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Abstract: Chlorophytum genus has been extensively studied due to its diverse biological activities. We
evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques,
the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents
of the methanolic extract of leaves of C. comosum and biological properties of its different fractions.
Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified
in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several
fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents.
One of the identified compounds, 4′-methylphenyl-1C-sulfonyl-β-D-galactoside, was not detected
earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our
data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive
constituents. The water fraction of the extract exhibited promising antitumor potential based on a
high ratio of HeLa vs. Vero cytotoxicity.

Keywords: Chlorophytum comosum; antioxidant activity; cytotoxicity; herbal medicine; biological
active substances

1. Introduction

Chlorophytum comosum belongs to the genus Chlorophytum that covers more than
200 species [1–3]. A number of Chlorophytum species are referred to as medicinal herbs in the
traditional medicine of India [4,5], China [6,7] and Africa [8]. Several species are known as a
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source of ‘Safed musli’, a major ingredient of herbal preparations with immunomodulatory,
adaptogenic, aphrodisiac and other activities [2–4,9,10].

Due to its long use in history in traditional medicine, the Chlorophytum genus has
drawn the attention of researchers in evidence-based medicine. Preparations obtained
from different Chlorophytum species have been studied for their biological activity and
were found to possess immunomodulatory and anti-infectious [11–16], antibacterial [17],
antinociceptive [18] and antioxidant activities [19–26] to improve male sexual health [27–34],
to ameliorate manifestations of diabetes, hyperglycemia and hyperlipidemia [35–38] or
toxic hepatic and testicular impairments [20,39,40].

The antitumor potential of the Chlorophytum genus has also been studied. Most studies
have been performed in vitro with the use of herbal extracts, their fractions or purified
constituents. Butanol extract of C. comosum roots was shown to inhibit proliferation and
induce apoptosis in four cell lines, mostly of hematological origin. Corresponding to
the provided data on the concentrations used in the study, the antiproliferative effect
of the extract for T-cell leukemia CCRF-HSB-2 cells exceeded that of Actinomycin D 7-
to 8-fold [41]. Crude methanol/dichloromethane extract and butanol (saponin) fraction
of methanolic extract of C. borivilianum roots have been demonstrated to have relatively
low toxicity with IC50 > 100 mkg/mL to three solid tumor cell lines [22]. Similar data
were obtained for promyelocytic leukemia HL-60 cells treated with methanolic extracts or
saponin fractions of roots of five Chlorophytum species [4].

Water extract of C. borivilianum roots was examined for antitumor activity in vivo.
It has been shown that the extract suppressed the onset and progression of skin tumors
induced by carcinogen/promoter application [25].

Phytochemistry studies have revealed compounds of various chemical classes to
present in Chlorophytum plants. Both common and specific constituents have been iso-
lated from underground parts of Chlorophytum species with the use of different extrac-
tion and fractionation methods [17,42–45]. The major class of phytochemicals of the
Chlorophytum genus is represented by a versatile group of saponins that exert different
biological activities [1,37,46–52].

In vitro cytotoxicity, studies were carried out with saponins purified from butanol
fractions obtained from methanolic extracts of underground parts of C. comosum [46,47]
and rhizomes of C. malayense [48] as well as ethanolic extract of roots of C. borivilianum [49].
Saponins from C. comosum inhibited tumor promoter effects and exhibited cytotoxicity
towards cervical carcinoma HeLa cells, though quantitative data on cytotoxicity were not
provided [47]. In seven cell lines originating from solid tumors, C. malayense saponin
chloromaloside A has been shown to exert a cytotoxic effect that was weaker than that of
microtubule destabilizing agent colchicine and topoisomerase II inhibitor ellipticine [48].
One of five spirostane-type saponins purified from C. borivilianum, borivilianoside H, was
found to be highly toxic to colon tumor cell lines, much less toxic compared to microtubule
targeting antitumor compound paclitaxel [49].

Studies published so far have been performed almost exclusively using the under-
ground parts of plants, though secondary metabolite biosynthesis is believed to take place
both in leaves and roots based on gene expression profiles [53]. Some of the leaf extracts of
C. borivilianum obtained with solvents of different polarities exhibited antioxidant prop-
erties comparable to those of ascorbic acid and quercetin [54]. Aqueous, methanolic and
ethanolic extracts of C. borivilianum leaves were shown to be toxic to BHK-21 cells [55]
that are derived from normal newborn hamster fibroblasts [56]. Since crude leaf extracts
are toxic to normal cells, they can be hardly considered as an efficient anticancer remedy
and their biological activities have to be evaluated after further fractionation. Recently,
ethanolic root and leaf extracts of C. comosum were studied and shown to be toxic to MCF-7,
A549 and H1299 cells [57].

Here, we present the study of phytochemistry and biological activities of fractions
obtained with serial fractionation of methanolic extract of C. comosum leaves. The extract
was found to comprise a number of bioactive compounds with known biological activities.
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n-Hexane, chloroform, n-butanol and water fractions proved to be substantially different
in their content and activity. Chloroform and n-butanol fractions possess the majority
of antioxidant properties, whereas water fractions exhibited the most promising anti-
tumor potential.

2. Results
2.1. GC-MS Analysis

The GC-MS analysis of methanolic leaf extract of C.comosum (Figure 1) revealed
nineteen constituents representing 100% of the extract. The detailed tabulations of GC-
MS analysis of the extract are given in Table 1. Three major compounds with maximum
content included 9,12-octadecadienoic acid (Z,Z)- (41.27%), neophytadiene (9.57%), and
n-hexadecanoic acid (7.66%). Sucrose, γ-sitosterol, octadecanoic acid, 9,12-octadecadienoic
acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester, stigmasterol, 4′-methylphenyl-1C-
sulfonyl-.beta.-D-galactoside, dihydroxyacetone, 3,7,11,15-tetramethyl-2-hexadecen-1-ol,
hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, and methyl (Z)-5,11,14,17-
eicosatetraenoate were present at levels of circa 2–4.5% each. The residual compounds
detected by GC-MS comprised less than 9% in total.

Figure 1. GC-MS chromatogram of the methanolic extract of leaves of Chlorophytum comosum
(Green type).
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Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum
(Green type).

Peak
No. RT Name of the

Phytoconstituents Structure Mol.
Formula

Molecular
Weight

Peak
Area % LogPo/w

Chemical
Class

1 4.354 1,3-Dihydroxyacetone
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2 7.732 Glycerol

Molecules 2022, 27, x FOR PEER REVIEW 4 of 21 
 

 

Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum (Green type). 

Peak 

No. 
RT 

Name of the  

Phytoconstituents 
Structure 

Mol. 

Formula 

Molecular 

Weight 

Peak 

Area 

% 

LogPo/w 
Chemical 

Class 

1 4.354 1,3-Dihydroxyacetone 
 

C3H6O3 90 2.85 −1.95 Saccharide 

2 7.732 Glycerol 
 

C3H8O3 92 1.01 −1.93 * Polyol 

3 9.049 5-Hydroxymethylfurfural 
 

C6H6O3 126 1.15 −0.17 * 
Aromatic al-

dehyde 

4 11.311 Sucrose 

 

C12H22O11 342 4.5 −2.63 * Disaccharide 

5 15.2 

7,11,15-trimethyl-3-methyli-

denehexadec-1-ene 

(Neophytadiene)  
C20H38 278 9.57 8.12 * 

Isoprenoid 

hydrocarbon 

6 15.267 

2-Hexadecene, 3,7,11,15-tet-

ramethyl-, 

 [R-[R*,R*-(E)]]- 

(2-Phytene) 
 

C20H40 280 1.15 8.81 * 
Isoprenoid 

hydrocarbon 

7 15.365 E-6-Octadecen-1-ol acetate 

 

C20H38O2 310 1.57 8.34 * 
Fatty alcohol 

ester 

8 15.5 
3,7,11,15-Tetramethyl-2- 

hexadecen-1-ol (Phytol)  
C20H40O 296 2.75 7.89 * 

Diterpene al-

cohol 

9 15.876 
n-Hexadecanoic acid 

(Palmitic acid) 
 

C16H32O2 256 7.66 7.17 Fatty acid 

10 17.019 

9,12-Octadecadienoic acid 

(Z,Z)- 

(Linoleic Acid) 

 

C18H32O2 280 41.27 7.05 [58] Fatty acid 

11 17.182 
Octadecanoic acid 

(Stearic acid) 
 

C18H36O2 284 4.32 8.23 [58] Fatty acid 

12 17.611 
4′-Methylphenyl-1C-sul-

fonyl-β-D-galactoside 

 

C13H18O7S 318 2.88 −1.21 * 
Sulfone 

glycoside 

13 18.17 
cis-7-Dodecen-1-yl acetate 

(Looplure) 

 

C14H26O2 226 0.8 5.66 * 
Fatty alcohol 

ester 

14 19.418 

Hexadecanoic acid, 2-hy-

droxy-1-(hydroxymethyl) 

ethyl ester 

(2-Palmitoylglycerol)  

C19H38O4 330 2.24 5.77 * 
Fatty acid es-

ter 

C3H8O3 92 1.01 −1.93 * Polyol

3 9.049 5-Hydroxymethylfurfural

Molecules 2022, 27, x FOR PEER REVIEW 4 of 21 
 

 

Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum (Green type). 

Peak 

No. 
RT 

Name of the  

Phytoconstituents 
Structure 

Mol. 

Formula 

Molecular 

Weight 

Peak 

Area 

% 

LogPo/w 
Chemical 

Class 

1 4.354 1,3-Dihydroxyacetone 
 

C3H6O3 90 2.85 −1.95 Saccharide 

2 7.732 Glycerol 
 

C3H8O3 92 1.01 −1.93 * Polyol 

3 9.049 5-Hydroxymethylfurfural 
 

C6H6O3 126 1.15 −0.17 * 
Aromatic al-

dehyde 

4 11.311 Sucrose 

 

C12H22O11 342 4.5 −2.63 * Disaccharide 

5 15.2 

7,11,15-trimethyl-3-methyli-

denehexadec-1-ene 

(Neophytadiene)  
C20H38 278 9.57 8.12 * 

Isoprenoid 

hydrocarbon 

6 15.267 

2-Hexadecene, 3,7,11,15-tet-

ramethyl-, 

 [R-[R*,R*-(E)]]- 

(2-Phytene) 
 

C20H40 280 1.15 8.81 * 
Isoprenoid 

hydrocarbon 

7 15.365 E-6-Octadecen-1-ol acetate 

 

C20H38O2 310 1.57 8.34 * 
Fatty alcohol 

ester 

8 15.5 
3,7,11,15-Tetramethyl-2- 

hexadecen-1-ol (Phytol)  
C20H40O 296 2.75 7.89 * 

Diterpene al-

cohol 

9 15.876 
n-Hexadecanoic acid 

(Palmitic acid) 
 

C16H32O2 256 7.66 7.17 Fatty acid 

10 17.019 

9,12-Octadecadienoic acid 

(Z,Z)- 

(Linoleic Acid) 

 

C18H32O2 280 41.27 7.05 [58] Fatty acid 

11 17.182 
Octadecanoic acid 

(Stearic acid) 
 

C18H36O2 284 4.32 8.23 [58] Fatty acid 

12 17.611 
4′-Methylphenyl-1C-sul-

fonyl-β-D-galactoside 

 

C13H18O7S 318 2.88 −1.21 * 
Sulfone 

glycoside 

13 18.17 
cis-7-Dodecen-1-yl acetate 

(Looplure) 

 

C14H26O2 226 0.8 5.66 * 
Fatty alcohol 

ester 

14 19.418 

Hexadecanoic acid, 2-hy-

droxy-1-(hydroxymethyl) 

ethyl ester 

(2-Palmitoylglycerol)  

C19H38O4 330 2.24 5.77 * 
Fatty acid es-

ter 

C6H6O3 126 1.15 −0.17 * Aromatic
aldehyde

4 11.311 Sucrose

Molecules 2022, 27, x FOR PEER REVIEW 4 of 21 
 

 

Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum (Green type). 

Peak 

No. 
RT 

Name of the  

Phytoconstituents 
Structure 

Mol. 

Formula 

Molecular 

Weight 

Peak 

Area 

% 

LogPo/w 
Chemical 

Class 

1 4.354 1,3-Dihydroxyacetone 
 

C3H6O3 90 2.85 −1.95 Saccharide 

2 7.732 Glycerol 
 

C3H8O3 92 1.01 −1.93 * Polyol 

3 9.049 5-Hydroxymethylfurfural 
 

C6H6O3 126 1.15 −0.17 * 
Aromatic al-

dehyde 

4 11.311 Sucrose 

 

C12H22O11 342 4.5 −2.63 * Disaccharide 

5 15.2 

7,11,15-trimethyl-3-methyli-

denehexadec-1-ene 

(Neophytadiene)  
C20H38 278 9.57 8.12 * 

Isoprenoid 

hydrocarbon 

6 15.267 

2-Hexadecene, 3,7,11,15-tet-

ramethyl-, 

 [R-[R*,R*-(E)]]- 

(2-Phytene) 
 

C20H40 280 1.15 8.81 * 
Isoprenoid 

hydrocarbon 

7 15.365 E-6-Octadecen-1-ol acetate 

 

C20H38O2 310 1.57 8.34 * 
Fatty alcohol 

ester 

8 15.5 
3,7,11,15-Tetramethyl-2- 

hexadecen-1-ol (Phytol)  
C20H40O 296 2.75 7.89 * 

Diterpene al-

cohol 

9 15.876 
n-Hexadecanoic acid 

(Palmitic acid) 
 

C16H32O2 256 7.66 7.17 Fatty acid 

10 17.019 

9,12-Octadecadienoic acid 

(Z,Z)- 

(Linoleic Acid) 

 

C18H32O2 280 41.27 7.05 [58] Fatty acid 

11 17.182 
Octadecanoic acid 

(Stearic acid) 
 

C18H36O2 284 4.32 8.23 [58] Fatty acid 

12 17.611 
4′-Methylphenyl-1C-sul-

fonyl-β-D-galactoside 

 

C13H18O7S 318 2.88 −1.21 * 
Sulfone 

glycoside 

13 18.17 
cis-7-Dodecen-1-yl acetate 

(Looplure) 

 

C14H26O2 226 0.8 5.66 * 
Fatty alcohol 

ester 

14 19.418 

Hexadecanoic acid, 2-hy-

droxy-1-(hydroxymethyl) 

ethyl ester 

(2-Palmitoylglycerol)  

C19H38O4 330 2.24 5.77 * 
Fatty acid es-

ter 

C12H22O11 342 4.5 −2.63 * Disaccharide

5 15.2
7,11,15-trimethyl-3-

methylidenehexadec-1-ene
(Neophytadiene)

Molecules 2022, 27, x FOR PEER REVIEW 4 of 21 
 

 

Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum (Green type). 

Peak 

No. 
RT 

Name of the  

Phytoconstituents 
Structure 

Mol. 

Formula 

Molecular 

Weight 

Peak 

Area 

% 

LogPo/w 
Chemical 

Class 

1 4.354 1,3-Dihydroxyacetone 
 

C3H6O3 90 2.85 −1.95 Saccharide 

2 7.732 Glycerol 
 

C3H8O3 92 1.01 −1.93 * Polyol 

3 9.049 5-Hydroxymethylfurfural 
 

C6H6O3 126 1.15 −0.17 * 
Aromatic al-

dehyde 

4 11.311 Sucrose 

 

C12H22O11 342 4.5 −2.63 * Disaccharide 

5 15.2 

7,11,15-trimethyl-3-methyli-

denehexadec-1-ene 

(Neophytadiene)  
C20H38 278 9.57 8.12 * 

Isoprenoid 

hydrocarbon 

6 15.267 

2-Hexadecene, 3,7,11,15-tet-

ramethyl-, 

 [R-[R*,R*-(E)]]- 

(2-Phytene) 
 

C20H40 280 1.15 8.81 * 
Isoprenoid 

hydrocarbon 

7 15.365 E-6-Octadecen-1-ol acetate 

 

C20H38O2 310 1.57 8.34 * 
Fatty alcohol 

ester 

8 15.5 
3,7,11,15-Tetramethyl-2- 

hexadecen-1-ol (Phytol)  
C20H40O 296 2.75 7.89 * 

Diterpene al-

cohol 

9 15.876 
n-Hexadecanoic acid 

(Palmitic acid) 
 

C16H32O2 256 7.66 7.17 Fatty acid 

10 17.019 

9,12-Octadecadienoic acid 

(Z,Z)- 

(Linoleic Acid) 

 

C18H32O2 280 41.27 7.05 [58] Fatty acid 

11 17.182 
Octadecanoic acid 

(Stearic acid) 
 

C18H36O2 284 4.32 8.23 [58] Fatty acid 

12 17.611 
4′-Methylphenyl-1C-sul-

fonyl-β-D-galactoside 

 

C13H18O7S 318 2.88 −1.21 * 
Sulfone 

glycoside 

13 18.17 
cis-7-Dodecen-1-yl acetate 

(Looplure) 

 

C14H26O2 226 0.8 5.66 * 
Fatty alcohol 

ester 

14 19.418 

Hexadecanoic acid, 2-hy-

droxy-1-(hydroxymethyl) 

ethyl ester 

(2-Palmitoylglycerol)  

C19H38O4 330 2.24 5.77 * 
Fatty acid es-

ter 

C20H38 278 9.57 8.12 * Isoprenoid
hydrocarbon

6 15.267

2-Hexadecene,
3,7,11,15-tetramethyl-,

[R-[R*,R*-(E)]]-
(2-Phytene)

Molecules 2022, 27, x FOR PEER REVIEW 4 of 21 
 

 

Table 1. Phytoconstituents detected in the methanolic extract from leaves of Chlorophytum comosum (Green type). 

Peak 

No. 
RT 

Name of the  

Phytoconstituents 
Structure 

Mol. 

Formula 

Molecular 

Weight 

Peak 

Area 

% 

LogPo/w 
Chemical 

Class 

1 4.354 1,3-Dihydroxyacetone 
 

C3H6O3 90 2.85 −1.95 Saccharide 

2 7.732 Glycerol 
 

C3H8O3 92 1.01 −1.93 * Polyol 

3 9.049 5-Hydroxymethylfurfural 
 

C6H6O3 126 1.15 −0.17 * 
Aromatic al-

dehyde 

4 11.311 Sucrose 

 

C12H22O11 342 4.5 −2.63 * Disaccharide 

5 15.2 

7,11,15-trimethyl-3-methyli-

denehexadec-1-ene 

(Neophytadiene)  
C20H38 278 9.57 8.12 * 

Isoprenoid 

hydrocarbon 

6 15.267 

2-Hexadecene, 3,7,11,15-tet-

ramethyl-, 

 [R-[R*,R*-(E)]]- 

(2-Phytene) 
 

C20H40 280 1.15 8.81 * 
Isoprenoid 

hydrocarbon 

7 15.365 E-6-Octadecen-1-ol acetate 

 

C20H38O2 310 1.57 8.34 * 
Fatty alcohol 

ester 

8 15.5 
3,7,11,15-Tetramethyl-2- 

hexadecen-1-ol (Phytol)  
C20H40O 296 2.75 7.89 * 

Diterpene al-

cohol 

9 15.876 
n-Hexadecanoic acid 

(Palmitic acid) 
 

C16H32O2 256 7.66 7.17 Fatty acid 

10 17.019 

9,12-Octadecadienoic acid 

(Z,Z)- 

(Linoleic Acid) 

 

C18H32O2 280 41.27 7.05 [58] Fatty acid 

11 17.182 
Octadecanoic acid 

(Stearic acid) 
 

C18H36O2 284 4.32 8.23 [58] Fatty acid 

12 17.611 
4′-Methylphenyl-1C-sul-

fonyl-β-D-galactoside 

 

C13H18O7S 318 2.88 −1.21 * 
Sulfone 

glycoside 

13 18.17 
cis-7-Dodecen-1-yl acetate 

(Looplure) 

 

C14H26O2 226 0.8 5.66 * 
Fatty alcohol 

ester 

14 19.418 

Hexadecanoic acid, 2-hy-

droxy-1-(hydroxymethyl) 

ethyl ester 

(2-Palmitoylglycerol)  

C19H38O4 330 2.24 5.77 * 
Fatty acid es-

ter 

C20H40 280 1.15 8.81 * Isoprenoid
hydrocarbon

7 15.365 E-6-Octadecen-1-ol acetate
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Table 1. Cont.

Peak
No. RT Name of the

Phytoconstituents Structure Mol.
Formula

Molecular
Weight

Peak
Area % LogPo/w

Chemical
Class

14 19.418

Hexadecanoic acid,
2-hydroxy-1-

(hydroxymethyl) ethyl ester
(2-Palmitoylglycerol)
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Molecules 2022, 27, x FOR PEER REVIEW 5 of 21 
 

 

15 20.309 
Methyl 6-O-[1-methylpro-

pyl]-β-D-galactopyranoside 
 

 

C11H22O6 250 2.66 −0.30 * 
Mono 

saccharide 

16 20.927 

9,12-Octadecadienoic acid 

(Z,Z)-, 2-hydroxy-1-(hy-

droxymethyl) ethyl ester 

(2-Linoleoyl Glycerol) 

 

C21H38O4 354 4.04 5.55 * 
Fatty acid es-

ter 

17 20.993 
Methyl (Z)-5,11,14,17-eico-

satetraenoate 

 

C21H34O4 318 2.05 6.82 * 
Fatty acid es-

ter 

18 31.348 Stigmasterol 

 

C29H48O 412 3.09 6.95 * Stigmastane 

19 33.008 γ-Sitosterol 

 

C29H50O 414 4.44 7.27 * Stigmastane 

*—Calculated with ALOGPS software [59]. 

2.2. Phytochemical Screening of Fractions 
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2.2. Phytochemical Screening of Fractions

All fractions of the methanolic extract were shown to contain phenolic compounds,
flavonoids, chlorophylls, carotenoids, tannins and reducing sugars (Table 2). The largest
amounts of chlorophylls and carotenoids were found in the n-hexane and chloroform
fractions, whereas phenolic compounds and simple carbohydrates were most abundant in
the n-butanol fraction and, to a lesser extent, yielded in the chloroform fraction.
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Table 2. Total bioactive compounds found in fractions of the methanolic extract of leaves of
Chlorophytum comosum (Green type), mean ± SD (n = 10).

Bioactive Compounds n-Hexane Fraction Chloroform Fraction n-Butanol Fraction Water Fraction

Relative content of dry matter, % 19.9 ± 0.5 22.8 ± 0.57 23.4 ± 0.4 33.9 ± 0.7

Concentration of extracted matter
in DMSO, mg/mL 50 ± 2.0 * 100 ± 2.0 100 ± 3.0 100 ± 3.0

Total phenolic content (TPC), mg
GAE/mL 1.08 ± 0.02 5.6 ± 0.1 19.9 ± 0.5 0.51 ± 0.02

Tannins, mg/mL 1.73 ± 0.04 4.22 ± 0.1 15.75 ± 0.4 1.77 ± 0.03

Total flavonoid content (TFC), mg
QE/mL 0.05 ± 0.001 ND ** 0.09 ± 0.001 ND

Chlorophyll a, mg/mL 3.16 ± 0.05 0.16 ± 0.004 ND ND

Chlorophyll b, mg/mL 1.77 ± 0.02 0.26 ± 0.01 ND ND

Carotenoids, mg/mL 0.74 ± 0.02 0.62 ± 0.02 ND ND

Reducing sugars, mg/mL 1.53 ± 0.03 9.18 ± 0.1 22.2 ± 0.5 1.28 ± 0.02

* The extracted matter in the n-hexane fraction had low solubility in DMSO. ** ND, not detected.

In the water fraction, little amounts of phenolic compounds and simple carbohydrates
were detected; most of the remaining matter in the fraction was not identified.

2.3. Antioxidant Activity of Fractions

The chloroform and n-butanol fractions exhibit the highest reducing power and total
antioxidant activity (Table 3). The antioxidant properties have to be attributed to phenolic
compounds that are most abundant in these fractions.

Table 3. Antioxidant activity of the fractions of methanolic extract from leaves of Chlorophytum comosum
(Green type), mean ± SD (n = 10).

Antioxidant Activity Criterion n-Hexane
Fraction

Chloroform
Fraction

n-Butanol
Fraction

Water
Fraction

Reducing power,
mg AAE eq/mL 0.39 ± 0.01 6.25 ± 0.2 33.1 ± 2.5 0.58 ± 0.07

ABTS radical scavenging activity, mg TEs/mL 0.27 ± 0.01 0.36 ± 0.01 0.81 ± 0.05 0.27 ± 0.02

Total antioxidant activity (TAA), mg AAE eq/mL 9.7 ± 0.32 17.4 ± 0.6 35.9 ± 4.5 1.8 ± 0.9

2.4. Cytotoxicity

Human cervical carcinoma cell line HeLa and non-cancerous kidney epithelium cells
of Cercopithecus aethiops Vero were used for the cytotoxicity studies (Figure 2). Chloroform
fraction proved to be the most toxic to cells, with relatively higher (appr. two-fold) toxicity
towards HeLa cells. n-Hexane and n-butanol fractions exhibited similar toxicity to both
HeLa and Vero cells. On the other hand, the water fraction was shown to have a very high
ratio of Hela to Vero toxicity. While the viability of HeLa cells was efficiently inhibited with
IC50 value of 0.12 mg/mL, Vero cells were not affected by the water fraction at doses up to
the maximum concentration limited by toxicity of the solvent.
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Figure 2. Cytotoxicity of fractions of methanolic extract of leaves of Chlorophytum comosum
(Green type).

2.5. MALDI-TOF Mass Spectrometry of Water Fraction of Methanolic Extract of Leaves of
C. comosum

The obtained mass spectra of the water fraction contain signals of different intensities
in the range of 500–2200 Da (Figure 3). There were 10 signals with m/z up to 1000 Da,
19 signals in the range of 1200–1700 Da and one signal of 2173 Da detected. The following
signals were characterized by the highest intensity: 681 ± 5 Da, 1385 ± 5 Da, 1486 ± 5 Da,
1503 ± 5 Da, and 2173 ± 5 Da. Analysis of mass spectrometry data using the BIOPEP-
UWM™ database [60], showed that of water fraction of methanolic extract of leaves of
C. comosum may contain peptides with antibacterial, antifungal and anticancer activities, as
well as enzyme inhibitors that could determine its activity in cell cultures (Table 4).

Figure 3. Data of the MALDI-TOF mass spectrometry of water fraction of methanolic extract of leaves
of Chlorophytum comosum (Green type).
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Table 4. Characterization of the proteomic analysis of water fraction of methanolic extract of leaves
of Chlorophytum comosum (in accordance with the BIOPEP-UWM™ database).

Chemical Mass, Da ID Sequence Activity Int.

681 - - - 730
- 8252 EQRPR anticancer -

1385 - - - 675
- 3194 FLPAIAGILSQLF~ hemolytic -
- 8311 FFVAPFPEVFGK anticancer -
- 9291 KKLFKKILKKL~ antifungal -
- 9466 FKCRRWQWR antibacterial -

1486 - - - 1335
2979 KKAVRRQEAVDAL CaMKII inhibitor -

- 2989 KKALRRDEAVDAL CaMKII inhibitor -
- 2990 KKALRRNEAVDAL CaMKII inhibitor -
- 2991 KKALRRQEGVDAL CaMKII inhibitor -
- 3190 SSSKEENRIIPGGI antibacterial -
- 5450 GLFDAIGNLLGGLGLG antibacterial -
- 5474 GLFDIVKKIAGHIA antibacterial -
- 8335 SDIPNPIGSENSEK antibacterial -
- 9458 RWQWRWQWR antibacterial -
- 9783 GEHGGAGMGGGQFQPV alpha-amylase inhibitor
- 9784 GEHGGAGMGGGQFQPV pancreatic lipase inhibitor

9785 GEHGGAGMGGGQFQPV lipoxygenase inhibitor
9786 GEHGGAGMGGGQFQPV cyclooxygenase-1 inhibitor
9787 GEHGGAGMGGGQFQPV cyclooxygenase-2 inhibitor

1503 - - - 1083
- 2987 KKALRREEAVDAL CaMKII inhibitor -
- 3006 KKALYRQEAVDAL CaMKII inhibitor -
- 3008 KKALRYQEAVDAL CaMKII inhibitor -
- 3920 GLFDIIKKIAESIG antibacterial -
- 5454 GLFDIIKKIAESIG antibacterial -
- 5457 LDIVKKVVGAFGSLG antibacterial -
- 9294 WKLFKKILKWL~ antifungal -
- 9295 WKLFKKILKWL~ hemolytic -
- 9313 WKLFKKILKKLG antifungal -
- 9314 WKLFKKILKKLG hemolytic -

2173 - - - 2403
3822 GLLRRLRKKIGEIFKKYG antibacterial -
7053 KWKLFKKIKFLHSAKKF anticancer -

3. Discussion

A number of compounds that were identified in the methanolic extract of leaves of
Chlorophytum comosum (Green type) have been well characterized.

As is seen from the GC-MS data, unsaturated fatty acids are among the major con-
stituents of the methanolic extract. Linoleic acid (appr. 41% of GC-MS chromatogram
area, Figure 1) is considered an essential nutrient with a variety of physiological functions,
though there are concerns about the consequences of its excessive consumption for human
health. [61,62]. Palmitic acid (7.66%) is one of the most abundant saturated fatty acids
in organisms. Its homeostasis is tightly controlled, and its imbalance is related to differ-
ent physiopathological conditions [63]. Stearic acid (4.32%), synthesized from palmitic
acid, is one the most abundant saturated fatty acid in the Western diet. Its effects on
cardiometabolic risk markers seem to be different from that of palmitic acid, and a stearic
acid-reach diet could be beneficial compared to the ones that are rich with other saturated
fatty acids [64,65].

Sucrose (4.5%) is an important nutrient energy source, but its imbalance or excessive
consumption has multiple deleterious effects on human health [66,67]. It has been also
demonstrated to exert pain preventive effect on infants [68,69].
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Some of the constituents of C. comosum methanolic leaf extract have been shown to
exhibit therapeutic potential. For the second most abundant compound detected with
GC-MS, neophytadiene (appr. 10%), anti-inflammatory, antioxidant and cardioprotective
activities have been demonstrated [70].

γ-Sitosterol (4.44%) was shown to exert hypocholesterolemic, antidiabetic effects [71].
Stigmasterol (3.09%) exerts antitumor [58,72–74], hypolipidemic [75–80], antidia-

betic [81,82], antimutagenic [83], antiparasitic [84], and antinociceptive [85] effects. It
can also alleviate manifestations of osteoarthritis [86,87], inflammation and autoimmune
diseases [88–91], and mitigate central nerve system injuries and disorders in both neuropro-
tective and function-improving manner [92–98]. In several studies its antioxidant activity
was also demonstrated [79,81,89,92–94]. Stigmasterol accumulation, however, can cause
cardiac injury [99].

Phytol (2.75%) possesses antioxidant, antimicrobial, anticancer, antidiabetic, hypolipi-
demic, immunoadjuvant, anti-inflammatory, antimutagenic, antiteratogenic, antinocicep-
tive, antispasmodic, anticonvulsant, anxiolytic, antidepressant activities; it can be used in
cosmetics as an active substance or fragrance material [100,101].

5-Hydroxymethylfurfural (1.15%) has been found to exert both deleterious (organ-
otoxic, mutagenic, carcinogenic, pro-oxidant) and beneficial (antihypoxic, anticancer, an-
tioxidant, anti-allergen, antisickling) effects on health [102,103].

In addition to compounds identified by GC-MS, the methanolic leaf extract of C. comosum
was shown to contain phenolic compounds including tannins that are most abundant in
the n-butanol fraction (Table 2). Reducing sugars were also found at the highest levels in
the n-butanol fraction. The chloroform fraction was found to contain two- to three-fold
less phenolic compounds and reducing sugars, and n-hexane and water fractions had the
least amounts of these constituents. Flavonoids were detected at low levels in n-hexane
and n-butanol fractions. The larger part of chlorophylls was extracted from the methanolic
extract by n-hexane; much lesser chlorophylls were also detected in chloroform fractions.
Carotenoids were found in n-hexane and chloroform fractions at appr. equal levels.

The antioxidant activity of different fractions of the methanolic leaf extract of C. comosum
(Table 3) was found to be partially related to the bioactive compound content. The highest
reducing power, radical scavenging activity, and total antioxidant activity were found in
n-butanol and chloroform fractions that correlated with the highest content of phenolic
compounds. On the other hand, the reducing power and total antioxidant activity of
n-hexane and water fractions did not correspond to the phenolic compounds content
since water fraction had appr. 1.5-fold higher reducing power and appr. 5-fold lower
total antioxidant activity, while both fractions contained similar levels of total phenolics
and tannins. It is generally accepted that the antioxidant activity corresponds to the total
phenolic content, but in some cases, controversial data were reported suggesting that
antioxidant activity might be attributed to antioxidants other than compounds defined as
total phenolics [104,105].

The cytotoxicity studies have revealed that the constituents of water fraction have very
high toxicity to cancerous HeLa cells compared to non-cancerous Vero cells. In fact, there
was no apparent toxicity of water fraction towards Vero cells (Figure 2). The chloroform
fraction was shown to be most toxic to cells, but the selectivity towards HeLa cells was
significantly lower compared to that of the water fraction.

The data obtained recently with use of n-butanol processed ethanolic extracts of
defatted roots and leaves of C. comosum demonstrated that the extracts were toxic to
breast (MCF-7) and lung cancer (A549 and H1299) cell lines but not to the L-132 cell
line [57]. Though L-132 (ATCC® CCL-5™) cells cannot be considered non-cancerous
since they have signs of HeLa contamination [106,107], these results, together with the
data presented herein, suggest that C. comosum phytoconstituents can possess promising
antitumor activity. Moreover, our data demonstrate that the selective antitumor compounds
reside in the fraction obtained after successive removal of n-hexane-, chloroform- and n-
butanol-soluble material.
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The total phenolic content of root and leaf ethanolic extracts of C. comosum was in good
agreement with their antioxidant activity but had poor correlation with cytotoxicity [57].
Our data obtained after more fractionation steps displayed evidence that cytotoxicity of
fractions of methanolic leaf extract of C. comosum has no correlation with found bioactive
compounds or antioxidant activity.

Further considering active substances that can be responsible for the observed cy-
totoxicity profile of water fraction, one could suggest that, because of negative LogPo/w
values, some constituents of the methanolic extract (Table 1) could be present in water
fraction. Unfortunately, cytotoxic activity demonstrated so far for that compound does
not support any conclusions about an active substance to which the antitumor potential of
water fraction could be attributed.

1,3-Dihydroxyacetone, the compound commonly used in sunless tanning products,
was shown to be toxic to transformed HEK293T cells [108], A375P melanoma cells [109],
and non-cancerous HaCaT cells [110,111]. The experimental settings in the mentioned
papers were different, and it is not possible to conclude if dihydroxyacetone could be
more toxic towards cancerous than to normal cells. 5-Hydroximethylfurfural, one of the
toxicants produced during food processing, exerted moderate cytotoxicity, with IC50 values
of millimolar range, to both cancerous and non-cancerous cells [112–114].

Glycerol is one of the cryoprotectants that is quite toxic to cells at 37 ◦C even under
short exposure time [115,116], but it exhibits general cytotoxicity regardless of the origin
of cells.

Sucrose is well tolerated by cells and affects the protein glycosylation processes rather
than the cell viability [117].

The sulfone glycoside 4′-methylphenyl-1C-sulfonyl-β-D-galactoside is quite a rare phy-
toconstituent. To our knowledge, there is the only MS study that identified 4′-methylphenyl-
1C-sulfonyl-β-D-galactoside in Rhodiola Rosea [118]. The biological activity of this com-
pound is not known. The compound was synthesized in a survey of antimalarial agents,
but no further studies were published since 1964 [119,120]. A structural analog of the com-
pound with methylphenyl-sulfonyl moiety bound to the oxygen of the 6C atom, inhibited
the sugar uptake process in bacteria [121].

Methyl 6-O-[1-methylpropyl]-β-D-galactopyranoside was found as one of four most
abundant constituents in the ethanolic leaf extract of the Kofat cultivar of Catha edulis. The
cytotoxicity studies did not reveal any selectivity in toxicity of the extracts towards cancer
cells compared to normal fetal lung fibroblast [122].

MALDI-TOF mass spectrometry of the water fraction has revealed a number of com-
pounds that may belong to bioactive peptides. The EQRPR pentapeptide, identified in
rice bran, was shown to be toxic to several cancer cell lines, though at relatively high
concentrations [123]. The peptide FFVAPFPEVFGK and its close analogs were found in
skin extract of amphibians and hydrolysates of casein [124]. It was found to inhibit several
proteinases involved in cancer progression though it did not exhibit cytotoxicity towards
cancer cells [125]. The KWKLFKKIKKIKFLHSAKKF peptide, corresponding to CancerPPD
database data [126], possesses mild cytotoxic activity against several cancer cell lines with
IC50 values ranging at 65–100 µM. At the same time, this peptide is an artificial chimera
of two antibacterial peptides of Hyalophora cecropia and Xenopus laevis [127], hence it is
hardly possible that this compound is naturally produced by C. comosum.

Thus, the water fraction of the methanolic extracts of leaves of C. comosum contains
compound(s) that have highly selective toxicity towards cancer cells. This anti-cancer
cytotoxicity is apparently unrelated to antioxidant activity. Active compounds of the water
fraction may be presented by both small molecules and bioactive peptides.

4. Materials and Methods
4.1. Chemicals

Methyl alcohol 99.9%, n-hexane 95%, chloroform 99%, n-butanol 99%, dimethyl sul-
foxide (DMSO) 99.7%, aluminum chloride 99.9%, sodium acetate >99%, quercetin, ace-
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tone >99.5%, picric acid ≥98.0%, dextrose 99.5%, sodium carbonate 99.5%, phosphate
buffered saline (pH 7.2 at 25 ◦C), potassium ferricyanide (III), trichloroacetic acid, α-
Cyano-4-hydroxycinnamic acid (for MALDI-TOF MS), acetonitrile ≥99.0%, iron (III) chlo-
ride 99%, ascorbic acid ≥99%, sulfuric acid 99.9%, sodium phosphate 96%, ammonium
molybdate, potassium persulfate ≥99.0%, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox) 97%, Folin–Denis’ reagent, gallic acid, tannin and chemical standards were pur-
chased from Sigma-Aldrich.

EMEM and DMEM incubation media, L-glutamine, essential amino acids mixture,
penicillin-streptomycin 100x lyophilized mixture, 0.25% trypsin solution and 0.02% versene
solution were purchased from PanEco, Ltd. (Moscow, Russia), fetal bovine serum—from
BioWest (Nuaillé, France), and MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium
bromide)—from Diaem, Ltd. (Moscow, Russia).

4.2. Plant Material

Chlorophytum comosum (Green type) (Thunb.) Jacques was kindly provided by the
Botanical Garden of the North-Caucasus Federal University. Vegetative propagation of the
plant was carried out in the Greenhouse of the Moscow Region State University. The plant
was harvested in August 2019.

4.3. Sample Preparation

Freshly cut leaves were washed under running tap water for 30 s, chopped with
scissors to pieces of 1–2 cm and subjected to freeze-drying. The material was frozen in
SE10-45 (TEFCOLD, Viborg, Denmark) at a temperature of minus 39.0–40.0 ◦C for 72 h.
Subsequent drying was carried out for 27–30 h in a light-protected chamber in LS-500 freeze
dryer (Prointech, Puschino, Russia) with average working pressure in the dryer chamber of
90–100 Pa, the condenser temperature minus 47–49 ◦C. The residual moisture content of the
dried material amounted to 5–6% as was measured using an Ohaus MB 25 moisture meter
(Ohaus Corporation, Parsippany, NJ, USA) at a temperature of 100 ◦C in an automatic mode.

The lyophilized leaves were ground to a powder with particle size of 1 mm or less
using a VT-1541 VK grinder (Vitek, SuZhou, China). The powdered samples were stored at
4 ◦C in a dark hermetically sealed container until testing for no more than one week.

4.4. Extraction and Fractionation

Of the powdered lyophilized leaves, 42.0 g was extracted with 420.0 mL of methanol
for 14 days at room temperature (23 ± 0.5 ◦C). The extract was filtered through cheesecloth
and paper filters and then dried using a rotary evaporator RV 10 Basic V (IKA, Germany)
at a temperature of 45–50 ◦C until complete solvent removal [128,129]. The yield of dry
matter was 7.0 ± 0.1 g.

The methanolic extract was subjected to fractionation according to Singh et al. (2009) [130]
with slight modifications. The extract (7.0 g) was dissolved in a methanol:water (9:1)
mixture and the solution was successively divided into fractions with n-hexane, chloroform
and n-butanol using a separatory funnel. Organic solvents were removed using a rotary
evaporator, water from the final aqueous fraction was removed by lyophilization. The
resulting dried pellets were dissolved in DMSO to a concentration of 50 mg/mL for n-
hexane fraction and 100 mg/mL for chloroform, n-butanol and water fractions.

4.5. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Methanolic Leaf Extract

Of the powdered lyophilized leaves, 5 g was extracted with 100 mL of methanol for
24 h at room temperature (23 ± 0.5 ◦C). The extract was filtered through 0.22 µm PTFE
syringe filters (Merck Millipore, Burlington, MA, USA).

For GC-MS analysis, a GCMS-QP2010 Ultra (Shimadzu, Japan) system with a DB-
5MS capillary column (5% diphenyl – 95% dimethylsiloxane copolymer, 60 m long, inner
diameter 0.25 mm, film thickness of the stationary phase 0.25 µm) was used. The carrier gas
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(helium) flow rate was 1.38 mL/min. The temperature program was as follows: isothermal
for 4 min at 100 ◦C, increased at 15 ◦C/min to 300 ◦C, isothermal for 26 min. The ionization
voltage was 70 eV. The scanning speed was 3333 s over the 30–550 m/z range. For qualitative
analysis of the essential oil components, the NISTO.5a mass spectra library was used.

4.6. Matrix-Assisted Laser Desorption/Ionization (MALDI) Time-of-Flight (TOF)
Mass Spectrometry

Water fraction was subjected to proteomic analysis using MALDI-TOF mass spec-
trometry. The solution was centrifuged at 7000 g for 4 min. The supernatant (1 microliter)
was deposited on the MALDI plate. Pretreated and untreated samples were overlaid with
1 microliter of matrix solution (saturated solution of α-cyano-4-hydroxycinnamic acid in
50% acetonitrile and 2.5% trifluoroacetic acid). The matrix sample was cocrystallized by
air drying at room temperature. Measurements were performed with a Microflex mass
spectrometer (Bruker Daltonik, Bremen, Germany) using Daltonics FlexControl software
(version 3.3.64). Spectra were recorded in the positive linear mode (laser frequency, 60 Hz;
ion source 1 voltage, 19.4 kV; ion source 2 voltage, 17.3 kV; lens voltage, 9.1 kV; mass
range, 0 to 20,000 Da). The internal calibration was performed using the mass test standard
MBT (Bruker Daltonics, Bremen, Germany). For each spectrum, 4000 shots from differ-
ent positions of the target spot (automatic mode) were collected and analyzed. Protein
identification was performed using the BIOPEP-UWM™ database [60].

4.7. Determination of Total Phenolics

The total phenolic content was measured according to Swain and Hillis method [131].
Then, 100 µL of a DMSO-dissolved fraction was mixed with 0.5 mL of the Folin–Denis’
reagent. After 3 min, 1 mL of 20% Na2CO3 was added, and volume of the mixture was
brought to 10.0 mL with distilled water. After incubation in the dark for 90 min, absorbance
of the resulting blue complex was measured at 750 nm using an SF-102 spectrophotometer
(NPO Interfotofizika, Moscow, Russia). Gallic acid was used as a standard. The total
phenolic content was expressed in mg equivalent of gallic acid per 1 mL of sample (mg
GAEs/mL).

4.8. Determination of Total Tannins

The total tannin content was determined according to the Price and Butler method [132]
with modifications. A DMSO dissolved extract was diluted 500-fold with distilled water to
a concentration of 100–200 µg/mL. An aliquot of 0.5 mL of diluted sample was added to
1 mL of 1% FeCl3, then the volume was adjusted to 10 mL with distilled water. After 5 min
incubation at room temperature, the optical density was measured at 720 nm. Tannin was
used as a standard.

4.9. Determination of Total Flavonoids

The flavonoid content was studied with the aluminum chloride colorimetric method [133]
with slight modifications. An aliquot of 50 µL of DMSO dissolved extract was mixed with
1.5 mL of ethanol, 100 µL of 10% aluminum chloride, 100 µL of 1M sodium acetate and
2.8 mL of distilled water. The resulting mixture was incubated at room temperature for
30 min in the dark, then absorbance at 415 nm was read. Quercetin was used as a standard.
The total flavonoid content was expressed in mg equivalent of quercetin per 1 mL of sample
(mg QEs/mL).

4.10. Determination of Chlorophyll a, Chlorophyll b, and Total Carotenoid

The content of chlorophylls a and b and total carotenoid was measured spectropho-
tometrically. The DMSO dissolved samples were diluted 1000-fold with 80% acetone and
clarified with centrifugation at 10,000× g at 4 ◦C for 15 min. The absorbance of the su-
pernatant was measured at 470 nm, 646.8 nm, and 663.2 nm, and the concentrations of
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chlorophyll a, chlorophyll b and carotenoids (µg/mL) were calculated using equations for
80% acetone as described [134].

4.11. Determination of Carbohydrates

Reducing sugars were measured with the use of alkaline picric acid method [135,136].
In brief, 1 mL of 1% picric acid was added to 0.5 mL of a test fraction, then 3 mL of 20%
sodium carbonate was added. Samples were boiled for 30 min, cooled and adjusted to
10.0 mL by distilled water. The absorbance was read at a wavelength of 460 nm. Glucose
was used as a standard.

4.12. Ferric Reducing Power Assay

The assay was carried out as described [137,138] with slight modifications. As such,
10 µL of DMSO dissolved fractions was mixed with 2 mL of 0.2 M sodium phosphate buffer,
pH 6.6, and 1 mL of 1% potassium ferricyanide. The resulting mixture was incubated at
50 ◦C for 20 min. The reaction was terminated by addition of 1 mL of 10% trichloroacetic
acid. The mixture was centrifuged at 3000× g for 10 min, then 0.5 mL of freshly prepared
0.1% FeCl3 was added to the supernatant, and the absorption was measured at 700 nm.
Ascorbic acid was used as a standard. The reducing power was expressed in mg equivalent
of ascorbic acid per 1 mL of sample (mg AAEs/mL).

4.13. Assessment of Total Antioxidant Activity (TAA)

The total antioxidant activity was assayed with the use of the phosphomolybdenum
method [138,139]. As such, 50 µL of DMSO dissolved fractions was mixed with 4 mL of
the reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium
molybdenum). The mixture was incubated at 95 ◦C for 90 min, then cooled to room
temperature. The absorbance was measured at 695 nm. Ascorbic acid was used as a
standard. The TAA was expressed in mg equivalent of ascorbic acid per 1 mL of sample
(mg AAEs/mL).

4.14. Trolox Equivalent Antioxidant Capacity (TEAC) Assay

The assay was carried out according to described by Piskov et al. (2020), Rzhep-
akovsky et al. (2021) method [140,141]. 2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) was dissolved in water to a concentration of 7 mM. The ABTS•+ cationic
radical generation was initiated by addition of 1 mL of 14.7 mM potassium persulfate to
5 mL of ABTS. The resulting mixture was kept in the dark at room temperature for 24 h
before use. To perform the assay, the ABTS solution was diluted with distilled water to
an optical density of 0.70 (±0.02) at 734 nm, then 5 µL of DMSO dissolved fractions were
added to 2 mL of ABTS solution. The absorbance at 734 nm was measured 3 min after
mixing. Trolox solution at a concentration of 1 mM was used as a standard. The antioxidant
capacity was expressed in mg equivalent of Trolox per 1 mL of sample (mg TEs/mL).

4.15. Cytotoxicity Assay

Cancer cells HeLa (human cervical epithelioid carcinoma cell line, subclone M) and
non-cancerous Vero cells (African green monkey renal epithelial cells) were purchased from
the Russian Cell Culture Collection (Institute of Cytology RAS, St., Russia). The HeLa and
Vero cells were grown in EMEM and DMEM media, respectively. The incubation media
were supplemented with 10% fetal bovine serum, penicillin (100 U/mL) and streptomycin
(100 µg/mL). The cells were cultured at 37 ◦C in a humidified atmosphere of 5% CO2. Cyto-
toxicity of C. comosum fractions was studied with the use of the MTT staining method [142].
Cells were plated in 96-well plates (5 × 103 cells/well). Then, 24 h after plating, growth
medium was replaced by medium containing different quantities of fractions dissolved
in DMSO. The final concentration of DMSO did not exceed 1%. Then, 24 h after addition
of samples, 10 µL of MTT stock solution (5 mg/mL) was added into each well and plates
were incubated for 4 h. The media were then removed and MTT formazan was dissolved
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in DMSO (100 µL/well). The absorption of the samples was read at 570 nm (reference
wavelength 650 nm). MTT staining of control samples treated with DMSO was taken
as 100%.

5. Conclusions

Our data demonstrate that methanolic extract of leaves of Chlorophytum comosum
(Green type) (Thunb.) Jacques can be a source of a number of bioactive compounds
including those that can be used as dietary supplements as well as constituents with broad
biological activity and therapeutic potential. We have found that water fraction of the
methanolic extract obtained after successive removal of n-hexane, chloroform and n-butanol
soluble matter comprises compound(s) with high selectivity of cytotoxicity towards cancer
cells. The exact nature of this antitumor potential has to be elucidated.
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