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A hallmark feature of follicular dendritic cells (FDCs) within the lymph nodes (LNs) is 
their ability to retain antigens and virions for a prolonged duration. FDCs in the cervical 
lymph nodes (CLNs) are particularly relevant in elucidating human immunodeficiency 
virus (HIV)-1 infection within the cerebrospinal fluid (CSF) draining LNs of the central 
nervous system. The FDC viral reservoir in both peripheral LN and CLN, like the other 
HIV reservoirs, contribute to both low-level viremia and viral resurgence upon cessation 
or failure of combined antiretroviral therapy (cART). Besides prolonged virion retention on 
FDCs in LNs and CLNs, the suboptimal penetration of cART at these anatomical sites is 
another factor contributing to establishing and maintaining this viral reservoir. Unlike the 
FDCs within the peripheral LNs, the CLN FDCs have only recently garnered attention. 
This interest in CLN FDCs has been driven by detailed characterization of the meningeal 
lymphatic system. As the CSF drains through the meningeal lymphatics and nasal lym-
phatics via the cribriform plate, CLN FDCs may acquire HIV after capturing them from 
T cells, antigen-presenting cells, or cell-free virions. In addition, CD4+ T follicular helper 
cells within the CLNs are productively infected as a result of acquiring the virus from the 
FDCs. In this review, we outline the underlying mechanisms of viral accumulation on CLN 
FDCs and its potential impact on viral resurgence or achieving a cure for HIV infection.

Keywords: cervical lymph nodes, follicular dendritic cells, T follicular helper cells, central nervous system, human 
immunodeficiency virus, simian immunodeficiency virus, viral reservoirs, combined antiretroviral therapy

inTRODUCTiOn

The cervical lymph nodes (CLNs) are a group of lymph nodes (LNs) in the neck region that are 
located adjacent to the cervical region of the spinal cord and in close proximity to the sternocleido-
mastoid muscle. Depending on the location of the CLNs, they may be classified as (a) superficial 
anterior CLNs, (b) superficial posterior CLNs, (c) superior deep CLNs, or (d) inferior deep CLNs. 
The glymphatics and meningeal lymphatics system is a functional waste pathway in the vertebrate 
central nervous system (CNS) (1, 2). The glymphatics and meningeal lymphatic system connects 
the CNS with the CLNs (3–10). More importantly, T  cells and antigen-presenting cells (APCs) 
migrate along with the cerebrospinal fluid (CSF) as it drains along the nasal lymphatic path through 
the cribriform plate and eventually access the CLNs (Figure  1A) (3). Within the LN, there is a 
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FigURe 1 | Schematic representation of the central nervous system (CNS)-associated meningeal lymphatic system and the human immunodeficiency virus (HIV) 
reservoir in the cervical lymph nodes (CLNs). (A) The functional meningeal lymphatic vessels drain cerebrospinal fluid (CSF). T cells and antigen-presenting cells 
migrate with the CSF along the nasal lymphatic pathways through the cribriform plate to access the CLNs. (B) CSF enters the CLN via the afferent lymphatic vessel 
and exits through the efferent lymphatic vessels. Germinal center (GC) is located within the B-cell follicle. The follicular dendritic cells (FDCs) are located within the 
light zone of the GC. (C) Within the CLNs, HIV infects T follicular helper precursor cells, which subsequently express CXCR5 and migrate to the light zone. As 
depicted in the inset, CD21 interacts with C3d on HIV surface. This interaction results in HIV acquisition by the FDCs. Majority of the FDC associated HIV cycles 
through the endosomal compartment.
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network of stromal cells that includes the follicular dendritic cells 
(FDCs). FDCs were first identified as “antigen retaining reticular 
cells” (11). Subsequently, FDCs have been recognized for their 
unique ability to retain antigens for a prolonged duration (12). 
This property of FDCs is critical for several immune functions, 

including germinal center (GC) formation and long-term immune 
memory. FDCs develop from perivascular precursors of stromal 
cell origin, which are seeded throughout the body. Their matura-
tion requires lymphotoxin alpha and tumor necrosis factor alpha 
(TNF-alpha) signaling via B cells (13). FDCs are found within the 
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TABLe 1 | Advances in follicular dendritic cell (FDC)-related human 
immunodeficiency virus (HIV) research.

Major findings Reference

1. Simian immunodeficiency virus (SIV) accumulation in rhesus 
macaque cervical lymph node (CLN) FDCs and transmission  
to T follicular helper (TFH)

(24)

2. Enrichment of SIV DNA in CTLA-4 + PD-1-memory cells in 
lymph nodes

(25)

3. Engineering unselected CD8 T cells to express CXCR5 directs 
them into viral sanctuaries

(26)

4. Identification of a specialized group of CXCR5 expressing 
cytotoxic T cells that selectively entered B cell follicles and 
eradicated infected TFH cells and B cells

(27)

5. TFH are a source of replication competent HIV during latency (28)

6. HIV-exposed FDCs show an increased production of 
inflammatory cytokines

(29)

7. RNAscope- and DNAscope-based characterization of HIV/SIV 
lymphoid reservoir

(30)

8. Combined antiretroviral therapy (cART) interruption results in 
widespread resurgence of rebounding/founder HIV variants

(22)

9. Productive SIV infection is restricted to CD4 + TFH cells in  
Elite controller macaques and not typical progressors

(31)

10. Trafficking of conventional DCs into germinal center (GC) of CLNs (32)

11. SIV-infected GC TFH derived from TFH precursor cell subsets (33)

12. Persistent viral replication in lymphoid tissue due to suboptimal 
drug penetration

(34)

13. FDCs as a source of low-level viremia (21)

14. FDCs increase HIV transcription and production by a soluble 
tumor necrosis factor-alpha-mediated mechanism

(35)

15. FDC-trapped virus was replication competent and 
demonstrated greater genetic diversity than that of virus  
found in most other tissues and cells

(23)

16. Anti-CD21 mABs decreases HIV trapping by lymph node cells (36)

17. Species-specific colocalization of osteopontin with the 
FDC network in lymphatic tissues in HIV-1 and simian 
immunodeficiency virus infections

(37)

18. FDC–virus interactions stabilize the virus particle, thus 
contributing to the maintenance of infectivity

(38)

19. FDCs serve as a reservoir of infectious virus and render 
surrounding GC T cells highly susceptible to infection with  
X4 isolates of HIV-1

(39)

20. FDC microenvironment is highly conducive to active HIV infection (17)

21. FDC-associated virus accumulates soon after infection and 
cART does not diminish the FDC HIV reservoir

(20)

22. HIV-1 binds to B cells with CD21 receptor (40)

23. FDCs accumulate HIV for a prolonged duration (18)

24. FDCs-associated HIV is rapidly cleared with potent  
antiretroviral therapy

(19)
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B-cell follicles (BCFs) where GCs develop as a result of a T cell-
dependent antibody response (14). As the BCFs mature within 
the GCs, FDCs migrate into the light zone (Figure 1B).

Antigen acquisition, processing, and retention by FDCs 
impact the immune response. FDCs retain antigens for months 
to years (15, 16). However, there is inadequate experimental data 
demonstrating prolonged antigen retention by FDCs (17). In 
fact, most predictions are extrapolations based on decay rates. In 
addition to prolonged antigen retention, FDCs can also similarly 
retain human immunodeficiency virus (HIV)-1 (Figure  1C) 
(18). The FDC microenvironment is highly favorable for HIV  
infection (17). There is evidence in support of combined 
antiretroviral therapy (cART)-mediated viral clearance (19). 
Of note, there is a study (20) that conflicts this observation. As 
such, further investigations are necessary to understand if cART 
diminishes FDC-associated viral reservoir. Nonetheless, FDCs 
are considered a lymphoid tissue viral reservoir responsible for 
residual ongoing viremia (21) as well as, a source of viral resur-
gence upon cessation of cART (22). Of note, HIV retained by 
FDCs represents a divergent viral archive (23). The CLN FDCs 
like FDCs within the peripheral LNs also constitute a HIV/
simian immunodeficiency virus (SIV) reservoir. In this review, 
we discuss how CLNs acquire, accumulate, and transmit HIV. In 
addition, we present some recent advances in FDC-related HIV 
research (Table 1).

CnS AnD CLn FDCs ARe iMPORTAnT 
COMPOnenTS OF Hiv neURO-
iMMUnOPATHOgeneSiS

Human immunodeficiency virus neuroinvasion occurs very early 
during infection (41, 42) with transmigrating infected monocytes/
macrophages (43) and CD4+ T cells (42). In SIV/SHIV macaque 
models, SIV neuroinvasion occurs within a few days to weeks 
(44). HIV cannot be eliminated from the CNS as infected mono-
cytes or microglia have a long lifespan and low turnover (45). 
These monocytes and microglia within the CNS support latent 
HIV infection (46–49). Since, there is suboptimal penetration of 
cART (50, 51) across the blood–brain barrier (BBB) resulting in 
establishment of reservoir within the CNS.

Besides the CNS, HIV persists within the LNs, spleen, gut-
associated lymphoid tissue, reproductive organs, and lungs 
(52, 53). LNs are a known reservoir of persistent HIV/SIV viral 
infection under suppressive cART (34, 54–58). Several unique 
characteristics of the LNs contribute to the ability of HIV to per-
sist in this tissue. For example, LN tissue has a slower decay rate 
than in the peripheral blood (34). Additionally, the LN follicles 
contain FDCs that capture HIV virions on their cell surface in 
immune complexes (24). FDCs in the peripheral LNs have also 
been characterized as another viral reservoir site (21, 35, 59).  
Importantly, HIV-susceptible T follicular helper (TFH) cells are 
located in close proximity to FDCs, which within peripheral LNs 
have been shown to trap virions in their native non-degraded 
state for months to years (60–63) with a half-life of approximately 
2–3 months (23, 64). While FDC-trapped virus does not replicate 
or evolve; however, it can infect nearby trafficking cells (23, 24). 

Even during cART, replicating virus persists and replenishes 
trapped stores of HIV (22, 54).

Until the description of glymphatics and the functional 
meningeal lymphatic system, CNS was considered to be immune-
privileged (5). With the elucidation of structural and functional 
features of this CNS-associated lymphatic system (2, 3, 6), it is now 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


4

Dave et al. CLN FDC as a HIV/SIV Reservoir

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 805

well established that the CNS undergoes constant immune sur- 
veillance in the meningeal compartment. The meningeal lymphatic 
system, along with glymphatics presents a unique connection 
between the CNS and CLNs. HIV may pass with CSF as virions, 
infected T cells, or APCs through the cribriform plate along the 
nasal lymphatic pathway and access the CLNs. Lymph entering 
the CLNs through the afferent lymphatics is channeled through  
the subscapular sinus into the medulla. The fibroblastic reticular 
cell (FRC) conduits access afferent lymph and traverse BCFs, 
where they intersect FDCs. FRC conduits continue into the cortex 
where they end at high endothelial vessels or the medulla (65).

Recent focus directed at better understanding of the meningeal 
lymphatic system has tremendously enhanced our understanding 
of immune surveillance in the CNS (2–9). Lymphatic vessels were 
first identified in the dura mater of rats (7). In some studies of the 
meningeal lymphatics (3), the system has been described as part 
of the CNS, while others have drawn opposing conclusions (9). 
This is not surprising since lymphatic vessels are component of 
the surrounding connective tissue that is included in the CNS. 
However, lymphatic vessels can absorb CSF from adjacent suba-
rachnoid space and brain interstitial fluid via the glymphatics. 
Further detailed investigations are required to fully understand 
the functionality of CSF drainage, and how it might impact HIV 
accumulation within CLNs (1).

Circulating conventional DCs (cDCs) are known to traffic 
into the CNS in response to neuroinflammation (66–73) during 
HIV/SIV infection (74). Within CNS, cDCs act as both “carrier 
and bearer” of HIV and contribute both to neuropathology as 
well as CNS reservoir. Recent studies suggest that cDCs may 
capture HIV within the CNS and deliver it to different com-
partments of CLNs including FDCs (32, 60, 61, 75). The CLN 
FDCs would create a viral repository where virus can remain 
bound for prolonged duration (63). The immune cell retrograde 
transport studies (3, 6, 76, 77) provide clues that cDCs upon 
encountering HIV virions within the brain would migrate 
along the meningeal lymphatic vessels to draining LNs (CLNs, 
near the brain stem) via glymphatics delivering HIV particles 
to different CLN compartments including FDCs as shown for 
peripheral LNs (60, 61, 75). However, CLNs are the major site 
for systemic activation of CNS-specific T  cells. They receive 
input from the CNS in the form of antigens and cDCs (78). 
Within CLNs, HIV viral particles may be transmitted to CD4+ 
T cells or trapped on the FDC network, thereby stabilizing and 
protecting HIV and creating a long-term reservoir of infectious 
HIV (21, 34, 38, 54). In addition, FDCs activate CD4+ T cells 
within GCs and increase virus production in these cells even 
in the presence of cART (35, 39, 79–81). Assessing the involve-
ment of CLNs in HIV neuropathogenesis is timely, given our 
recent advances in understanding of the functional meningeal 
lymphatic system (3). Of note, additional mechanistic studies 
are required to determine if the CLN FDC reservoir is an archive 
of CNS egressing virus.

KeY CeLLULAR PLAYeRS in THe CLn

Cervical lymph nodes like other LNs play a central role in the 
development of adaptive immunity against pathogens and, 

particularly, the generation of antigen-specific B  cell responses 
in specialized areas within GCs (82). Very early in the HIV 
epidemic, LN pathology was recognized as an important con-
sequence of HIV infection since the beginning of the epidemic. 
Studies focused on lymphoid tissue architecture during HIV/SIV 
infection have highlighted the key role of the LN in the disease 
pathogenesis. The LN environment is unique for viral evolution, 
primarily because of the relative exclusion of HIV-specific CD8 
T cells (83). In a subsequent study, SIV-specific CD8 T cells in 
GC and non-GC regions were quantitated (84). Therefore, further 
investigations are necessary to understand the biology of immune 
cells in HIV-infected LNs and their critical role in achieving 
complete viral eradication.

Follicular dendritic cells are a subset of DCs that are of mesen-  
chymal origin and essential for GC formation and production 
of various types of antibodies (16). They reside in secondary 
lymphoid tissues such as spleen, tonsils, LNs, and follicles that 
appear at extranodal sites (85). GCs of secondary lymphoid 
tissues are composed of several types of immune cells, such 
as activated B  cells, TFH cells, and FDCs. FDCs interact with 
their GC counterparts. In the GC microenvironment, activated 
B cells communicate with FDCs by interacting with an antigen 
on their surface and then present this antigen to TFH cells. FDCs 
can select for B cells to re-enter the GC or exit with the help 
of TFH cells (15). FDCs have a unique ability to retain immune 
complexes on their dendritic processes. These immune com-
plexes consist of antigen–antibody complexes and complement 
(86), which can retain infectious virions for several months 
even in the presence of neutralizing antibodies or under cART 
(54). FDCs interact with TFH cells in GCs, and these cells serve 
as a reservoir of infectious virus. Surrounding GC, T  cells 
become highly susceptible to infection with HIV X4 isolates 
(39). HIV production increases to twofold when viral particles 
are transferred from FDCs to susceptible CD4+ T  cells (35). 
FDCs can secrete inflammatory cytokines (29) including TNF 
alpha and thereby contribute to enhanced transcription in the 
LNs (35).

The underlying mechanisms of HIV/SIV FDC reservoirs 
remain unclear and require further studies. FDC trapped HIV 
virions in human lymphoid tissues remain infectious (56). In 
murine FDCs, HIV virions in immune complexes remained 
infectious ex vivo for up to 9  months after being captured by 
FDCs (54). This characteristic of the FDCs is particularly interest-
ing because most of the identified reservoirs of persistent virus 
are found in the integrated pro-viral stage of the HIV replication 
cycle. It is important to note that current approaches to elimi-
nate persistent HIV have largely focused on elimination of HIV 
pro-viral DNA. The HIV/SIV lymphoid reservoir has been well 
characterized utilizing RNAscope and DNAscope methodologies 
(30). However, the CLN FDC HIV reservoir has only recently 
been partially characterized (24) and requires detailed investiga-
tion (Table 1).

T follicular helper are a subset of CD4 T  lymphocytes (87) 
that play a key role in B-cell differentiation. TFH cells assist B cells 
in the production of antigen-specific antibodies and are essential 
for memory B cell activation, survival, and differentiation. Even 
under conditions of durable control, such as in elite controller 
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macaques, TFH cells contribute significantly to ongoing viral rep-
lication and production, and are the single CD4 subset in the LN’s 
most highly enriched in SIV (31). During HIV infection, cellular 
interactions between FDCs, GC B-cells, and TFH cells result in res-
ervoir establishment. TFH-associated replication competent virus 
may be the source of resurgent HIV after cART interruption or 
failure. As such, TFH are increasingly recognized as another major 
CLN-associated reservoir of HIV infection (88–90). However, 
mechanisms by which these cells get infected remain unclear. 
TFH express very little CCR5 and in macaque studies, it has been 
shown that TFH lacking CCR5 cells can be infected in vivo with 
CCR5-tropic SIV (91, 92). Infection of the TFH population by 
CCR-5 tropic viruses appears to be the result of infection of the 
pre-TFH cells that express CCR-5 (93).

In cART-naïve as well as treated individuals, TFH and GC 
B cells are elevated (94). In addition, there is a direct correlation 
of TFH and GC B cells with the activated T-cell population in the 
LNs (95). In absence of cART, during chronic HIV infection, 
viral replication is concentrated in secondary lymphoid follicles 
(SLF). TFH cells have been shown to be highly permissive to HIV 
within SLF and are the source of replication competent HIV 
during latency (28). HIV vaccines are not strong inducers of 
neutralizing antibodies. However, in one of the recently described 
study, rhesus macaques were immunized with HIV envelope 
glycoprotein trimer, and there was a substantial production of 
HIV neutralizing antibodies (96). The high antibody titers had a 
strong correlation to GC B cells and TFH (96). These observations 
underscore the need to study more details of LNs, since previous 
HIV reservoir studies have frequently focused primarily on the 
peripheral blood.

Follicular regulatory T (TFR) cells are another subset of T cells 
in SLF (97, 98). TFR share some phenotypic characteristics with 
the TFH cells. Importantly, both TFH and TFR are permissive to 
HIV infection (99). However, TFR express greater levels of CCR5 
and CD4 as compared with the TFH cells. They also support higher 
frequency of viral replication. Expression of Ki67, a marker of 
proliferative capacity appears to correlate with viral replication 
in these cells. As such, TFR differ from TFH in their susceptibil-
ity to R5 HIV infection (99). Furthermore, it has recently been 
shown that natural killer (NK) cells migrate into the follicles of 
secondary LNs. The role of NK cells in LNs is not clear. However, 
a particular study in African green monkeys demonstrated that 
entry and persistence of NK cells in LNs was IL-15 dependent, 
as depletion of IL-15 resulted in an increase in viral replication. 
These data suggest a key role for NK cells in the establishment and 
maintenance of this viral reservoir (100).

eRADiCATiOn OF FDC viRAL ReSeRvOiR

A significant challenge to HIV eradication is the elimination of 
viral reservoirs in GC TFH cells. GCs are considered to represent 
an immune privileged site within the LN where antiviral CD8+ 
T  cells are primarily excluded (83, 84). However, unselected 
CD8+ T cells engineered to express CXCR5 (C-X-C chemokine 
receptor type 5, a chemokine receptor required for homing to 
GCs) direct them to GCs (26). CXCR5 expressing cytotoxic 
T cells are able to selectively enter BCFs and eradicate infected 

TFH and B cells (27). A population of SIV-specific CD8+ T cells 
expressed CXCR5 and expanded in LNs following pathogenic 
SIV infection in a cohort of vaccinated macaques (101). 
Animals that exhibited greater control of SIV replication had a 
greater expansion of these cells. The increase in CXCR5+ CD8 
T cells was associated with the presence of higher frequencies of 
SIV-specific CD8 T cells in the GC (101). Thus, CXCR5+ CD8 
T cells represent a unique subset of antiviral CD8+ T cells that 
expand in LNs during chronic SIV infection and may play a 
significant role in the control of pathogenic SIV infection (101) 
(Table 1).

An important milestone in purging the FDC reservoir was 
demonstrated by utilization of soluble complement receptor 2 or 
CD21 (102). CD21 is necessary for HIV interaction with FDCs 
and B-cells (40) as interaction of HIV with FDC stabilizes the virus 
(38). Despite the stabilized interaction, Heesters and co-workers 
were able to purge the FDCs of HIV virions by utilizing a soluble 
form of CD21 (102). Thus, intersecting CD21:C3d interactions 
significantly reduced recycling of virions through the endosomal 
compartment. In addition, viral transmission to TFH was dimin-
ished in in vitro studies (102). In an alternate approach to purge 
FDC HIV reservoir, monoclonal antibodies targeting CD21 were 
utilized (36). Thus, blocking CD21 interactions appears to be a 
potential strategy for purging the FDC HIV reservoir.

FUTURe PeRSPeCTiveS

Profound and durable suppression of HIV by cART represents 
a major accomplishment in HIV/AIDS research (103, 104). 
However, HIV persists in patients despite long-term admin-
istration of cART (55). Withdrawing cART invariably results 
in viral rebound (105, 106). One of the major challenges with 
cART is to maintain virologic control. Two types of research 
strategies have been utilized in HIV cure research. Eradication of 
replication-competent HIV is considered as a “classic cure” and 
the best example is Timothy Brown, also known as the Berlin 
patient (107). Timothy Brown received a stem cell transplant 
from a donor that was homozygous for delta32 mutation in the 
CCR5 gene (107). On the other hand, in a “functional cure,” viral 
rebound after cessation of cART is controlled without eradication 
of HIV. Such functional cure was demonstrated in SIV-infected 
rhesus macaques with α4β7 monoclonal antibody (108). Even 
after cART withdrawal, sustained virologic control was main-
tained with passive administration of α4β7 monoclonal antibody 
(108). However, mechanisms underlying this sustained virologic 
suppression remain to be elucidated. Other HIV cure strategies 
include (a) latency-reversing agents (e.g., anti-CD3, Bryostatin, 
IL-7, Romidepsin, TLR-7 agonists, Valproic acid), (b) immuno-
toxic therapy with bi-functional antibodies, and (c) precise 
excision of HIV genomes by CRISPR/Cas9 gene editing in mice 
(109–111). It needs to be determined if such cure strategies can 
successfully purge the CNS and the LN HIV reservoirs based on 
our current understanding of the functional meningeal system, 
CSF outflow (1), and viral acquisition by FDCs (Figures 1A–C) 
(24). Lifetime cART is associated with toxicity, residual chronic 
inflammation, and the accelerated onset of comorbidities asso-
ciated with aging. Therefore, optimizing other cure strategies 
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