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Emerging evidence demonstrates the critical role of the immune response in the

mechanisms relating to mood disorders, such as major depression (MDD) and bipolar

disorder (BD). This has cast a spotlight on a specialized branch committed to the

research of dynamics of the fine interaction between emotion (or affection) and

immune response, which has been termed as “affective immunology.” Inflammatory

cytokines and gut microbiota are actively involved in affective immunology. Furthermore,

abnormalities of the astrocytes and microglia have been observed in mood disorders

from both postmortem and molecular imaging studies; however, the underlying

mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia

acts as a mutual and pivotal intermediary factor modulating the immune response

posed by inflammatory cytokines and gut microbiota. In this study, we propose the

“altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the

astrocyte-microglia crosstalk regulates emotional alteration through mediating immune

response, and thus, contributing to the development of mood disorders.

Keywords: astrocyte-microglia crosstalk, neuroinflammation, mood disorders, depression, bipolar disorder

INTRODUCTION

Almost a century ago, Julius Wagner-Jauregg first reported the impact of immunological
disturbance on psychological function. This finding stirred up researchers’ enthusiasm about
bidirectional communication between immunological dysfunction and mental disorders. To date,
understanding the etiology of mental disorders, such as schizophrenia, autism spectrum disorder,
anxiety disorder, as well as mood disorders, is one of the most actively explored topics in
immunology (1, 2).
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Mood disorders, including major depressive disorder
(MDD) and bipolar disorder (BD), are a group of complex
debilitating psychiatric illnesses identified by symptoms rather
than biological markers. Both of these disorders remain serious
health concerns worldwide, owing to their high prevalence,
risk for recurrence, and suicide. Further, the mainstream
pharmacological treatments—antidepressants and mood
stabilizers—are unsatisfactory in treating such patients due to
their delayed onset of action, limited efficacy, and vast array
of adverse side effects (3, 4). The important reason behind
this dilemma is frustratingly limited understanding of the
pathological mechanism underlying mood disorders, including
affective immunology (5, 6).

To understand the dynamics of the fine interaction between
the emotion (or affection) and immune response, a specialized
branch called “affective immunology” was recently introduced
to distinguish it from “psychoneuroimmunology” which broadly
studies the relationship between psychological processes,
neuroendocrine activities, and immune systems (7). The high
plasticity of the immune system significantly raises the exciting
possibility of translational research. In the wake of rapidly
accumulating evidence implying the critical role of affective
immunity in the cellular and molecular mechanisms underlying
the mood disorders, great efforts are ongoing to develop
more immunomodulators targeting immune cells (especially
microglia) (8, 9), inflammatory cytokines (10, 11), as well as gut
microbiota (12, 13).

Microglia are widely known as innate sentinel immune cells
that reside in the central nervous system (CNS). These cells
respond dynamically to changes in the physical environment
and are proven to be key players in affective immunology.
Additionally, another common glia, astrocytes, also participate
in neuroinflammation by re-sculpting blood-brain barrier (BBB)
and releasing inflammatory cytokines. Interestingly, a unique
bond between microglia and astrocytes exists, namely the
astrocyte-microglia crosstalk, coordinate their functions in
neuroinflammatory response (14). Collectively, the astrocyte-
microglia crosstalk likely exerts an influence on emotion and
affection by regulating the neuroinflammatory response. Hence,
we speculate that the altered astrocyte-microglia crosstalk

Abbreviations: AAMC, altered astrocyte-microglia crosstalk; CNS, central
nervous system; BBB, blood-brain barrier; MCP, monocyte chemoattractant
protein; IL, interleukin; TGF, transforming growth factor; NK, nature killer;
CRP, C reactive protein; HPA, hypothalamic-pituitary-adrenal; MDD, major
depression disorder; BD, bipolar disorder; IFN, interferon; TNF, tumor necrosis
factor; SCFA, short-chain fatty acids; MIF, migration inhibitory factor; VEGF,
vascular endothelial growth factor; CCL, C-C motif chemokine ligand; GDNF,
glial cell line-derived neurotrophic factor; PTX3, Pentraxin 3; AHR, aryl
hydrocarbon receptor; PFC, prefrontal cortex; ACC, anterior cingulate cortex;
TSPO, translocator protein; GFAP, Glial fibrillary acidic protein; TMS, transcranial
magnetic stimulation; CSF, cerebrospinal fluid; BA, Brodmann area; ATP,
adenosine triphosphate; IGF-1, insulin-like growth factor 1; LCN2, lipocalin-2;
ORM2, orosomucoid-2; IP-10, IFN-γ inducible protein 10; CXCL10, C-X-C motif
chemokine ligand 10; PAI-1,plasminogen activator inhibitor type 1; HLA-DR,
Human leukocyte antigen D-related; AQP-4, aquaporin-4; CHI3L1, chitinase-
3-like protein 1; NMDA, N-methyl-D-aspartate; EAAT2, excitatory amino-acid
transporters 2.

(AAMC) is a primary determinant of mood disorders, thereby
a more specific and direct therapeutic target.

In this study, we integrate available data from both preclinical
and translational studies regarding affective immunology and
highlight the core role of the astrocyte-microglia crosstalk.
Furthermore, we intend to discuss the dysregulated crosstalk
between astrocytes and microglia and hope to shed some light on
potential therapeutic opportunities for treating mood disorders.

AFFECTIVE IMMUNOLOGY

The Interaction Between Emotion and
Immune System
Researchers have revealed that emotion and immune system
mirror each other. However, the effect and causality between the
two are debatable.

Mounting evidence has shown the beneficial impact of
positive emotion (e.g., humor, happiness, and hope) on the
immune system. For instance, people with positive emotions
showed lower susceptibility to infection (15, 16) and greater
immune response (17, 18). This role of “immune enhancer” is
mediated by higher levels of antibodies (18) and T cells (19–
21), and increased activity of natural killer (NK) cells (19, 22),
as well as reduced inflammatory markers including interleukin-
6 (IL-6) and C-reactive protein (CRP) (22, 23). In contrast,
negative emotions (e.g., sadness, nervousness, worry, loneliness,
and fear) and psychological stress are associated with poorer
immunological function with lower NK cell cytotoxicity (8),
fewer T cells (24), and increased inflammatory markers (25).
Importantly, these immune alterations can persist up to 2 h
following brief emotional turbulence like stress exposure (26),
and it might be stored as immunological memory, thus shedding
light on the development of emotional interventions (27).

Contrastingly, some researchers suggest that a dysfunctional
immune system can induce emotional changes. For instance,
immunotherapy using interferon-alpha (IFN-α) and vaccination
can lead to negative emotion along with increased levels of
inflammatory cytokines (10, 28, 29). Particularly, these cytokines
are postulated to regulate BBB permeability and activity of the
hypothalamic-pituitary-adrenal (HPA) axis (30, 31). This thus
influences various neuronal events related to emotions including
glia-neuron communication, neurotransmission, and synaptic
pruning (32, 33). This finding leads to an interesting hypothesis
that emotions can act as an “infection defense” to various
environmental pathogens (34).

Taken together, bidirectional communication between
emotions and the immune system exists, suggesting a
striking role of the immune response in the development
of mood disorders.

The Compelling Role of Inflammation in
Mood Disorders
Aberrant inflammatory processes exert an influence on the
progression of mood disorders and also mediate the treatment
response. High levels of peripheral inflammatory cytokines
and chemokines, including IL-1β, IL-6, IFN-γ, tumor necrosis
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factor-alpha (TNF-α), and CRP, have been reported in patients
with depression (35). In addition, the levels of these cytokines
are reduced following an effective antidepressant therapy (36).
Conversely, anti-inflammatory treatment results in improvement
of depressive symptoms (37). Furthermore, immune-related
genes encoding these cytokines have recently been found to
be associated with depression (38), thus strongly supporting
postulation that inflammatory cytokines are the active regulator
of depression. Therefore, inflammatory cytokines are considered
as “biomarkers” for diagnosis, susceptibility, and treatment
responsiveness for MDD (36). With regards to BD, inflammatory
cytokines have been found to be upregulated in both the
depressive and manic episodes and return to normal levels in
the euthymic state (9, 39). In addition to circulating cytokines,
transmembrane TNF-α has also been shown to significantly
increase in Brodmann area (BA) 46 for MDD and BA24 for
BD (40).

Other than cytokines, the emerging evidence shows altered
composition of gut microbiota in both MDD and BD (13, 41,
42). Specifically, Alistipes and Klebsiella are increased in MDD
patients, while bacteria belonging to the Lachnospiraceae family
are decreased (12, 43). Likewise, an abundance of Lachnospira
was reported in the gut of BD patients (44). The altered
gut microbiome can not only influence peripheral immune
response (45) but can also regulate the neuroinflammation via
the vagus nerve and microbial metabolites such as short-chain
fatty acids (SCFA), secondary bile acids, serotonin, tryptophan
metabolites (46), and neurotransmitter production (e.g., gamma-
aminobutyric acid, noradrenaline, dopamine, and acetylcholine)
(47, 48). However, since there is large variability in the
composition and diversity of gut microbiota between individuals
and emotional states, it remains difficult to identify an optimal
microbiome profile. A major challenge lies in translating these
observations into interventions that could be used to treat
mood disorders.

Taken together, the inflammatory cytokines and gut
microbiota play compelling roles in the etiology of mood
disorders (Figure 1). Particularly, both have profound impacts
on the neuroinflammatory response by boosting the activity of
microglia and astrocytes (46, 49, 50). In the next section, we
present pathological alterations of both microglia and astrocytes
in depression and BD, respectively.

DYSFUNCTION OF MICROGLIA AND
ASTROCYTES IN MOOD DISORDERS

Dysfunctional astrocytes and microglia are inextricably
intertwined in mood disorders. To date, a growing body
of evidence from human autopsy and serum/CSF/imaging
biomarkers indicates their abnormalities underlying mood
disorders (Table 1). Additionally, distinct gene profiling patterns
of these cells have been reported. For instance, the CD206 gene
expression pattern of microglia varies between depressive and
manic states of BD, suggesting the genetic evidence of microglial
dysfunction in BD and the potential of microglial CD206 as a
state marker (73).

FIGURE 1 | Schematic illustration of three cornerstones of affective

immunology.

Dysfunction of Microglia and Astrocytes in
Depression
Postmortem brain tissue of suicide victims has provided
evidence suggesting enhanced microglial activation in the
depressive episode (32, 71, 81). Steiner et al. observed greater
human leukocyte antigen, D related (HLA-DR) staining in the
dorsolateral prefrontal cortex (PFC) and anterior cingulate cortex
(ACC) (71). Subsequently, an increased density of microglial
quinolinic acid within ACC was reported in both unipolar and
bipolar depression (32). Strikingly, it was found that primed
microglia, rather than resting phenotype, were increased in ACC
(81). These findings are consistent with the findings of recent
molecular imaging studies using translocator protein (TSPO) as
a marker of microglial activation (77, 78). Elevated TSPO density
was found in PFC, ACC, and insula of patients experiencing
major depressive episode (77, 79), especially in those with a
long duration of untreated MDD (78). However, an earlier
positron emission tomography (PET) imaging studies showed
no significant difference in TSPO density between depressive
patients and matched controls (76). The discrepancies may be
related to the relatively small sample size and high heterogeneity
of severity, onset age, and antidepressants used. Collectively,
enhanced microglial activation in specific brain regions is a core
constituent of depression pathology. Accordingly, inhibition of
microglial activation by minocycline administration can lead to
an improvement in depressive symptoms in various animal and
human studies (31, 82–85). Similarly, blocking the adenosine
triphosphate (ATP)-gated P2X7 ion channel of microglia was
shown to be a potential, new, and effective antidepressant
therapy (86).
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TABLE 1 | Astrocytic and microglial markers in mood disorders.

Molecular

markers

Cell type Human cohort

studied

Sample studied Main findings References

GFAP Astrocyte MDD Human postmortem

tissue

Decreased in amygdala, cerebellum, hippocampus,

PFC (including BA10), cingulate cortex, thalamus and

caudate

(51–56)

Increased in basal ganglia (57)

No significant difference in ACC, PFC, entorhinal

cortex, hippocampus and corpus callosum

(58–61)

BD Human postmortem

tissue

Decreased in PFC (including BA10/11/47) and BA24 (53, 62, 63)

Increased in PFC (including BA9) (64–66)

No significant difference in amygdala, cerebellum,

ACC, PFC (including BA 9/10/46), BA40, basal

ganglia, entorhinal cortex and corpus callosum,

(51, 52, 57–61,

67, 68)

S100β Astrocyte MDD Human postmortem

tissue

No significant difference in amygdala (69)

Decreased in hippocampus (61)

BD Human postmortem

tissue

Decreased in hippocampus and BA 9 (61, 68)

No significant difference in amygdala (69)

Increased in BA40 (61)

BD (manic state) Serum Increased in serum (70)

ALDH1L1 Astrocyte MDD Human postmortem

tissue

Increased in basal ganglia (57)

BD Human postmortem

tissue

No significant difference in basal ganglia (57)

HLA-D Microglia MDD Human postmortem

tissue

No significant difference in PFC, ACC, mediodorsal

thalamus, hippocampus and amygdala

(69, 71)

BD Human postmortem

tissue

No significant difference in PFC, ACC, mediodorsal

thalamus, hippocampus and amygdala

(69, 71)

Unipolar and bipolar

depression

Human postmortem

tissue

Decreased in dorsal raphe nucleus (non-suicidal

subgroup)

(72)

CD206 Microglia BD Peripheral blood Downregulated in the manic state (73)

MCP-

1/CCL-2

Microglia

and

astrocytes

BD (euthymic state) Serum, CSF Increased in both serum and CSF (74)

YKL-

40/CHI3L1

Microglia BD (euthymic state) Serum, CSF Increased in both serum and CSF (74)

sCD14 Microglia BD (euthymic state) Serum, CSF Increased in serum while no significant difference in

CSF

(74)

CD11B Microglia

and

astrocytes

BD Human postmortem

tissue

Decreased in ACC (75)

No significant difference in frontal cortex (40)

Increased in PFC (65)

IBA-1 Microglia BD Human postmortem

tissue

No significant difference in BA9 (64)

TSPO Microglia MDD (mild to moderate

depression)

[11C] PBR28 PET No significant difference (76)

MDD (severe

depression)

[18F] FEPPA PET Increased in PFC, ACC and insula (77, 78)

MDD (late-life) [11C] PK11195 PET Increased in ACC and hippocampus (79)

BD (euthymic state) [11C] PK11195 PET Increased in hippocampus (80)

Quinolinic

acid

Microglia Unipolar and bipolar

depression

Human postmortem

tissue

Increased in cingulate cortex (32)

MCP, monocyte chemoattractant protein; CCL, C-C motif chemokine ligand; MDD, major depression disorder; BD, bipolar disorder; PFC, prefrontal cortex; ACC, anterior cingulate

cortex; TSPO, translocator protein; GFAP, Glial fibrillary acidic protein; CSF, cerebrospinal fluid; BA, Brodmann area; HLA-D, Human leukocyte antigen D; CHI3L1, chitinase-3-like protein

1; IBA-1, ionized calcium-binding adapter molecule-1; PET, positron emission tomography.
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Morphological and functional abnormalities of astrocytes
have also been seen in patients with depressive episode.
A histological study using Golgi-staining found hypertrophic
astrocytes with more intricate processes and longer projections
within ACC of depressed suicide cases (87), suggesting local low-
grade inflammation with reactive astrocytosis. These findings
were further confirmed by the observation of weakened
BBB with reduced astrocytic endfeet (88) and gap junction
proteins (89, 90), which facilitates the recruitment of immune
cell and diffusion of pro-inflammatory cytokines (30). In
parallel, mounting evidence of astrocyte-specific biomarkers
demonstrates the dysfunction of astrocytes in depressive episode.
Glial fibrillary acidic protein (GFAP), involved in astrocytic
structure and movement, is thought to be upregulated during
neuroinflammation (91). However, decreased density of GFAP-
positive astrocytes was consistently found in depression-
related brain regions, such as PFC, cingulate cortex (55,
58), hippocampus (54), amygdala (51), thalamus, and caudate
nuclei (56). Although of less astrocyte-specificity, other markers
such as calcium-binding protein S100β (92) and the water
channel aquaporin-4 (AQP-4) (93) provided supporting evidence
of astrocytic damage (especially neuroprotective phenotype)
during dysregulated neuroinflammatory response induced by
depressive episode (61, 88). Importantly, possibly due to
epigenetic mechanism, maternal depression can result in a
profound reduction of astrocyte density in the offspring, as
shown in an animal model (94). In summary, the pathological
alterations in astrocytes represent a prominent characteristic of
depression, which can be reversed using effective antidepressant
therapy. Fluoxetine (63, 95, 96), mirtazapine (97), ketamine (98,
99), as well as repetitive high-frequency transcranial magnetic
stimulation (TMS) (100) have been shown to have a beneficial
impact on astrocytes, paralleled by improvement of depressive
symptoms. Additional support for the critical role of astrocytes
in depression is derived from recent studies suggesting the
therapeutic option for depression via the regulating the activity
of astrocytes (101, 102).

Dysfunction of Microglia and Astrocytes in
Bipolar Disorder
Although the dysfunction of microglia and astrocytes has also
been implicated in the development of BD (103, 104), the picture
appears to be more complicated compared to MDD. Human
postmortem studies in BD have not yielded consistent results.
The majority of them showed an unchanged density of astrocytes
and microglia in the frontal cortex (40, 64, 105, 106), ACC (60),
amygdala (51, 67, 69), hippocampus (107), entorhinal cortex (59,
67), basal ganglia (57), dorsal raphe nucleus (72), and cerebellum
(52). On the contrary, several studies showed positive results. For
instance, the level of GFAP has been reported to be increased in
BA9 (66) and decreased in BA10 (53), BA24 (63), BA11, and 47
(62). The level of S100β has been reported to be increased in BA40
and decreased in BA9 (68). The expression of CD11b protein, a
marker of astrocytic and microglial activation, has been reported
to be upregulated in PFC (65) and downregulated in ACC (75).

Obviously, the heterogeneity in terms of brain regions studied
(62, 68) and methodology used (40, 66, 107) contributes to
the discrepancy in these findings. Additionally, the mixed
perimortem states are conceivably confounding factors that
cannot be neglected. Some brain tissues were from depressive
suicide cases, while most were from patients that died due to
physical disease including pneumonia, pulmonary embolism,
myocardial infarction, and cerebral hemorrhage which might
affect acid-base balance and neuroinflammatory response (64,
72, 107). Also, substance abuse is common in BD and it can
influence microglial activity (75). For each subject, the diagnosis
of BD was based on the retrospective review of medical records
and extensive telephone interviews with relatives, but their
comorbidity and phenotype (depressive episode, manic episode
or remission state) remain unclear (108). Due to the complexity
of BD, studies regarding its diverse phenotypes are requisite
to identify trait- or state-related alterations of astrocytes and
microglia (5). Similar to unipolar depression, bipolar depression
has been found to be related to reduced S100β positive astrocytes
in the bilateral hippocampus (CA1 subregion) (61). Nevertheless,
no significant difference in GFPA positive astrocyte and HLA-
DR positive microglia were found in bipolar depression, which
might be ascribed to the relatively small sample size (61, 71).
With regards to manic episode, higher levels of peripheral
S100β have been observed, implying astrocytic activation (70).
Likewise, astrocytic and microglial activation are involved in
euthymic patients (74, 80). Jakobsson et al. found increased
cerebrospinal fluid (CSF) and serum levels of MCP-1/CCL2
and YKL-40/chitinase-3-like protein 1 (CHI3L1) in patients
with mood-stabilized BD (74). Moreover, a PET study revealed
microglial activation in hippocampus (80), which is positively
related to neuronal integrity (109). Frustratingly, it remains
difficult to conclude an absolute statement based on these
limited studies.

Dysfunctional astrocytes and microglia reflect abnormal
neuroinflammatory response in mood disorders. Below, we will
discuss the astrocyte-microglia crosstalk and its pivotal role in
affective immunology.

THE ASTROCYTE-MICROGLIA
CROSSTALK IN NEUROINFLAMMATION

Overview of the Astrocyte-Microglia
Crosstalk
Although both microglia and astrocytes belong to glia cells,
they have very different origins; the former are CNS resident
macrophages, while the latter are derived from neuroepithelial
progenitors and serve as stromal cells (110, 111). To date,
numerous cellular and molecular mechanisms of bidirectional
communication between them have been shown (49, 112).

Astrocyte-derived IL-1 could activate microglia via
permeabilizing the BBB. Besides, astrocytes can release
inflammatory cytokines and chemokines, such as IL-15
(113), IL-33 (114), migration inhibitory factor (MIF) (115), and
ATP (116), to directly enhance microglial abilities like migration,
engulfing apoptotic cells, phagocytosing extracellular matrix, and
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pruning synapses. Similarly, microglia could influence astrocytic
activity by releasing ATP (33), complement factor C1q, IL-1α,
TNF (49), transforming growth factor-beta (TGF-β), vascular
endothelial growth factor-β (VEGF-β) (50), and insulin-like
growth factor 1 (IGF-1) (14). Moreover, astrocytes and microglia
communicate by coordinated response using common soluble
factors [including norepinephrine (117, 118), purines (119),
and circulating bacterial metabolites from gut microbiome
(47, 50)], consistently impacting the neuronal activity. Last
but not least, there is limited evidence to explain the relatively
stable proportions of astrocytes and microglia. Researchers
have hypothesized that communication between astrocytes
and microglia performs an essential role in balancing their
proportionate numbers (120, 121).

Taken together, the microglia and astrocytes function
synchronously and complementarily during various
physiological and pathological processes (14, 122), including
synaptic formation and remolding, BBB regulation, homeostasis,
and immune response (123). Once the astrocyte-microglia
crosstalk is perturbed, pathological events occur.

The Astrocyte–Microglia Crosstalk During
Innate Immune Response
Both astrocytes and microglia actively participate in
neuroinflammation by regulating the innate immune system
(124). When the microglia sense danger signals with their
motile protrusions, they immediately release cytokines and
chemokines that lead to reactive astrocytosis. Interestingly,
the phenotypes of reactive astrocytes, whether they are
neuroprotective or neurotoxic, are determined by microglia-
derived pro-inflammatory cytokines according to diverse
pathological conditions (49, 119, 125). The neuroprotective
reactive astrocytes are induced via purinergic signaling (119).
They can release neurotrophic factors and secret proteins,
resulting in synaptogenesis and scar formation (119). The scar
protects brain tissue from invading of excessive inflammation
response. Conversely, the neurotoxic reactive astrocytes increase
the expression of multiple genes that are related to tissue
damage and induction of proinflammatory mediators (112, 126).
Astrocyte-derived proinflammatory molecules can increase BBB
permeability, which contributes to the recruitment of immune
cells and increased migration and phagocytosis of microglia
(30). This thereby amplifies the inflammatory response. Many
researches have shown the pivotal nature of lipocalin-2 (LCN2)
(127), as well as monocyte chemoattractant protein 1/C-C motif
chemokine ligand 2 (MCP-1/CCL2), IFN-γ inducible protein
10/C-X-C motif chemokine ligand 10 (IP-10/CXCL10) (128),
complement factor C3 (129), and plasminogen activator inhibitor
type 1 (PAI-1) (130) in enhancing microglial activity. Contrarily,
at the late stage of inflammation, the reactive astrocytes attenuate
microglial activation by orosomucoid-2 (ORM2) (131), TGF-β
(132), and glial cell line-derived neurotrophic factor (GDNF)
(133), and inhibits the microglial phagocytosis by pentraxin 3
(PTX3) (134), thereby limiting the neuroinflammation. Above
all, the astrocyte-microglia crosstalk is crucial for moderating

innate immune response; otherwise, the neuroinflammatory
response would get out of control (Figure 2).

Blood-Brain Barrier, Gut Microbiota, and
the Astrocyte-Microglia Crosstalk
As stated earlier, the alteration in BBB permeability is a
key mechanism of regulating neuroinflammatory response.
This allows or restricts the entry of immune cells and
peripheral inflammatory mediators into the parenchyma of
CNS at different stages. As one of the essential components of
BBB, astrocytes dynamically regulate its permeability through
inflammatory cytokines and connexins on endfeet (135–137). For
instance, reactive astrocytes become hypertrophic with a reduced
number of connexins to weaken BBB during neuroinflammatory
conditions (90). Besides, resting microglia is beneficial for
relatively intact BBB, while reactive microglia tend tomigrate and
induce BBB breakdown (138). Meanwhile, the gut microbiota
is essential for the integrity of BBB (139). Once barriers are
breached, blood-derived signals, including circulating microbial
metabolites from the gut microbiota, can enter the brain and act
back on the astrocyte-microglia crosstalk (47, 50).

Specifically, both astrocytes and microglia express the aryl
hydrocarbon receptors (AHRs) (50) and can sense tryptophan
metabolites (46) and SCFA, respectively (47). The AHRs
signaling creates an anti-inflammatory state by balancing the
gene expression of TGF-α and VEGF-β (50). Moreover, the
normal development of microglia is strongly associated with
a full repertoire of gut microbiota in early life (47, 140, 141).
Reciprocally, the astrocyte-microglia crosstalk has been found to
influence intestinal permeability and microbiome profile (142).

As for mood disorders, overactive astrocyte-microglia
crosstalk can increase the permeability of BBB and intestine,
which facilitate the diffusion of various inflammatory cytokines
and microbial metabolites, and further activate the astrocyte-
microglia crosstalk. In this context, the feedforward mechanism
amplifies the neuroinflammatory response. Therefore, we
postulate AAMC at the heart of affective immunology.

CROSSTALK BETWEEN ASTROCYTES
AND MICROGLIA IN THE AFFECTIVE
IMMUNOLOGY: DOES IT PLAY KEY ROLE?

Given the abundant evidence indicating the significant role
of neuroinflammation in affective immunology, including
inflammatory cytokines and gut microbiota (38, 42, 43),
postmortem studies and molecular imaging researches have
revealed that AAMC participates in the development of mood
disorders (Figure 1) (56, 72, 78, 80). Despite recent progress, the
underlying mechanisms remain elusive. Given that recent data
has shown that AAMC serves as an essential mediator of both
inflammatory cytokines and gut microbiota (114, 142, 143), we
propose the hypothesis that astrocyte-microglia crosstalk triggers
emotional alteration through regulating neuroinflammatory
response, and thus contributes to mood disorders. In this section,
we summarize data from present literature and discuss the
crosstalk between astrocytes and microglia, aiming to support
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FIGURE 2 | Schematic illustration of the fine interaction between astrocytes and microglia during neuroinflammation. Reactive microglia activate and determine the

phenotypes of astrocytes, ranging from neurotoxic to neuroprotective. The reactive neurotoxic astrocytes promote the capacity of microglial activation, motility, and

phagocytosis, while weakening the blood-brain barrier (BBB) and prune synapses. Increased BBB permeability facilitates the recruitment of immune cells and diffusion

of inflammatory cytokines, amplifying neuroinflammatory response. The reactive neuroprotective astrocyte can lead to microglial inactivation, synaptogenesis, and scar

formation.

our hypothesis. However, the limitations of this hypothesis
are also presented, and the suggestions for future research
are offered.

As mentioned above, reactive astrocytes and microglia have
been reported in mood disorders. Their presence is strongly
suggesting of increased neuroinflammatory response (32, 81, 87).
Reactive astrocytes become hypertrophic with reduced gap
junction proteins, and they release cytokines and chemokines
(such as IL-1, VEGF-A, TGF-β, and MIF), which drives BBB
disruption and enhances microglial activation, migration, and
phagocytosis (88, 90, 112, 135, 137). The reactive microglia
make a significant impact on the astrocytic transformation
(neuroprotective or neurotoxic phenotypes) and capacity
mediating by purine signaling and inflammatory cytokines
(40, 49, 119). Moreover, the increased BBB permeability
facilitates the infiltration of peripheral immune cells, circulating
cytokines and microbial metabolic (30). This can promote
astrocytic and microglial activity, thereby amplifying the
neuroinflammatory response (46, 50). Indeed, the studies
regarding upregulated cortical inflammatory cytokine further
support the neuroinflammatory cascade in mood disorders
(2, 40). The excessive neuroinflammatory response in mood
disorders reflects AAMC, which results in detrimental impacts
on the downstream processes of the astrocyte-microglia

crosstalk, such as neurotransmission and synaptic remolding
(33, 123).

To our knowledge, astrocytes express glutamate receptors and
regulate glutamate homeostasis through exocytosis (clearance
of excess glutamate) and endocytosis (glutamate re-storage
and transportation) (144). Dysfunctional astrocytes account
for the imbalanced glutamatergic neurotransmission and hence
excitotoxicity seen in mood disorders (65, 116). Arguably,
microglia serve as a coordinator of astrocytes in regulating
neurotransmission (33). Reactive microglia derive ATP and
recruit astrocytes, resulting in an increase of glutamic release
(33). In addition to ATP pathway, microglia-derived quinolinic
acid known as an N-methyl-D-aspartate (NMDA) receptor
agonist has been found to be upregulated, thereby contributing
to the high-level glutamate in mood disorders (32). More
importantly, inflammatory cytokines derived from AAMC (IL-
1β, IL-6, and TNF-α) leads to downregulated expression
and functionality of the excitatory amino-acid transporters
2 (EAAT2). This further attenuates the astrocytic ability
of buffering and clearing the excessive glutamate (145).
Conversely, the NMDA receptor antagonist ketamine can reverse
the AAMC in mood disorders and alleviate excitotoxicity
during the neuroinflammatory response, and hence exert rapid
antidepressant effect (98, 99).
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On the other hand, the anti-depressive effect of ketamine
should ascribe to a reversal of another downstream process of
AAMC-triggered neuroinflammation, the synaptic remolding in
mood disorders (63, 123, 146). Inflammatory cytokines produced
by astrocytes and microglia, especially IL-1β, TNF-α, and IFN-
α, can detrimentally affect the synaptogenesis by regulating
the expression of genes involved in synaptic plasticity (123).
In addition, complement factors C1q and C3, as well as anti-
inflammatory cytokine– TGF-β, are critical mediators of synaptic
pruning and refinement (147). The neuroinflammation-driven
synaptic remolding results in abnormal neurocircuits in mood
disorders (14).

Taken together, these findings suggest the exciting possibility
that AAMC can be a promising target for preventing and treating
mood disorders. However, there are several limitations to the
hypothesis. For example, the other components of BBB, such
as endothelial cells and pericytes, are crucial for homeostatic
brain and neuroinflammation (30). Besides, the fine interaction
between neurons and the astrocyte-microglia crosstalk is vital for
mental health (118, 148). Further discussion should take these
factors into account to improve the hypothesis.

CONCLUSION

This study highlights the vital role of the astrocyte-microglia
crosstalk in affective immunology and posits that AAMC
triggers emotional changes by modulating neuroinflammatory
response. This thus contributes to the development of mood
disorders. Most of the supporting evidence discussed here
comes from human studies. Few animal experiments are cited

as proof to elucidate the cellular and molecular mechanism,
bearing in mind that animal models are insufficient to reflect
the pathophysiology of mood disorders. However, postmortem
studies might omit transient pathological alterations of astrocyte-
microglia crosstalk seen in mood disorders, due to small sample
size and confounding factors including age, disease duration,
phenotype, medication use, postmortem interval, and duration
of tissue storage. Fortunately, molecular imaging can detect the
transient abnormalities of the astrocyte-microglia crosstalk in
vivo and hopefully be applied to the individualized treatment
of disorders.
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