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Abstract
Boolean networks have been widely used to model biological processes lacking detailed

kinetic information. Despite their simplicity, Boolean network dynamics can still capture

some important features of biological systems such as stable cell phenotypes represented

by steady states. For small models, steady states can be determined through exhaustive

enumeration of all state transitions. As the number of nodes increases, however, the state

space grows exponentially thus making it difficult to find steady states. Over the last several

decades, many studies have addressed how to handle such a state space explosion.

Recently, increasing attention has been paid to a satisfiability solving algorithm due to its

potential scalability to handle large networks. Meanwhile, there still lies a problem in the

case of large models with high maximum node connectivity where the satisfiability solving

algorithm is known to be computationally intractable. To address the problem, this paper

presents a new partitioning-based method that breaks down a given network into smaller

subnetworks. Steady states of each subnetworks are identified by independently applying

the satisfiability solving algorithm. Then, they are combined to construct the steady states of

the overall network. To efficiently apply the satisfiability solving algorithm to each subnet-

work, it is crucial to find the best partition of the network. In this paper, we propose a method

that divides each subnetwork to be smallest in size and lowest in maximum node connectiv-

ity. This minimizes the total cost of finding all steady states in entire subnetworks. The pro-

posed algorithm is compared with others for steady states identification through a number

of simulations on both published small models and randomly generated large models with

differing maximum node connectivities. The simulation results show that our method can

scale up to several hundreds of nodes even for Boolean networks with high maximum node

connectivity. The algorithm is implemented and available at http://cps.kaist.ac.kr/*ckhong/

tools/download/PAD.tar.gz.
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Introduction
Modeling of biological systems as a network of interacting components has received increasing
attention in various areas, such as computational and systems biology since it allows to analyze
biological phenomena systematically at various scales including molecular and cellular levels
[1]. Boolean networks (BNs) have been widely used among various network models because
BNs are relatively simple and efficient to model large networks [2–4]. The BN is a discrete
model of biological system that comprises of a number of nodes and corresponding update
rules. Each node represents a gene and takes on a value of 1 or 0, meaning that the gene is
expressed or unexpressed, respectively. Each update rule represents interactions between
genes. The state of a gene at a given time step is determined by its update rule and the state of
its input genes at the previous time step. In synchronous BNs, the states of all nodes are
updated simultaneously at each time step, and it directly induces global state transitions. An
important characteristic of BNs is that any sequence of consecutive global state transitions
eventually converges to either a single state (i.e., steady state) or a cycle of states (i.e., cyclic
attractors).

It is important to identify steady states to have a proper understanding of biological systems
because steady states often convey biological implications. Specifically, steady states capture
long-term behaviors of biological systems: they are closely related to different cell types or
states (e.g., growth, differentiation, and apoptosis) [5–7]. This motivated several meaningful
case studies of using steady-state analysis. For example, the identification of steady states has
been playing a crucial role in treatment of various human cancers such as breast cancer, and
leukemia [8, 9]. Additionally, the steady-state analysis can successfully explain the flower mor-
phogenesis of Arabidopsis thaliana [10], the differentiation process of T-helper cells [11], the
mechanism of T cell receptor signaling [12], the cell cycles of yeast types [13, 14], and the
express patterns of Drosophila melanogaster segment polarity genes [15]. Theoretically, steady
states can be detected by exhaustively exploring all the global states of a BN. However, it
becomes too memory- and time-consuming even for a small BN with n nodes since 2n global
states need to be examined in total. Indeed, it has been proved that the problem of finding fixed
points in a Boolean network is NP-hard [16]. Hence, it is essential to develop an efficient algo-
rithm to detect steady states while avoiding such state space explosion.

Algorithms for the problem of finding steady states have been extensively studied in the
past decade [17–30]. A common approach is to convert explicit state transitions to implicit rep-
resentations: decision diagram (DD), and propositional logic formula (SAT). In algorithms
based on DD [18–21], a DD represents a Boolean update rule. Then, by combining the DD rep-
resentations of all the Boolean update rules, the problem of finding steady states becomes a
search problem in the larger DD. This limits DD-based algorithms to small BNs with about
100 nodes. The SAT-based algorithms [22–25], however, do not suffer from the potential space
explosion of DDs, but most of them have focused on large BNs with low maximum node con-
nectivity (i.e.,maximum indegree, K). For example, Tamura et al. [22] proved that the problem
of detecting steady states of a BN with K can be transformed to (K + 1)-SAT problem. Those
algorithms take advantage of modern success of SAT solvers [31], which enable to scale up to
hundreds of nodes for BNs with K< 2 [24]. However, in case of BNs with higher Ks, a state
explosion still occurs because no efficient SAT solvers are known for the (K + 1)-SAT problem
with K� 2, which is a well-known NP-complete problem [32]. This limits the SAT-based algo-
rithms to Boolean networks with low Ks only.

To expand the range of feasible BNs, partitioning-based steady states detection algorithms
have been published recently [25, 33]. The key idea of those approaches is to reduce the basic
unit of steady-state analysis. For example, Guo et al. [25] partition the given network into
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smaller blocks based on a strongly connected component (SCC). Steady states are indepen-
dently detected in each block by applying a SAT solver, and then combined to construct the
steady states of the original BN. Therefore they achieved a better scalability on randomly gener-
ated BNs with K� 3. The scalability gained in principle is, however, unlikely to happen in the
models of realistic biological processes. This is because K of these models is known as orders of
magnitude higher than the average indegree [34]. For BNs with such high K, the size of the
largest SCC is too large to be analyzed within a reasonable timing. Several studies have discov-
ered that the currently available protein interaction networks have a SCC connecting the vast
majority of the proteins [35–37]. It is also reported that the currently available metabolic and
signal transduction networks are connected, with 50 to 60% of the nodes forming the largest
SCC [38, 39]. Thus, the partitioning strategy based on SCC is not suitable in the real world, and
so a better partitioning method is necessary.

Then, a natural question is what the smallest possible unit for partitioning is. In this manu-
script, we aim to discover the smallest partition of the network to utilize a SAT solver in the
most efficient way. To this end, this paper proposes an optimal partitioning algorithm based
on theminimum essential block (MEB). Then, we build upon the idea of the MEB-based net-
work partition into subnetworks. Each subnetwork is guaranteed to be the smallest both in the
size (i.e., n) and the maximum indegree (i.e., K) such that any deletion of nodes or edges from
the subnetwork cannot correctly determine the steady states of the network. Thus, the pro-
posed MEB-based partition guarantees to maximize the performance of a SAT solver while
ensuring to determine all the steady states reliably. We implemented an experimental tool and
compared with other state-of-the-art methods [24, 25]. For the models of real biological pro-
cesses acquired from literature [9–15], the runtime of the proposed algorithm performs about
three times better than others in average. Since the models consist of several tens of nodes only,
we randomly generated larger networks to evaluate how well our approach scales up. In com-
parison to the other methods, our method performs favorably on the large network with high
K, and reliably finds all steady states even for networks with up to n = 1000 and K = 5.

The rest of this paper is organized as follows: The Methods section describes the model, def-
initions and the proposed algorithm. In the Results section, we demonstrate the correctness
and efficiency of our method. The Discussion section sums up the results of the study.

Methods

The Boolean network and attractors
A Boolean network (BN) G = hV, Fi consists of a set V of n nodes and a set F of Boolean update
rules, where

V ¼ fv1; v2; :::; vng
F ¼ ff1; f2; :::; fng:

Each node vi 2 V has its associated state si(t)2{0, 1} at any time instant t and a Boolean update
rule fi. The Boolean update rule fi: {0, 1}

ki! {0, 1} determines the state value of vi (i.e., si(t))
according to the state of ki neighbor nodes incoming to vi at previous time instant t − 1. Here,
ki is the number of inputs for vi, and called indegree of vi. The maximum indegree of a Boolean
network is defined as K = max{ki}. The states of all nodes (i.e., global state) are updated simul-
taneously at each time instant. We denote the global state of the Boolean network at time t by a
vector S(t) = hs1(t), s2(t), . . ., sn(t)i. Hence, the synchronous updating of all nodes directly
induces global state transitions as follows:

FðSðtÞÞ ¼ Sðt þ 1Þ
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The state transition represents the dynamics of the network. One of the main characteristics of
Boolean network dynamics is that for any initial state condition, the system eventually con-
verges to attractors. Consecutive global state transitions S(t), S(t + 1), . . ., S(t + p) are called an
attractor with period p if S(t) = S(t + p). An attractor with period p = 1 is called a steady state
(i.e., a fixed point), and an attractor with a period p> 1 is called a cyclic attractor.

An efficient steady-state identification method through partitioning
The state space of a BN grows exponentially with the number of nodes in the network. It
becomes more complex as the maximum indegree increases. In this paper, we divide the given
network into multiple smaller subnetworks to decrease the computation complexity. We then
independently analyze each subnetwork to find local steady states by applying a SAT solver.
Finally, we compose the local steady states to construct the steady states of the overall network.
Note that the steady states detected in each subnetwork are called local steady states to distin-
guish them from the steady states of the given original BN.

Intuitive idea. The steady states identified through partitioning should be identical to the
steady states detected directly from the original BN. This and the following section present
how our partition-based method can be applied to identify steady states in a complete and cor-
rect manner. For ease of discussion, we first describe an intuitive idea of how we divide a net-
work into two subnetworks and how we combine the steady states of them to construct the
steady states of the overall network. This discussion will be extended to include the case of mul-
tiple subnetworks.

Let us assume that the given BN G is partitioned into two blocks P and Q as shown in Fig
1A. Block Q depends on block P through an out-going edge from node cp. Thus, state transi-
tions of Q are regulated by the values of cp at each time instant. We define such cp as a control
node of Q. If there exists a steady state of G, say a, P will eventually converge to ap (i.e., a local
steady state of P, which comprises the part of the steady state a of G) at some time instant tk
regardless of Q. From the time instant tk, the fixed value of cp of ap keeps controlling state tran-
sitions of Q, then Q also arives at aq (i.e., a local steady state of Q, which comprises the part of
the steady state a of G). Finally, the composition of ap and aq can safely construct a.

Based on the aformentioned observations, we present two-block partitioning and compos-
ing methods that correctly determine steady states of the given network G. Once G is parti-
tioned into two blocks P and Q, we construct two subnetworks based on these blocks. Here, it
is worth noting that P can be independently analyzed to find its local steady states regardless of
Q. Block Q, however, cannot be correctly analyzed by itself since it depends on a control input
(i.e., cp) from outside. We thus propose to construct a new subnetwork Q0 for block Q such that
Q0 = Q[{cp}. For the steady-state analysis of Q0, the value of cp is assumed to be fixed to 0 or 1,
and controls state transitions of Q. We then join each local steady state of P with that of Q0 by
using the state of cp as a glue between them. That is, we compose the two local steady states into
the steady state for G if cp has the same value in both subnetworks.

In the case that there also exists a set of out-going edges from node cq of Q as shown in Fig
1B, we construct two subnetworks P0 and Q0, where P0 = P[{cq} and Q0 = Q[{cp}. For each sub-
network, local steady states are computed under the assumption that the value of its input is
fixed and controls state transitions of the subnetwork. Thus, composing two local steady states
that have the same values of cp and cq in both subnetworks can reliably construct the steady
states.

Partitioning and correctness. The two-block partitioning and composing methods pre-
sented in the previous section can be extended towards partitioning of a BN into multiple
blocks. Let us consider the given BN G = hV, Fi with n nodes, and V is partitioned intom-
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number of blocks as follows:

V ¼ fv1; v2; :::; vng ¼ V1 [ V2 [ ::: [ Vm

where Vi is a proper subset of V, Vi\Vj is empty for i 6¼ j. Each block Vi has incoming edges
from outside of the block, and the source nodes of these edges can be interpreted as inputs for
each block. Let us denote the set of inputs of the block Vi as Ci. Then, the subnetwork Gi is con-
structed to be used to reveal local steady states as follows:

Gi ¼ hVi [ Ci; Fii

where Fi is a set of Boolean update rules associated to the nodes of Vi. It is worth noting that
the Boolean update rules for nodes in Ci are ignored since they are regarded as inputs to Vi.
But, a fixed state value (i.e., 0 or 1) for each node in Ci controls state transitions of the block Vi,
and thus input nodes are also called as control nodes.

The proposed composing method can also be generalized to the cases of combining local
steady states of multiple subnetworks. Before we describe the composition procedure, we define
SV(ak, T) as a subvector extracted from a steady-state vector, ak, according to a set of target
output variables, T. For example, let us assume that a steady state vector, ak = h0, 1, 0, 1, 1i, is
ordered as (v1, v2, v3, v4, v5). The subvector extracted from ak with respect to the targets, {v2, v3,
v4}, (i.e., SV(h0, 1, 0, 1, 1i, {v2, v3, v4})) is thus h1, 0, 1i. Then, we define the composition of two
local steady states from distinct subnetworks. Let us assume that G1 = hV1[C1, F1i and G2 =

Fig 1. An intuitive idea of partitiong a Boolean network into two blocks and composing steady states
found independently. A: A Boolean networkG can be partitioned into two blocks P andQ which are
connected by cp. Then, we construct two subnetworks P andQ0 whereQ0 =Q[{cp}, and cp is used to
combine the local steady states found in each subnetwork. B: When there also exists a set of edges from cq
ofQ, we construct two subnetworks P0 andQ0 where P0 = P[{cq} andQ0 =Q[{cp}. Both cp and cq are used to
combine the steady states of subnetworks.

doi:10.1371/journal.pone.0145734.g001
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hV2[C2, F2i are the two subnetworks, and
V1 [ C1 ¼ fv1; :::; vk; vk1þ1; :::; vk1þlg
V2 [ C2 ¼ fv1; :::; vk; vk2þ1; :::; vk2þmg

where v1, . . ., vk are the common components in two subnetworks. If two local steady states
(e.g., a1 and a2 for G1 and G2, respectively) meet the following condition,

SVða1; fv1; :::; vkgÞ ¼ SVða2; fv1; :::; vkgÞ

then a1 and a2 can be composed (i.e., a1 × a2) as follows:

a1 � a2 ¼ a1 þ SVða2; fvk2þ1; :::; vk2þmgÞ

where + operator represents the vector concatenation. All the local steady states (i.e., ai 2 A1

and aj 2 A2) satisfying the condition are composed (i.e., ai × aj) as described above. The result-
ing intermediate set of combined local steady states is then composed with local steady states
of the next subnetworks in the same manner until the last subnetwork is reached. The entire
procedure guarantees the steady states identified through partitioning to be identical to the
steady states detected directly from the original BN (for a formal proof, see S1 Text).

As an example, let us consider that a BN G = hV, Fi with six nodes in Fig 2A, where the
Boolean update rule F consists of six corresponding Boolean update rules as follows:

f1 : s1ðt þ 1Þ ¼ s2ðtÞ ^ s3ðtÞ
f2 : s2ðt þ 1Þ ¼ s3ðtÞ
f3 : s3ðt þ 1Þ ¼ s2ðtÞ _ s4ðtÞ
f4 : s4ðt þ 1Þ ¼ s5ðtÞ $ s6ðtÞ
f5 : s5ðt þ 1Þ ¼ s3ðtÞ
f6 : s6ðt þ 1Þ ¼ :s5ðtÞ

where ^, _,$, ¬ denote logical AND, OR, EQUIVALENCE, NOT operations, respectively.
Let us assume that V is partitioned into three blocks (i.e., V = V1[V2[V3) as shown in Fig 2B

Fig 2. A division into three subnetworks. A: A Boolean network modelG. B: A division into three
subnetworks (e.g., G1,G2, andG3). Input nodes are depicted as green nodes.

doi:10.1371/journal.pone.0145734.g002
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as red nodes:

V1 ¼ fv1; v2; v3g;V2 ¼ fv5g;V3 ¼ fv4; v6g:

Then, their inputs are C1 = {v4}, C2 = {v3} and C3 = {v5}. Finally, three subnetworks (i.e., G1, G2

and G3) can be constructed as follows:

G1 ¼ hV1 [ C1; F1i;G2 ¼ hV2 [ C2; F2i;G3 ¼ hV3 [ C3; F3i

F1 :

(
s1ðt þ 1Þ ¼ s2ðtÞ ^ s3ðtÞ

s2ðt þ 1Þ ¼ s3ðtÞ

s3ðt þ 1Þ ¼ s2ðtÞ _ s4ð0Þ
F2 : f s5ðt þ 1Þ ¼ s3ð0Þ

F3 :

(
s4ðt þ 1Þ ¼ s5ð0Þ $ s6ðtÞ

s6ðt þ 1Þ ¼ :s5ð0Þ

where si(0) represents a fixed control value of the input node vi, which is set to 0 or 1 depending
on the initial state S(0). When the state vectors of G1, G2, and G3 are ordered as (v1, v2, v3, v4),
(v3, v5), and (v4, v5, v6), respectively, then the local steady states are detected as follows:

A1 ¼ fh0; 0; 0; 0i; h1; 1; 1; 0i; h1; 1; 1; 1ig
A2 ¼ fh0; 0i; h1; 1ig
A3 ¼ fh0; 0; 1i; h0; 1; 0ig

where A1, A2, and A3 are the sets of local steady states for G1, G2, and G3, respectively. Firstly,
A1 and A2 are composed by using the common component v3 in G1 and G2 as the glue between
them. As the result, a set of combined local steady states is {h0, 0, 0, 0, 0i, h1, 1, 1, 0, 1i} ordered
as (v1, v2, v3, v4, v5). The set is then composed with A3. Finally, two steady states (i.e., {h0, 0, 0,
0, 0, 1i, h1, 1, 1, 0, 1, 0i}) are identified for G as the result of composing all the local steady
states, which are the same as the ones detected without partitioning.

The efficient network partition. In previous sections, we have discussed how we can reli-
ably construct steady states of a given network through partitioning. However, there may exist
a number of different partitions available for the given network. In this section, thus, we will
discuss how to find the best partition of the network so that the cost to identify all local steady
states is minimized. In the proposed approach, we use a SAT solver that is known to be efficient
to find steady states of a network. Yet, the complexity of SAT solvers increase exponentially
with the number of nodes (i.e., n) for BNs with K� 2 [24]. Hence, it is computationally more
efficient when we partition each block to be smaller in n and lower in K.

To utilize a SAT solver in the most efficient way, this paper proposes an optimal partitioning
algorithm based on theminimum essential block (MEB). Given a BN G = hV, Fi with n nodes,
such a partition can be constructed by dividing V into n blocks. Thus, each block Vi consists of
only a single corresponding node vi. As an example, the MEB-based network partition of the
BN G of Fig 2A is composed of six blocks such as V1 = {v1}, V2 = {v2}, V3 = {v3}, V4 = {v4}, V5 =
{v5} and V6 = {v6}. As shown in Fig 3, six subnetworks are then constructed based on the blocks
as described in the previous section. It is worth noting that each subnetwork is the minimum
both in n and K because even if we remove just a single node or an edge from any single subnet-
work, the induced alterations of Boolean update rules cause to break the correctness of the
algorithm. Therefore, the proposed MEB-based partition guarantees to maximize the
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performance of a SAT solver while ensuring to determine steady states reliably. A formal proof
is given to show that the proposed partition is the best network partition (see S2 Text). The
pseudocode of the partitioning algorithm is given in Algorithm 1.

Algorithm 1 Pseudocode of the network partitioning algorithm

Input: a Boolean network, G = hV, Fi with n nodes
Output: an optimal network partition, Gmin = [G1, G2, . . ., Gn]
1: function BEST–PARTITION (BN G = hV, Fi)
2: Gmin [ ]
3: for i = 1 to n do
4: Vi {vi}, Fi {fi}
5: for each node vk 2 V do
6: if vk is an input node of vi then
7: Vi Vi[{vk}
8: end if
9: Gi hVi, Fii
10: Gmin [Gmin, Gi]
11: end for
12: end for
13: return Gmin
14: end function

The efficient steady-state composition algorithm. The overall performance of our algo-
rithm can be further improved when we compose each set of local steady states in a proper
order. This is because composing the local steady states in a wrong order may lead to the gener-
ation of many redundant intermediate composed steady states which will be discarded later on.
If we consider our previous example, we compose local steady states in the order of (A1, A2, A3)
resulting in two steady states, {h0, 0, 0, 0, 0, 1i, h1, 1, 1, 0, 1, 0i}. The composition order (A1, A3,
A2) can also construct the same steady states, but redundant intermediate composed steady
states are generated during the composition. That is, the composition A1 and A3 results in {h0,
0, 0, 0, 0, 1i, h0, 0, 0, 0, 1, 0i, h1, 1, 1, 0, 0, 1i, h1, 1, 1, 0, 1, 0i}, which include two redundant

Fig 3. The MEB-based network partition. For the networkG in Fig 2A, the MEB-based network partition
consists of six blocks each of which has a single node (depicted as a red node). Each subnetworkGi is
constructed based on each block. Input nodes are depicted as green nodes.

doi:10.1371/journal.pone.0145734.g003
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ones. Recall that the composition order (A1, A2, A3) does not generate any redundancy in inter-
mediate composed steady states as shown in the previous example. Thus, the best composition
order is the one that generates the least redundant intermediate composed steady states in the
course of identification of all steady states. It is, however, generally complicated to find such an
optimal composition order in advance since it is often sophisticated to predict which local
steady states will be identified in each subnetwork. We thus provide a heuristic algorithm that
determines an efficient composition order. The pseudocode of the algorithm is given in Algo-
rithm 2. At each step, the algorithm chooses a subnetwork whose combination with the current
combined subnetwork generates the largest number of common nodes between them. The
local steady states of the chosen subnetwork are then determined to be composed next. It is
worth noting that our composition algorithm composes two local steady states only if the state
values of common nodes between them are the same. Thus, it is more likely to filter out redun-
dant intermediate composed steady states when composing with local steady states whose cor-
responding subnetwork has more common nodes than others at each step. The pseudocode of
the composition algorithm is given in Algorithm 3.

Algorithm 2 Pseudocode for determining an order of composing local steady states

Input: an optimal network partition, Gmin = [G1, G2, . . ., Gn]
Output: a composition order, Oc
1: function DETERMINE–COMPOSITION–ORDER (list Gmin)
2: begin argmax

i fjVijg /� Vi of Gi 2 Gmin �/

3: Oc [begin]
4: Vcurr Vbegin
5: while |Oc| = n do
6: next  argmax

i 6¼j fjVcurr \ Vijg /� j 2 Oc and Vi of Gi 2 Gmin �/

7: Vcurr Vcurr[Vnext
8: Oc [Oc, next]
9: end while
10: return Oc
11: end function

Algorithm 3 Pseudocode of the composition algorithm

Input: an optimal network partition, Gmin, a list of local steady states,
Aloc, and a composition order, Oc
Output: a set of composed steady states, Acomp
1: function ATTRACTOR–COMPOSITION (list Gmin, list Aloc, list Oc)
2: s Oc [0]
3: Acomp As, Vcomp Vs /� As 2 Aloc and Vs of Gs 2 Gmin �/
4: for each i 2 Oc do
5: C Vcomp\Vi
6: Atemp ;
7: for each ap 2 Acomp do
8: for each aq 2 Ai do
9: if SV(ap, C) = SV(aq, C) then
10: Atemp Atemp[{ap × aq}
11: end if
12: end for
13: end for
14: Acomp Atemp
15: Vcomp Vcomp[Vi

16: end for
17: return Acomp
18: end function
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Time complexity analysis. Finding steady states of Boolean networks has been proved as
NP-hard by Akutsu et al. in 1998 [16]. Thus, it is not plausible that the steady-state identifica-
tion problem can be solved efficiently (i.e., polynomial time) in all cases. However, it is possible
to develop algorithms that are fast in the average case, and thus this manuscript studies an algo-
rithm that is efficient in many practical cases.

The proposed algorithm has three main parts as follows: (1) partition the Boolean network,
(2) find all local steady states for each subnetwork, and (3) combine the local steady states to
the steady states of the overall network. Comparing to (2), the complexity of (1) is negligible as
the computational cost increases polynomially with the number of nodes. The worst case time
complexity of (1) is O(n2) because each subnetwork is constructed by checking n nodes to find
all the control nodes of the corresponding block, where n is the size of the network. For (2), on
the other hand, the worst case time complexity depends on the performance of a SAT solver,
but the time complexity for the (K + 1)-SAT problem with K� 2 (i.e., corresponds to the BN
with K� 2) has been proved as NP-complete. Thus, in general, it is very hard to predict which
network instances are going to be hard to solve without actually attempting to solve it. The
worst case time complexity of (3) is O(2n) if the number of steady states of a BN is 2n. However,
we may be less interested in such networks as most of biologically meaningful dynamics evolve
into relatively small number of steady states. The mean number of attractors of BNs is shown

to be proportional to
ffiffiffi
n
p

[1]. In average cases, the time complexity of (3) is bounded by O n
3
2

� �
(for details, see S3 Text).

In summary, the efficiency of the proposed algorithm is mostly determined by the perfor-
mance of a SAT solver which depends both on n and K. Since the proposed MEB-based parti-
tion minimizes the cost of (2), the proposed algorithm can efficiently detect steady states
except in rare cases. The theoretical analysis results are also supported by the simulation results
as will be discussed in Results section.

Results
We have implemented an experimental tool PAD (Partition-based Attractor Detection tool)
based on the presented algorithm. The pseudocode of our overall algorithm is given in Algo-
rithm 4. To find the local steady states of each subnetwork, we use a SAT solving algorithm by
Dubrova and Teslenko [24] based on MiniSAT SAT solver [31] as shown in lines 4 to 7 of
Algorithm 4. PAD is available at http://cps.kaist.ac.kr/*ckhong/tools/download/PAD.tar.gz.

Algorithm 4 Pseudocode for the overall steady-state identification algorithm

Input: a Boolean network, G = hV, Fi with n nodes
Output: a set of steady states, A
1: procedure MAIN
2: GMIN BEST–PARTITION(G)
3: ALOC [ ]
4: for each Gi 2 GMIN do
5: Ai MiniSAT(Gi)
6: ALOC [ALOC, Ai]
7: end for
8: OC DETERMINE–COMPOSITION–ORDER(GMIN)
9: A ATTRACTOR–COMPOSITION(GMIN, ALOC, OC)
10: end procedure

We analyzed over 3,600 BNs (e.g., real biological process models [9–15], and the N − K ran-
dom BNs [3, 40]) to benchmark our method against others. The methods we used for the com-
parison were those with good computational efficiency: BNS (i.e., the state-of-the-art SAT
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solver-based attractor detection tool) [24] and ST (i.e., the state-of-the-art partitioning-based
attractor detection tool) [25]. It is important to mention that those methods can find not only
the fixed points of BN, but also cyclic attractors of the network, which our method is not cur-
rently designed to do. There also exist other methods mainly focusing on finding fixed points
of the network, but they do not provide their source code or any executable binaries [17, 29].
However, the reported timing of their methods grows exponentially with the number of nodes
for BNs with K = 3. As we will see later, the timing of our method grows linearly for such net-
works, so it was not necessary to implement them to include in our benchmark. All the simula-
tions were performed on a machine with Intel(R) Core(TM) i3-2120 CPU@3.30GHz 2-Core
with 4GB memory running Ubuntu 12.04.

Results for Boolean networks models of real biological processes
We tested the proposed and other methods on seven Boolean network models of real biological
processes: control of flower morphogenesis in the mammalian cell cycle regulation [10], fission
yeast cell cycle regulation [14], budding yeast cell cycle regulation [13], T-helper cell differenti-
ation [11], T-cell receptor signaling pathway analysis [12], Drosophila melanogaster segment
polarity genes expression patterns prediction [15], and T-cell large granular lymphocyte
(T-LGL) leukemia signaling [9].

The simulation results are summarized in Table 1. Columns 1, 2, 3 and 4 show the name of
the model, the number of nodes (i.e., n), the maximum indegree (i.e., K) and the number of
fixed points computed, respectively. In columns 5, 6 and 7, we show the runtime of BNS, ST,
and PAD, respectively. As shown in Table 1, the models are all small, but have high K. The
results indicate that the proposed tool performs better than BNS by 2.91 times, and ST by 3.27
times in average. Interestingly, BNS is faster than ST although ST partitions the given model to
several blocks, and applies a SAT solver to each block while BNS applies a SAT solver without
partitioning. A possible reason is that ST needs to compute strongly connected components
(SCC) to partition the given BN based on those, and such overhead caused not to improve the
performance of ST in the small networks. The partitioning method of the proposed algorithm
is simpler than the one of ST, and also minimizes both n and K of each block. Therefore, the
computational advantage gained by the proposed partition can dominate the overhead of the
partitioning procedure, and so PAD outperforms both BNS and ST even in the small networks.

Results for random Boolean networks
The models in Table 1 consist of several tens of genes only, which is a typical size used in most
published models today. It is known, however, that the number of genes involved in many

Table 1. Simulation results for detecting steady states from real Boolean networks.

Models # of nodes K # of steady states Runtime (sec)

BNS [24] ST [25] PAD (Ours)

Mammalian cell [10] 10 6 1 0.003 0.006 0.001

Fission yeast [14] 10 6 13 0.003 0.004 0.003

Budding yeast [13] 12 6 7 0.009 0.009 0.005

T-helper cell [11] 23 5 3 0.003 0.004 0.001

T-cell receptor [12] 40 5 8 0.018 0.021 0.009

Drosophila melanogaster [15] 52 6 7 0.027 0.043 0.019

T-cell LGL leukemia signaling [9] 60 7 1 1.371 0.877 0.168

doi:10.1371/journal.pone.0145734.t001
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processes of biological interest exceeds the size of these models by at least an order of magni-
tude [28]. The number of functionally relevant interactions between genes of these models, rep-
resenting the links, is expected to be much more complex (i.e., higher K) [25]. In order to
evaluate how well our algorithm can scale up on larger and more complex examples, a large set
of BN with different Ks are randomly generated. We use the BoolNet package [41] in the R
environment [42] to generate N − K random BNs. To generate more biologically realistic ran-
dom BNs, the parameters of generateRandomNKNetwork function are set to K = 2 to 5 and
topology = scale_free, where K and topology represent parameters for the maximum indegree
and the network structure of the BN, respectively. Note that many real biological networks
have the scale-free property such that K of these models greatly exceeds the average indegree
[34, 43, 44].

In the first simulation, we applied the algorithms to compute the median runtime per steady
state for 3,600 randomly generated BNs of sizes between n = 100 and n = 900 nodes with K = 2
to K = 5. The timeout is set to 1000 seconds, and the results only include the data within the
timeout as shown in Fig 4. Each dot is computed for 100 networks. As we can see in Fig 4B–

Fig 4. Runtime comparisions of algorithms. The simulation results for 3,600 randomly generated Boolean networks (BN) with maximum indegree K. Each
dot is the median value computed for 100 networks. A: Median runtime of algorithms for BN with K = 2. B: Median runtime of algorithms for BN with K = 3. C:
Median runtime of algorithms for BN with K = 4. D: Median runtime of algorithms for BN with K = 5.

doi:10.1371/journal.pone.0145734.g004
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4D, the median runtime per steady state for BNS and ST grows exponentially with n. We can
also see that all timings grow much faster for networks with increasing K. Interestingly, BNS
performs almost the same as ST for networks with K = 4 or 5. We consider that the partitioning
method implemented in ST focuses on reducing costs to find steady states in networks with rel-
atively low K. The timing of our algorithm, however, grows linearly with n even for networks
with high K = 5.

On the other hand, PAD performs slightly worse than other tools when networks have rela-
tively low K and small n, as we can see in Fig 4. We consider that the results may be due to the
fact that the proposed partitioning method is optimized to handle mainly large networks with
high K. But, at the same time, more number of subnetworks can be constructed, which may
induce an overhead during composing local steady states of them. Meanwhile, a SAT solver
itself shows good scalability for networks with up to n = 800 nodes when K = 2 as shown in Fig
4A. Thus, we account for that the proposed fine-grained partition is over-optimized for such
BNs and caused the overhead in the procedure of composition. The proposed partitioning
method, however, enables each subnetwork to maintain small size and simple structure even
for large BNs with high Ks. It is worth noting that the cost to compute steady states of other
methods grows exponentially with n and K. This is because their units of partitioning (i.e., the
given BN itself in BNS and the strongly connected component in ST) are still too large and
complex for a SAT solver to compute steady states efficiently. Compared to those timings, the
aforementioned overhead of our method is negligible. Therefore, the proposed fine-grained
partition enables our method to be much more scalable than others.

In the second simulation, we compared the presented algorithm to other algorithms in
terms of the number of successful terminations within 60 sec. We used the same random BNs
as the ones generated in the first simulation. The results are shown in Fig 5. Each dot is com-
puted for 100 networks. As we can see, for BNS the number of successful termination rapidly
approaches 0 for n> 200. In comparison to BNS, the number of successful termination of ST
approaches 0 slightly slower than BNS, but it rapidly reaches 0 when K increases. On the other
hand, PAD is able to handle 40 percent of networks even for n = 900 and K = 5. The results
show that increasing K has a dramatic effect on the sizes of feasible networks that can be stud-
ied. Especially for BNS and ST, further increasing K will have a much more dramatic effect. We
consider that the larger (i.e., n� 1000) and more complex (i.e., K� 5) BNs would be the trend
for real biological process models [25, 45, 46]. We claim that PAD would be more useful in
those BNs because of the scalability although our method is not currently equipped to find
cyclic attractors.

Discussion
Finding steady states is one of the key problems in the analysis of Boolean network models of
biological processes. In this manuscript, we presented an efficient algorithm for the determina-
tion of steady states based on partitioning and a SAT solver. Our method ensures each block of
the partition to be the minimal both in size (i.e., n) and the maximum indegree (i.e., K) such
that maximizes the performance of a SAT solver to identify local steady states. The correctness
of our proposed algorithm is also formally proved. We have used two types of networks for
benchmark: published models for real biological processes, and randomly generated scale-free
networks. Our simulation results show that the inherent overhead (i.e., partitioning and com-
posing costs) of our method is compensated by the efficiency of the provided partition, and
thus our implementation tool, PAD, shows good scalability even on large random networks
with high Ks.

In 2007, Naldi et al. [20] proposed a steady-state analysis algorithm by using decision dia-
grams (DDs) each of which is constructed based on a Boolean function associated with a node.
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It is worth noting that each DD similarly corresponds to each subnetwork of our approach.
Each DD (i.e., local DD) is then composed in a pairwise manner, and the steady states of the
given network are determined by checking the finally composed DD (i.e., global DD). In the
course of the composition, redundant intermediate composed local DDs can be temporarily
generated, which will be discarded later on. Depending on the order of DD compositions, such
redundant DDs can be significantly increased, thus making the intermediate combined DD
become too memory-consuming. Such redundancy may be substantially reduced when com-
posed in a good order, but they do not provide how to determine such an order. Thus, this lim-
its the Naldi et al.’s algorithm [20] to deal with only small (i.e., about a hundred nodes [47, 48])
Boolean networks like other DD-based algorithms [18–21]. Our partitioning method is similar
to that of Naldi et al.’s study [20]. However, our steady-state detection algorithm is different
from the Naldi et al.’s in two aspects as follows [20]: (1) instead of using DD, we use a SAT
solver to analyze each subnetwork. (2) in contrast to Naldi et al.’s study [20], we provide an
efficient composition order that reduces redundancy in intermediate steady states to be gener-
ated during composing local steady states. Thus, it results in a significantly smaller size of com-
bined local steady states than that of its corresponding combined local DD as the composition

Fig 5. Scalability comparisions of algorithms. The simulation results for 3,600 randomly generated Boolean networks (BN) with maximum indegree K.
Each dot is the percentage of timeouts computed for 100 networks. A: Timeout percentage of algorithms for BNs with K = 2. B: Timeout percentage of
algorithms for BNs with K = 3. C: Timeout percentage of algorithms for BNs with K = 4. D: Timeout percentage of algorithms for BNs with K = 5.

doi:10.1371/journal.pone.0145734.g005
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steps continue. The above differences enable our composition method to have much smaller
composition cost than the Naldi et al.’s [20]. Hence, this contributes to the enhanced scalability
of our steady-state identification method although partitioning methods are similar. Here it
should be noted that Naldi et al. provide a user-friendly GUI tool, GINsim, and it can handle
multiple-valued networks too [20].

Zhao et al. [33] and Guo et al. [25] also exploited network partitioning methods to identify
steady states of Boolean networks efficiently. As shown in the simulation results, however, the
execution time of their methods grows exponentially with n and K. Specifically, for scale-free
random networks with K = 5, they seemed not to terminate at all as n increases. The reason is
that the size of the largest SCC is too large to be analyzed within a reasonable timing for such
networks with relatively high K. In contrast to the results of Zhao et al. [33] and Guo et al. [25],
PAD is scalable for the scale-free random Boolean networks up to several hundreds of nodes
by favor of the MEB-based partition. The published Boolean network models analyzed in this
manuscript have high K, but consist of several tens on nodes only. However, the size of pub-
lished models is growing, and the largest SCC of such models connects the vast majority of
nodes [35–39]. It is also reported that the maximum indegree of published models is orders of
magnitude higher than the average indegree [34]. Thus, we believe that the demonstrated scal-
ability for finding steady states will be a key functionality in any systems biology toolkit as
more published large and scale-free networks become available.

Alongside the partitioning methods, network reduction methods are another direction of
research in steady-state analysis [49–55]. For example, Zanudo and Albert [54] recently pro-
posed a method that uses network motifs (i.e., subgraphs) to reduce the given networks. Then,
the reduced networks are analyzed to find not only the steady states, but also cyclic attractors.
By means of the network reduction method, they achieved good scalability up to 200-node BNs
with indegree two. But, compared to our method, such network reduction based algorithms
themselves are not scalable enough to handle large networks. However, it is worth noting that
network reduction methods are beneficial when applied orthogonally to the existing steady-
state identification methods to improve them. As an example, in 2014, Veliz-Cuba et al. [55]
extended a process algebra based steady state finding algorithm by incorporating a network
reduction. Once the reduced network is constructed, they can efficiently compute its steady
states by applying the computational algebra technique. To take a lesson from them [55], we
will consider to apply network reduction methods orthogonally to our algorithm in the future.
We believe that the hybrid approach will give us a better chance to tackle challenges in identify-
ing steady states, which is still unsolved in general. Another direction of our future work is to
extend our method to determine all attractors including cyclic attractors.

Supporting Information
S1 Text. Correctness proof. The file presents the correctness proof of our steady-state detec-
tion algorithm. Open with your favorite pdf reader, e.g., Adobe Reader.
(PDF)

S2 Text. Optimality proof. The file presents the optimality proof of our partitioning algo-
rithm. Open with your favorite pdf reader, e.g., Adobe Reader.
(PDF)

S3 Text. Analysis of the average time complexity of our composition algorithm. The file
presents the analysis of the average time complexity of our composition algorithm. Open with
your favorite pdf reader, e.g., Adobe Reader.
(PDF)
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