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Abstract

Deep learning algorithms are powerful tools to analyse, restore and transform bioimaging 

data, increasingly used in life sciences research. These approaches now outperform most other 

algorithms for a broad range of image analysis tasks. In particular, one of the promises of 

deep learning is the possibility to provide parameter-free, one-click data analysis achieving 

expert-level performances in a fraction of the time previously required. However, as with most 

new and upcoming technologies, the potential for inappropriate use is raising concerns among 

the biomedical research community. This perspective aims to provide a short overview of key 

concepts that we believe are important for researchers to consider when using deep learning 

for their microscopy studies. These comments are based on our own experience gained while 

optimising various deep learning tools for bioimage analysis and discussions with colleagues from 

both the developer and user community. In particular, we focus on describing how results obtained 

using deep learning can be validated and discuss what should, in our views, be considered when 

choosing a suitable tool. We also suggest what aspects of a deep learning analysis would need 

to be reported in publications to describe the use of such tools to guarantee that the work can 

be reproduced. We hope this perspective will foster further discussion between developers, image 
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analysis specialists, users and journal editors to define adequate guidelines and ensure that this 

transformative technology is used appropriately.

Introduction

Microscopy is a leading technology to gain fundamental insight for biological research. 

Today, a typical microscopy session may generate hundreds to thousands of images, 

generally requiring computational analysis to extract meaningful results from them. Over 

the last few years, deep learning (DL) has increasingly become one of the gold standards 

for high-performance microscopy image analysis 1,2. DL has been shown to perform a wide 

range of image analysis very efficiently, such as image classification 3,4, object detection 
5,6, image segmentation 7–9, image restoration 10,11, super-resolution microscopy 10,12–15, 

object tracking 16,17, image registration 18 and the prediction of fluorescence images from 

label-free imaging modalities 19.

For image analysis, DL usually uses algorithms called artificial neural networks (ANNs). 

Unlike classical algorithms, before using an ANN, it first needs to be trained (Figure 1). 

During training, the ANN is presented with a range of data from which it attempts to learn 

how to perform a specific task (i.e. denoising). More specifically, the ANN builds a model 

of the mathematical transformation that needs to be applied to data to obtain the desired 

output. Here, the model parameters (called weights) can be seen as the instructions to carry 

out the learned task. Once the weights of a model are optimised, it can be used to perform 

the task, a step called inference or prediction. Therefore, ANNs can be considered non-linear 

transformation machines, performing sequential mathematical operations on the input data. 

As we inspect deeper into these sequences of operations, it becomes difficult to understand 

what features of the original images are used. For that reason, they are often thought of as 

“black boxes” since, for most users, only the input images and output predictions are readily 

available.

The training data provided to the ANN is commonly constituted of a large set of 

representative input images and their expected results. For instance, in denoising, the 

training dataset is composed of noisy and high signal-to-noise ratio (SNR) images (Figure 

1). This type of training using paired image-labels is commonly referred to as supervised 

training. On the other hand, for so-called self-supervised training, pre-processing steps 

directly generate the training pairs, and therefore, the users only need to provide input 

images. Training is typically the most challenging, time-consuming and resource-greedy part 

of the process and can take minutes to weeks depending on the size of the training dataset 

and the type of ANN. It often requires specialised knowledge, dedicated training datasets 

and access to powerful computational resources such as Graphical Processing Units (GPUs) 

to run and optimise ANN training. In comparison, using DL models (predictions) can be 

straightforward (parameter-free, one-click solution) and fast (seconds to minutes). Multiple 

tools are in development to facilitate the training and use of DL for bioimage analysis, 

including both online and offline, commercial and open-source solutions 8,22–30.

Once a model has been trained, it constitutes a portable algorithm to process new images, 

often with excellent speed performance, even on a local machine. However, in general, a 
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DL model will only perform well on images similar to those used during training. How 

similar the images need to be depends on the type of network used, and aspects to consider 

here encompass microscope types, label types, and the SNR or optical aberrations. This 

highlights the importance of the data used to train the DL algorithm, both in terms of its 

quantity and its diversity. Therefore, one powerful approach is to produce general models 

with high reusability potential using a large and diverse training dataset. For example, 

popular nuclei or cell segmentation models have been released 29,31,32 (Figure 2). However, 

this is only possible when large heterogeneous pre-curated datasets are available, which are 

challenging to produce.

Nonetheless, as DL models are becoming accessible through public repositories (so-called 

model zoos, such as bioimage.io) or web interfaces 29,32, it becomes straightforward to 

use them directly to analyse new data. This has the advantages of speeding up DL uptake 

but, unless the researcher can confirm that their own data were well represented within the 

training dataset used initially (which can be very difficult to do), the performance of such 

portable models on the new data often remains unclear. One major downside of this issue 

is that the DL model may generate artefacts and biases that can be difficult to identify. 

Therefore, despite its incredible potential, the application of DL in microscopy analysis has 

raised concerns 33–35, due to a lack of transparency and understanding of its limitations, 

especially for generalisability. In addition to this, DL is developing at an incredible rate, 

which then places a significant burden on users to determine the most appropriate tools for 

their needs, taking into account the validity and performance of a range of approaches that 

are often difficult to compare.

Here, we propose that many of these concerns can be significantly alleviated by the careful 

assessment of DL models performance, consideration in the choice of tool and by following 

reporting guidelines to ensure transparency.

Assessing DL model predictions

Currently, the most unambiguous way to assess the quality of DL model predictions is 

to compare them to ground truth images or labels (Figure 2A). Here we primarily focus 

on image restoration and segmentation tasks, but similar concepts also apply to other image

to-image DL-based image analysis. Segmentation results can be compared to manually 

annotated masks. In this case, expert manual annotations remain the gold standard to 

evaluate segmentation. Denoising results can be compared to matching high SNR images 

acquired with high laser power or long exposure times 10,14 or computationally introducing 

noise to high SNR data 15. The comparison between the model prediction and the ground 

truth dataset is scored using various metrics (see Box 1). These analyses are typically 

performed after a model has been trained. However, DL models are often evaluated using 

data that are similar to the one used during training, which does not always represent a 

general performance level. Therefore, we argue that it is also the end user’s responsibility 

to generate evaluation data to assess the specific performance of any DL model for their 

data. This would often involve generating ground truth images or investing time in manually 

annotating a few images to ensure that sufficient material is available for this essential 

quality control step. For instance, when planning to use a denoising DL model, users 
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can acquire a few corresponding high SNR images to ensure that the chosen denoising 

strategy works appropriately. Additionally, using such a dataset, users can also compare the 

performance of various tools to find the most suitable for the job (Figure 2B and 2C).

When comparing DL predictions to ground truth, it is important to visually assess the 

network output for artefacts, but equally important to quantitatively estimate similarity with 

the expected results. Box 1 presents a list of commonly used metrics and their appropriate 

uses depending on the tasks performed by the DL model. In addition, we provide a Jupyter 

notebook, as part of the ZeroCostDL4Mic platform 22, to easily compute these metrics 

directly in the cloud.

One of the most straightforward image metrics used to assess denoising, restoration, and 

image-to-image translation predictions is the Root Square Error (RSE), which calculates 

the sum of the square differences between predictions and the expected ground truth on a 

pixel-by-pixel basis. RSE is an easy-to-understand metric but does not report on structures, 

only on intensities. So other image similarity metrics such as the structural similarity 

index measure (SSIM 38) are also commonly used (Box 1 and Figure 2). Additionally, 

these metrics can be presented as maps that spatially render the discrepancies between the 

DL predictions and ground truth images. Such maps are especially useful to check for 

reconstruction artefacts that may be linked to specific structures in the images (Figure 2). 

Other metrics, such as Intersection over Union (loU), which measures the overlap between 

two binary masks, can assess the quality of segmentation outputs. Instance segmentation 

results can be further evaluated using additional scores such as F1 score or Panoptic quality 
37, reflecting the ability of the algorithm to identify each object in the image correctly. Other 

metrics have also been developed to assess other image processing tasks such as image 

registration 39 or super-resolution reconstructions 40 but are not described here in detail.

When using metrics to assess DL predictions, an issue that often arises is to decide when 

the metric scores are good enough. This is often less of a problem for segmentation tasks 

where predictions and ground truth images can reach a good agreement (IoU and F1 

scores of 0.9 and above). However, assessing the quality of denoising and image-to-image 

translation predictions may be more challenging. We found the approach of comparing both 

the prediction and the raw images to the ground truth images to be especially useful to 

evaluate denoising. This allows checking that the predictions are more similar to the ground 

truth images than the raw input data. If this is not the case, the DL model used is not 

improving the dataset toward the target image and should be reconsidered.

We recommend that efforts should be put into generating ground truth data as much as 

possible, and it is almost always possible to do so. But in rare cases, when ground truth 

images are not available, a careful visual inspection of the results may be the only option 

to assess a DL model’s performance. While less desirable, this solution may be sufficient 

if the results are already well characterised and well understood by the researcher such as 

when denoising known cellular structures. However, when studying novel phenomena, this 

approach should be avoided and observations cross-validated, especially if the structures 

observed after denoising are not easily visible in the raw data. Thus, there would be a need 
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for developing metrics or novel evaluation methods that can assess the quality of predictions 

when no ground truth images are available.

Choosing a DL tool

With the increasing availability of networks, models and software, it becomes challenging to 

identify the most suitable tool to answer a biological question. We do not recommend any 

particular software or tool simply because each user’s needs are distinct (for an excellent 

review of DL-based segmentation tools, see 9). Instead, we present a few pointers to help 

readers sieve through the literature based on what developers have reported in their work and 

reports from early adopters.

First, we recommend choosing an active, well-documented and well-maintained tool that 

matches the user’s prefered interface. Available DL tools now span various web interfaces 
29,32, standalone software 24,28,32,41, plugins for popular image analysis software 10,11,27,42, 

online notebooks 22 and Python packages 43. Each platform requires a different level 

of technical skills to use. In addition, the details of the documentation provided by the 

developers can vary significantly and ranges from annotated code to online video tutorials 

and detailed step-by-step guides. This will limit accidental misuse of the tool and help the 

users understand the tools and their capabilities. Additionally, a substantial existing user 

base and online forums discussing troubleshooting are signs of a healthy and helpful tool. It 

also provides a wealth of information about users’ experiences as well as tips and tricks.

We advise being wary about works that do not provide source code and associated data for 

users to reproduce the results on example data. It is typically free and easy to make these 

publically available via common platforms (i.e. GitHub). We support works that themselves 

encourage open science. We also believe that example data are instrumental as they allow 

users to test and learn how to use a tool properly before applying it to their data.

As discussed above, it is essential to carefully assess the performance of DL-based tools on 

the dataset of interest. Therefore we also recommend using tools that offer purposely-built 

evaluation and sanity check strategies. We also strongly encourage users to consider how the 

chosen tool can be used within their prefered image analysis pipeline. DL-based analyses 

will often constitute only a small part of the overall analysis process, and therefore, the 

pipeline as a whole should be considered before selecting a tool.

When training DL networks using a new algorithm or software, one feature to look for is 

strategies to identify and prevent overfitting. Overfitting occurs when a model becomes too 

specialised to the training dataset and does not generalise well to new data. In practice, this 

means that the trained model may not perform well on new data even if they are similar to 

those used during training. Overfitting can be detected by monitoring how the performance 

of the model evolves over training time on the training dataset and a set-aside validation 

dataset. When more training leads to an improvement in performance on the training dataset 

but an otherwise worsening of the performance on the validation dataset, this is a sign 

that overfitting is occurring which can be typically visualised by plotting so-called loss 

curves over training time. Overfitting may be prevented by increasing the training dataset’s 
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diversity using, for instance, data augmentation 44,45 or using strategies such as reducing the 

model complexity, adding regularisation (L1, L2) or early stopping during training 46. DL 

tools dedicated to training would enormously benefit from these features as these simplify 

the assessment and potential improvement on model optimisation for the user.

Another feature to look for when choosing a tool to train DL models is the possibility to 

perform transfer learning. Transfer learning enables the use of existing models as a starting 

point when training a new model. This allows taking advantage of previously learned model 

features present in these trained models instead of starting the training process from scratch. 

Transfer learning can considerably accelerate training or reduce the size of the necessary 

training dataset and produce models with higher performance 22,47.

Finally, when testing a new tool, it is often informative (and even often appreciated) to get 

in touch with developers and contribute to improving the tools when discovering bugs or by 

reporting issues in some particular configurations that may not have been encountered at the 

development stage. We feel the importance of this conversation is sometimes understated, 

even though it promotes good tools, open-mindedness and multidisciplinarity while building 

trust in the methods.

Reporting the use of DL in publications

As previously done for other transformative technologies, we believe that the bioimaging 

community needs to discuss and flesh out guidelines for reporting DL use for bioimaging 

in publications 48–51. This is especially important as the reporting of more traditional image 

analyses and acquisitions pipelines is still raising concerns 48,52–54. It is beyond the intention 

of the present work to propose guidance to developers on evaluation and reporting when 

proposing new DL algorithms, and we refer the readers to recent work that has initiated this 

conversation within the computer science community 55. Instead, we focus on what would 

be useful to report when using DL tools.

Due to the wealth of hyperparameters, architecture choices and data manipulation available 

with DL, incorrectly trained or incorrectly evaluated DL models can be easily generated 

and lead to suboptimal results. This, therefore, highlights the importance of reporting 

clearly and appropriately the steps leading to the generation of a particular model. Indeed, 

standard guidelines will increase confidence in the use of DL and promote transparency and 

reproducibility. Such guidelines will also help reviewers assess manuscripts using DL for 

image analysis, especially if this technology is unfamiliar to them. Below, we listed several 

suggestions for contributing to this critical discussion.

• Naturally, the algorithm used should be reported, and the appropriate paper(s) 

cited. We also recommend indicating the version of the algorithm used or, failing 

that, the date at which the tool was obtained, since most analytical tools change 

over time, and each update may lead to varying performance on the same data. 

For DL, this is currently not a widespread habit, especially because both the 

network and the dataset may change over time (acquiring more data to expand 

the training dataset, for instance).
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• Similarly, when using models trained by others, it is advisable to indicate the 

version of the model used. If not available, we recommend providing the date 

when the model was obtained and used.

• A DL model performance is entirely dependent on the dataset used at the training 

stage. When training dedicated DL models, the training dataset should be clearly 

described in the material and methods (types of microscopes, modality etc., as 

recommended in other work 52). Also, the training dataset should be deposited in 

a suitable and semi-permanent data repository (i.e. Zenodo, BioImageArchive).

• When training a DL model, we recommend indicating the key hyperparameters 

used and the main underlying libraries (e.g. TensorFlow, PyTorch). We 

recommend that DL models with reusability potential be deposited in a suitable 

repository (i.e. Zenodo) and linked to a model Zoo (i.e. TensorFlow hub, 

bioimage.io) along with their associated metadata.

• If custom code was generated to run the algorithm or process the data (pre or 

post-processing steps, for instance), it should also be shared with the paper and 

archived (i.e. GitHub, Zenodo).

• The steps taken to validate the DL model used should be clearly described. This 

includes the type of validation (i.e. indicating the evaluation metric used and 

what score was achieved), the number and the origin of the images used for 

evaluation (it is often considered imperative for evaluation data to be completely 

absent from training data to have bearings on how well the model generalises to 

new data), and explaining why the result was deemed acceptable. If space allows, 

we also recommend providing evaluation examples as supplementary figures.

• When performing predictions using a DL model, the tool used to run the model 

should be indicated (with the version again), and appropriate paper(s) cited. 

Indeed several tools offer the possibility to run DL models and may involve 

different pre-or post-processing steps that can influence the results obtained.

Concluding remarks

DL tools are transforming the way we analyse microscopy images. However, we think that 

DL cannot be used on any dataset without prior validation. This is especially important as 

users risk falling into the artificial intelligence hype when other techniques may be more 

appropriate, more robust and sometimes quicker to analyse their images. Importantly, due 

to the complexity of operations performed in DL, not knowing precisely how the images 

are manipulated may affect how they can be reliably analysed downstream of DL. As an 

example, it is hard to estimate whether it is appropriate to quantify absolute image intensities 

following DL-based denoising due to potential non-linearity with respect to the input data. 

Similarly, although image-to-image translation and resolution improvement using DL are 

very promising approaches, they remain prone to undetected artefacts generation due to the 

inherent addition of data to the input data 56 from the training dataset, raising concerns of 

validity.
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Here, we presented arguments towards the importance of validating any models using 

a purposefully-built evaluation dataset containing ground truth target images or labels. 

Similarly, the use of DL models should be reported appropriately to ensure reproducibility 

and transparency. This is a challenging task for DL since many components, both internal 

(hyperparameters) and external (training dataset) to the network used, can dramatically 

influence the results obtained. With the increasing availability of networks and models, we 

also stress the importance of finding ways to identify what might be a good tool. We believe 

that a good tool is not only a performant one, but that transparency of what it does to the 

data, useability and reliability are equally important. The responsibility of proper use of DL 

in microscopy is now equally shared between users and developers. Uncle Ben has never 

been more right than today: “With great powers comes great responsibility”. Finally, this 

article is not intended to set strict standards in place but rather serve as a starting point for 

further discussions between users, developers, image analysis specialists and journal editors 

to define appropriate use of these otherwise powerful techniques.
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Box 1

Common quality metrics used to assess denoising and segmentation DL 
models

All the metrics described here enable the comparison of the prediction generated by DL 

models to ground truth images or labels. Their respective use depends on the type of task 

performed by the DL model. In some cases, several metrics might be available and can be 

used together.

• Image similarity metrics (denoising, restoration and image-to-image 
translation)

Several metrics can be used to assess how similar two images are. These include:

1) The Root Square Error (RSE) map displays the root of the squared difference 

between two images. In this case, a smaller RSE is better. A perfect agreement between 

target and prediction will lead to an RSE map showing zeros everywhere.

RSE(i, j) = (P (i, j) − GT (i, j))2

Where P(i,j) is the prediction value at pixel (i,j), and GT(i,j) is the ground truth value at 

the same pixel. These images are typically normalised before evaluation of the metric.

2) The normalised root mean squared error (NRMSE) gives the average difference 

between all pixels in the images compared to each other. Good agreement between target 

and prediction yields low NRMSE values.

NRMSE = 1
N ∑

i, j
(P (i, j) − GT (i, j))2

Where N is the total number of pixels, P(i,j) is the prediction value at pixel (i,j), and 

GT(i,j) is the ground truth value at the same pixel. These images are typically normalised 

before evaluation of the metric.

3) The Pearson correlation coefficient (PCC) represents the degree of linear correlation 

between two images. A high correlation between target and prediction translates into a 

PCC close to 1.

4) The structural similarity metric (SSIM) evaluates whether two images contain the 

same structures based on contrast, luminance, and structural content concepts. It is a 

normalised metric, and an SSIM of 1 indicates a perfect similarity between the two 

images. The SSIM maps are generated by calculating the SSIM metric in each pixel but 

also considering the surrounding pixels. The mSSIM is the SSIM value calculated across 

the whole image 38.

5) The Peak signal-to-noise ratio (PSNR) is a metric that estimates the discrepancies 

between two images with respect to the peak signal amplitude of the prediction image. It 

is usually calculated in decibels, and the higher the score, the better the agreement.
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• Segmentation metric

Image segmentation aims at defining areas of interest in an image based on their identity 

(foreground vs background being the most common one). A segmentation step typically 

provides a binary mask image where the pixels in the segmented area have a value of 1 

(foreground) while the rest of the pixels have a value of 0 (background).

The Intersection over Union (loU) metric is a method that can be used to quantify the 

overlap between two binary masks. Therefore, when using IoU to assess the performance 

of a segmentation algorithm compared to ground truth masks, the closer to 1, the better 

the performance.

IoU = P ∩ GT
P ∪ GT

Where ∪ represent the union of 2 binary images (number of pixels that are foreground 

in either image) and ∩ represents the intersection of 2 binary images (number of pixels 

that are foreground in both images simultaneously). P is the predicted image, and GT the 

ground truth.

• Instance segmentation metrics (also used for classification and object 
detection tasks)

Instance segmentation aims to identify objects of interest in an image, both from the 

background and each other. An instance segmentation step commonly provides a label 

image where each identified object has a unique pixel intensity representing its identity, 

and the background is commonly set to have a pixel intensity of 0. Several metrics can 

be used to assess the quality of instance segmentation results, some of which are outlined 

below.

Typically, an IoU value is first calculated between the DL prediction and a GT image 

on a per-object basis. This allows identifying true and false positives as well as false 
negatives. True positives are objects that are correctly identified. In contrast, false 

positives are segmented objects that are not present in the ground truth image, and 

false negatives are objects missed by the segmentation algorithm. A particular object is 

considered as being detected when its segmentation mask has an IoU with the ground 

truth object mask that is above a user-defined threshold (for instance, IoU > 0.5). The 

number of false-positive (NbFalse positive) and false-negative (NbFalse negative) are then 

calculated as follow:

NbFalse positive = NbPrediction − NbTrue positive
NbFalse negative = NbGT image − NbTrue positive

NbPrediction and NbGT image refer to the number of objects present in the predicted image 

and the ground truth image, respectively.
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Precision is defined as the number of correctly segmented objects divided by the total 

number of detected objects. Precision is a metric used to assess the cost associated with 

False Positives. The closer the precision is to 1, the better the performance.

Precision = NbTrue positive
Nb True positive + Nb False positive = NbTrue positive

NbPrediction

Recall calculates how many of the actual positives the model captures by labelling them 

as True Positive. Recall can be used as a metric to assess the cost associated with False 

Negative. The closer Recall is to 1, the better the performance.

Recall = Nb True positive
Nb True positive + Nb False negative

The F1 score combines both the precision and recall scores in a single metric and is 

calculated as follows.

F1 = 2 × Precision × Recall
Precision + Recall

Other metrics such as Accuracy or Panoptic Quality (PQ, 1 indicates perfect agreement, 
37) can also be used to score the quality of instance segmentation results.
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Figure 1. Using classical or DL algorithms to analyse microscopy images.
This figure illustrates the critical steps required when using classical or DL-based algorithms 

to analyse microscopy images, using denoising as an example. When using a classical 

algorithm, the researchers’ efforts are put into designing mathematical formulae that can 

then be directly applied to the images. When using a DL algorithm, first, a model needs 

to be trained using a training dataset. Next, the model can be directly applied to other 

images and generate predictions. Typically, such a model will only perform well on 

images similar to the ones used during training. This highlights the importance of the 
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data used to train the DL algorithm (its quantity and diversity). The microscopy images 

displayed are breast cancer cells labelled with SiR-DNA to visualise their nuclei and 

imaged using a spinning disk confocal microscope (SDCM). The denoising performed in 

the “classical algorithm” section was performed using PureDenoise implemented in Fiji 
20,21. The denoising performed in the “Deep Learning algorithm” section was performed 

using CARE implemented in ZeroCostDL4Mic 10,22.
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Figure 2. Using quality metrics to assess the performance of DL models.
Figure illustrating that comparing DL-based predictions to ground truth images is a powerful 

strategy to assess a DL model performance. (A, B) Noisy images of breast cancer cells 

labelled with SiR-DNA were denoised using CARE (A, B; 10), Noise2Void (B, 11), and 

DecoNoising (C, 36) all implemented in ZeroCostDL4Mic 22. Noisy and ground truth 

images were acquired using different exposure times. (A) Matching noisy, ground truth, and 

CARE prediction images. White squares highlight regions of interest that are magnified in 

the bottom rows. Image similarity metrics mSSIM, NRMSE, and PNSR (see Box 1) shown 
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on the images were obtained by comparing them to the ground truth image. The SSIM 

(yellow: high agreement; dark blue low agreement, 1 indicates perfect agreement) and RSE 

(yellow: high agreement; dark blue low agreement, 0 indicates perfect agreement) maps 

highlight the differences between the CARE prediction and the corresponding ground truth 

image. Note that the agreement between these two images is not homogenous across the 

field of view and that these maps are helpful to identify spatial artefacts. (B) Magnified 

region of interest from (A) showcasing how using image similarity metrics can compare 

different DL models trained using different algorithms but using the same training dataset. 

Note that in this example, all three algorithms improved the original image but to a different 

extent. Importantly, these results do not represent the algorithm’s overall performance to 

train these models but only assess their suitability to denoise this specific dataset. (C) 

Example highlighting how segmentation metrics can be used to evaluate the performance 

of segmentation pre-trained models 29,31,32 Image segmentation metrics Intersection over 

Union (loU, 1 indicates perfect agreement), F1 score (F1, 1 indicates perfect agreement), 

and panoptic quality (PQ, 1 indicates perfect agreement, 37) displayed on the images were 

obtained by comparing them to the ground truth image which was manually annotated. Of 

note, these results do not reflect the overall quality of these pre-trained models (or of the 

algorithm used to train them) but only assess their suitability to segment this dataset.
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