Analysis

	Results
	Flowchart of Our Study
	Clinical Characteristics of Carotid Atherosclerosis Patients and Controls
	Microbial Profiling of Carotid Atherosclerosis Patients and Controls
	Gut Microbiota Richness, Composition, and Diversity

	Differential Gut Microbiota Enriched in Carotid Atherosclerosis Patients and Healthy Controls
	Different Functional Composition Profiles of Gut Microbiota Between Carotid Atherosclerosis Patients and Healthy Controls
	Metabolic Profiling of Carotid Atherosclerosis Patients and Controls
	Differential Metabolites Screening
	Metabolic Pathway Analysis for Differential Plasma Metabolites
	Adjustment for Covariates in Differential Genera and Metabolites
	Transcriptomic Profiling of Carotid Atherosclerosis Patients and Controls
	Differentially Expressed Gene Screening
	Functional Annotation Analysis for Differentially Expressed Genes

	Integration of Multi-Omics Data

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


