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OBJECTIVE—The Vhlh gene codes for the von Hippel-Lindau
protein (VHL), a tumor suppressor that is a key player in the
cellular response to oxygen sensing. In humans, a germline
mutation in the VHL gene leads to the von Hippel-Lindau disease,
a familial syndrome characterized by benign and malignant
tumors of the kidney, central nervous system, and pancreas.

RESEARCH DESIGN AND METHODS—We use Cre-lox re-
combination to eliminate Vhlh in adult mouse pancreatic �-cells.
Morphology of mutant islets is assessed by immunofluorescence
analysis. To determine the functional state of Vhlh�/� islets,
insulin secretion is measured in vivo and in vitro, and quantita-
tive PCR is used to identify changes in gene expression.

RESULTS—Loss of VHL in �-cells leads to a severe glucose-
intolerant phenotype in adult animals. Although VHL is not
required for �-cell specification and development, it is critical for
�-cell function. Insulin production is normal in �-cells lacking
VHL; however, insulin secretion in the presence of high concen-
trations of glucose is impaired. Furthermore, the loss of VHL
leads to dysregulation of glycolytic enzymes, pointing to a
perturbation of the intracellular energy homeostasis.

CONCLUSIONS—We show that loss of VHL in �-cells leads to
defects in glucose homeostasis, indicating an important and
previously unappreciated role for VHL in �-cell function. We
believe that the �-cell–specific Vhlh-deficient mice might be a
useful tool as a “genetic hypoxia” model, to unravel the possible
link between hypoxia signaling and impairment of �-cell func-
tion. Diabetes 58:433–441, 2009

O
xygen homeostasis is essential to cellular func-
tion, and low O2 pressure (hypoxia) has a
profound impact on cell metabolism and phys-
iological processes. The von Hippel-Lindau tu-

mor suppressor protein (VHL) is a key player in the
cellular response to oxygen sensing. Hypoxia inducible
factors (HIFs) are global regulators of oxygen homeosta-
sis, allowing cellular adaptation to oxygen deprivation by
transcriptionally modulating genes involved in cellular
energy metabolism, angiogenesis, apoptosis, and prolifer-
ation, among other biological processes (rev. in 1–5).

During normoxia, prolyl hydroxylases hydroxylate specific
residues on HIF-�, a modification that is oxygen depen-
dent (6,7). VHL specifically recognizes these modified
residues, targeting HIF-� for ubiquitination via E3 ubiq-
uitin ligase and subsequent proteasomal degradation (8,9).
Under hypoxic conditions, HIF-� is stabilized and forms a
complex with the �-subunit of a transcriptional complex
(HIF-1�, also called aryl hydrocarbon receptor nuclear
translocator, or ARNT) that then translocates to the nu-
cleus to modulate expression of downstream targets,
including genes involved in oxygen uptake and glucose
metabolism. In the absence of VHL, HIF-�–dependent
genes are inappropriately upregulated in spite of normal
oxygen levels.

In humans, a germline mutation in the VHL gene leads to
the development of the von Hippel-Lindau disease, a rare
familial syndrome characterized by benign and malignant
tumors of several organs, including the kidney, central
nervous system, and pancreas (10). In mice, Vhlh (the
murine homolog of VHL) inactivation results in mid-
gestation lethality (11). The use of conditional alleles has
thus proven a powerful approach to investigate the role of
this protein in specific organ development and function
(12). Conditional inactivation of Vhlh has been success-
fully achieved in several organs including kidney, liver,
and bone (13–15). These studies have demonstrated that
VHL plays a fundamental role in survival, proliferation,
and differentiation of many cell types. Specific inactivation
of Vhlh in kidney cells results in the development of
blood-filled cavities that are reminiscent of the hemangio-
blastomas typically seen in human patients (13). Specific
depletion of Vhlh in the liver leads to steatosis within the
liver, presumably due to alterations in the glycolytic
machinery within the organ (14,16).

Another hallmark of human VHL patients is the occur-
rence of cysts and tumors, including neuro-endocrine
tumors, in the pancreas (17,18). To elucidate the role of
VHL in pancreatic �-cells, we have eliminated the gene via
Cre-lox technology. Specific inactivation of Vhlh in �-cells
results in glucose intolerance in mice. This defect appears
to be a consequence of a significant impairment in glucose-
stimulated insulin secretion in �-cells that lack VHL.
Further analysis has revealed a profound change in the
expression pattern of genes coding for glycolytic enzymes
that regulate the metabolic state of the �-cells. Thus, our
data reveal a previously unappreciated role for VHL in
maintaining a functional state in pancreatic �-cells.

RESEARCH DESIGN AND METHODS

Transgenic mouse handling. Mice used in these studies were maintained in
the barrier facility according to protocols approved by the Committee on
Animal Research at the University of California, San Francisco. Ins-Cre and
Pdx-1-CreER (tamoxifen-inducible) mice were obtained from Drs. Pedro
Herrera’s and Doug Melton’s laboratories, and the VhlhloxP/loxP mice have been
described previously (14,19,20).

To activate CreER in pancreatic �-cells, tamoxifen (TAM; Sigma-Aldrich, St.
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Louis, MO) dissolved in corn oil (10 mg/ml) was administered intraperitone-
ally at 1 mg � mouse�1 � day�1 for 5 continual days.

For DNA genotyping, islet DNA was collected in 1 ml AT-Extraction
solution (0.067N ammonium hydroxide, 0.2% Triton X-100) and sonicated for
10 s in ice water. Genomic DNA was concentrated by ethanol precipitation
and used for PCR as previously described (19–21).
Histology and immunofluorescence analysis. For paraffin sections, iso-
lated pancreata from adult mice were fixed in 4% (wt/vol) paraformaldehyde
in PBS for 4 h to overnight at 4°C. For frozen sections, adult tissue was fixed
in 4% (wt/vol) paraformaldehyde for 2 h at room temperature and incubated
overnight in 30% (wt/vol) sucrose in PBS. The following day, tissues were
frozen in optical cutting temperature cryoembedding media (OCT) after two
washes in PBS and stored at �80°C. Hematoxylin/eosin staining and immu-
nofluorescence analyses were performed as described previously (22). The
following primary antibodies were used: guinea pig anti-insulin, 1:300; rabbit
anti-glucagon, 1:300 (Linco Research, St. Charles, MO); rabbit anti-Glut2, 1:500
(Chemicon, Temecula, CA); mouse anti-Pax6, 1:25 (Developmental Studies
Hybridoma Bank, Iowa City, IA); rabbit anti-somatostatin, 1:200 (Dako,
Carpentaria, CA); rat anti-CD31, 1:100 (Pharmingen, San Diego, CA); and
rabbit anti-Nkx6.1, 1:1,000 (23). Primary antibodies were detected with
FITC-conjugated (1:200) and Cy3-conjugated (1:600) secondary antibodies
(Jackson ImmunoResearch Laboratory, West Grove, PA).

Bright field images were acquired using a Zeiss Axio Imager D1 micro-
scope. Fluorescence was visualized and photographed with a Zeiss Axiphoto2
plus microscope. Unless otherwise noted, all photomicrographs shown are
representative of at least three independent samples of the indicated geno-
type.
Quantitative PCR. RNA isolation, cDNA preparation, and qPCR were
performed as described previously (24). RNA expression of target genes was
normalized based on comparison to cyclophilin expression. Primer sequences
are available on request.
Intraperitoneal glucose tolerance test and acute insulin secretory

response in vivo. After a 16- to 18-h fast, mice were weighed and fasting
blood glucose level was measured using the Lifescan Glucometer. Mice were
injected intraperitoneally with a 1 mol/l glucose solution at 10 �l per gram
body weight. Blood glucose levels were then measured every 30 min for 2 h
after injection. For in vivo insulin measurement, blood was collected from the
tail vein before and 30 min after glucose injection. Serum containing protease
inhibitors (Roche, Indianapolis, IN) was stored at �80°C. Insulin concentra-
tion was calculated using the Insulin EIA kit (ALPCO) as per the manufactur-
er’s instructions.
Islet isolation and in vitro insulin secretion. The Islet Production Facility
Core at the Diabetes Center at University of California–San Francisco (UCSF)
isolated islets from adult mice. Glucose-stimulated insulin secretion in iso-
lated islets was performed as previously described (25). To quantify the
secretory response in the presence of K�, 40 mmol/l KCl was added to the high
glucose solution before incubation with the islets. For total insulin content of
islets, insulin was extracted overnight at 4°C with acid/ethanol (1.5% HCl/75%
ethanol) (300 �l). After centrifugation at 1,000g for 3 min, the supernatant was
collected and frozen at �20°C for insulin determination as described above.
Insulin tolerance test. After a 16- to 18-h fast, mice were weighed and blood
glucose was measured. Mice were injected intraperitoneally with a dose of 1
unit/kg of body weight. Blood glucose levels were measured every 30 min for
2 h after injection.
Islet lactate secretion assay. Islets isolated from control or Pdx-1–CreER;

VhlhLoxP/LoxP animals were incubated overnight in 200 �l growth medium with
16.7 mmol/l glucose. After the incubation, 20 �l supernatant was used in
duplicate to measure lactate using a Lactate Assay Kit (Eton Biosciences, San
Diego, CA). The islets were processed for RNA isolation using the RNeasy
Mini Kit (Qiagen Sciences, MD). The amount of lactate was normalized to total
RNA.
Islet area quantification. Paraffin-embedded tissue was sectioned 100 �m
apart to exclude overlapping islets. Immunohistochemistry was performed
using anti-insulin antibody and counterstaining with hematoxylin. Using
Adobe Photoshop, the area of insulin-positive islets and total pancreatic tissue
for every section was measured. �-Cell mass was calculated as a product of
total pancreatic weight and �-cell area.

RESULTS

VHL inactivation in adult �-cells leads to glucose
intolerance in mice. Homozygous deletion of Vhlh (the
murine homolog of VHL) results in embryonic lethality due
to defects in placental vasculogenesis, thus precluding the
analysis of adult tissues in VHL-deficient mice (11). To
investigate the role of VHL in adult �-cell function, we

specifically eliminated the Vhlh gene in �-cells via Cre/loxP

recombination. The conditional allele of Vhlh (VhlhLoxP/LoxP)
provides the capability to knockout the VHL protein in a
tissue-specific manner. Cre-mediated excision of the
floxed allele deletes the promoter and the first exon of the
gene, resulting in a null allele. VhlhloxP/loxP mice have been
used previously to successfully analyze the role of VHL in
other organs such as liver and kidney (13,14). To specifi-
cally inactivate VHL function in �-cells, VhlhloxP/loxP mice
were crossed with a transgenic mouse line that expresses
the Cre recombinase under the control of the pancreatic
and duodenal homeobox gene 1 (Pdx-1) promoter (Pdx-
1-CreER) (19). Although Pdx-1 is broadly expressed during
development, it becomes restricted to insulin producing
�-cells in animals around 4–6 weeks of age. The Pdx-1-
CreER transgenic mouse line carries an altered form of the
Cre recombinase that is fused to the estrogen receptor,
rendering the protein inactive in the cytoplasm in the
absence of the tamoxifen ligand. Double mutant trans-
genic mice carrying Pdx-1-CreER and VhlhLoxP/LoxP allow
for appropriate expression of Vhlh in the absence of
tamoxifen treatment, thereby ensuring normal develop-
ment. In Pdx-1-CreER;VhlhLoxP/LoxP adults, exposure to
tamoxifen leads to nuclear translocation of the Cre recom-
binase, allowing irreversible inactivation of Vhlh at a
desired time.

As anticipated, Pdx-1-CreER;VhlhLoxP/LoxP mutant mice
were born in the expected Mendelian ratio and reached
adulthood without any sign of compromised health. Ad-
ministering tamoxifen to 8- to 10-week-old mice induced
Cre expression in adult islets. Blood glucose concentra-
tion was monitored weekly after tamoxifen treatment.
Pdx-1-CreER;VhlhLoxP/LoxP mice treated with tamoxifen
displayed normal fed and fasting blood glucose levels. To
more vigorously test �-cell function, the response of these
mice to a glucose challenge was assessed. In the absence
of Cre expression, all mice (including Pdx-1-CreER;
VhlhLoxP/LoxP, Pdx-1-CreER;Vhlh�/LoxP, and VhlhLoxP/LoxP)
are normoglycemic (Fig. 1A). However, the ability of
tamoxifen-treated Pdx-1-CreER;VhlhLoxP/LoxP mutant mice
to recover after the glucose challenge is impaired (Fig.
1B). Tamoxifen-treated Pdx-1-CreER;VhlhLoxP/LoxP mutant
mice do not reach normoglycemia until 3 h after the
glucose challenge (data not shown). Interestingly, the
glucose-intolerant phenotype develops 6–8 weeks after
the start of the tamoxifen regimen. Thus, VHL function in
the adult �-cell affects glucose homeostasis within the
mouse.

Successful excision of the Vhlh floxed allele was dem-
onstrated by PCR on genomic DNA isolated from islets.
Distinct sets of primers allow for detection of the genotype
(Fig. 1C, top panel) and the extent of excision (Fig. 1C,
bottom panel) in islets. Both mice were injected with
tamoxifen and display a robust signal for amplification of
the excised allele. To correlate the severity of the pheno-
types observed with the efficiency of Cre-mediated recom-
bination of the floxed alleles, we also performed an
expression analysis of Cre activity in Pdx-1-CreER;
Rosa26R transgenic mice. Histological analysis of pancre-
atic tissue from mice that underwent tamoxifen treatment
reveals �80–90% excision (supplementary Fig. 1, found in
an online appendix at http://dx.doi.org/10.2337/db08-0749;
data not shown).

To further confirm the role of VHL in �-cell function,
specific deletion of Vhlh in �-cells during embryogenesis
was achieved using a transgenic mouse line expressing
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Cre under control of the insulin promoter (Ins-Cre) (20).
Ins-Cre;VhlhLoxP/LoxP mice develop to adulthood, with no
overt defects. However, upon glucose challenge, mice with
no functional VHL in �-cells are unable to normalize their
blood glucose levels, revealing a glucose-intolerant pheno-
type (Fig. 1D). Thus, inactivation of VHL in �-cells either
early in development (Ins-Cre;VhlhLoxP/LoxP mice) or after
�-cells have acquired maturity (Pdx-1-CreER;VhlhLoxP/LoxP)
points to a role for VHL in �-cell function.
Increased vasculature in islets of Pdx-1-Cre

ER;
Vhlh

LoxP/LoxP mice. The defect in glucose homeostasis
that results from the inactivation of Vhlh in �-cells raises
the question of whether islet formation and/or architecture
could be altered in tamoxifen-treated Pdx-1-CreER;
VhlhLoxP/LoxP mutant mice. Histological analysis of pancre-
atic tissue from tamoxifen-treated Pdx-1-CreER;VhlhLoxP/LoxP

mutant mice does not reveal any morphological changes
compared with control tissue (Fig. 2A and B). A hallmark
of the VHL syndrome is increased vasculature within
tumors, which correlates with a HIF-1�–mediated increase
in expression of vascular endothelial growth factor (Vegf)
(10). In agreement with this, islets in tamoxifen-treated
Pdx-1-CreER;VhlhLoxP/LoxP mutant mice display a dramatic
increase in blood vessels, as marked by PECAM-1/CD31
immunostaining (Fig. 2C–H). The increase in Vegf expres-

sion was confirmed by quantitative real-time PCR analysis
(Fig. 2I). Immunostaining analysis for the hormones insu-
lin, glucagon, and somatostatin reveal that the overall
architecture of the islets is maintained in tamoxifen-
treated Pdx-1-CreER;VhlhLoxP/LoxP mutant mice (Fig. 3A–
D). The increased vasculature may explain the apparent
perturbation of islet morphology in tissue lacking func-
tional VHL, observed as gaps or holes when stained for
hormones alone (Fig. 3B and D). In addition, expression of
mature endocrine markers including Nkx6.1 and Pax6 (26)
appears normal (Fig. 3E–H). �-Cell mass quantification in
Ins-Cre;VhlhLoxP/LoxP pancreas revealed no difference be-
tween the control and mutant groups (supplementary Fig.
3). Thus, VHL is not essential for islet formation and �-cell
differentiation.
Impaired insulin secretion in �-cells lacking VHL. To
determine whether the lack of recovery to normoglycemia
after glucose challenge in Vhlh mutant mice is due to
defective insulin secretion, blood serum from resting and
challenged mice was collected for insulin quantification
(Fig. 4A and supplementary Fig. 2). Control mice (either
without the Pdx-1-CreER transgene or harboring the trans-
gene but not injected with tamoxifen) display elevated
insulin levels in the serum 30 min after glucose challenge.
Strikingly, a significant decrease in circulating insulin is

C

Excised allele

Time (min)

A
B

lo
od

 g
lu

co
se

 (m
g/

dl
)

Time (min)

Time (min)

B
lo

od
 g

lu
co

se
 (m

g/
dl

)

D

0 15 30 60 90 1200

100

200

300

400

500
B

B
lo

od
 g

lu
co

se
 (m

g/
dl

)

0

100

200

300

400

500

600

700

0 15 30 60 90 120

0

100

200

300

400

500

600

0 15 30 60 90 120

* *** *** ***

*
*** *** ***

VHL
+/-

*

VHL
-/-

FIG. 1. VHL inactivation in �-cells leads to glucose intolerance. A: In the absence of tamoxifen, control (black line, Pdx-1-CreER;VHL�/LoxP, n �
6) and Pdx-1-CreER;VHLLoxP/LoxP(gray line, n � 3) mice normalize blood glucose 120 min after challenge. B: At 120 min after glucose challenge,
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compared with the control littermates (black line, n � 11). Control and mutant animals from nine independent cohorts were used for the analysis.
*P < 0.001, ***P < 10�8. Error bars represent SD in all cases.
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observed in tamoxifen-treated Pdx-1-CreER;VhlhLoxP/LoxP

mutant mice after a 30-min glucose challenge. To deter-
mine the basis of the defect in glucose-stimulated insulin
secretion in Vhlh-deficient mice, insulin secretion assays
were carried out on islets isolated from control and
mutant (tamoxifen-injected Pdx-1-CreER;VHLLoxP/LoxP)

mice. Resting insulin levels for control and mutant mice
are comparable (Fig. 4B and C). However, the insulin
secretory response to glucose is markedly reduced in
islets with �-cells lacking VHL (Fig. 4B and C). To deter-
mine whether �-cells were primed for secretion, control
and mutant islets were incubated with a nonglucose
secretagogue, KCl. In the presence of KCl, mutant islets
secrete insulin (Fig. 4C), indicating that �-cells lacking
VHL possess a functional secretion machinery. Summarily,
these results show that loss of VHL in �-cells leads to a
severe inability to secrete insulin in response to increased
glucose concentration.

Two likely explanations for the decrease in glucose-
stimulated insulin secretion could be envisioned—either
insulin production is reduced, or insulin secretion is
affected. By immunohistochemistry, insulin levels in the
mutant islets do not appear significantly diminished (Fig.
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org/10.2337/db08-0749 for a high-quality digital representation of this
image.)
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3). By quantitative PCR analysis, there is a mild reduction
in insulin transcript levels, although it is not statistically
significant (Fig. 4D). This is reflected in the minor reduc-
tion of total insulin protein observed in islets of Vhlh-
deficient mice (Fig. 4E). It appears unlikely that the
modest decrease in insulin level could account for the
complete lack of secretion upon glucose stimulation ob-
served in Vhlh-deficient mice. Thus, we decided to identify
additional changes in �-cells that might contribute to the
defect in insulin secretion.
Modulation of glycolytic metabolism in the absence
of VHL. In human cancers and mouse models, a loss of
VHL is accompanied by an increase in the expression of
several genes related to glucose metabolism (1,3). These
genes include glucose transporters and enzymes of the
glycolytic pathway. This coordinated increase in gene
expression results in a switch from oxidative phosphory-
lation to glycolytic metabolism within cells. Such a dra-

matic shift in glucose metabolism presumably allows cells
to maintain energy homeostasis and reduce the buildup of
reactive oxygen species (1). Perturbation of glucose me-
tabolism in �-cells has been linked to defects in insulin
secretion (27–29). Therefore, we decided to test whether
the expression of genes involved in glucose metabolism is
affected in Vhlh-deficient mice. Gene expression of several
enzymes involved in glucose metabolism, as assessed by
quantitative PCR analysis is significantly increased in islets
lacking VHL (Fig. 5A). These include glyceraldehyde-3-
phosphaste-dehydrogenase (Gapdh), phosphoglycerateki-
nase (Pgk), phosphofructokinase (Pfk), glucose phosphate
isomerase (Gpi), aldolase A (AldoA), and phosphoglu-
comutase (Pgm2) (Fig. 5A). Inactivation of Vhlh has also
been shown to affect the expression of glucose transport-
ers GLUT1 and GLUT2 (14,16). In agreement with these
reports, we observe an increase in Glut-1 expression in
Vhlh-deficient islets (Fig. 5A). Interestingly, GLUT2, the
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transporter that enables facilitative transport of glucose
into �-cells, is downregulated in Vhlh-deficient islets (Fig.
5A). Immunohistochemical analysis confirms the dramatic
reduction of GLUT2 (Fig. 5B). Thus, loss of VHL in �-cells
appears to disturb the cellular machinery for glucose
sensing and metabolism.

Gene expression assessment by quantitative PCR also
revealed a significant increase in lactate dehydrogenase
(LDHa, Fig. 5C) and pyruvate dehydrogenase kinase
(PDK, Fig. 5C). LDHa catalyzes the conversion of pyru-
vate to lactate and is maintained at low levels in islets
during homeostasis (30), presumably to ensure maximal
amounts of pyruvate being shunted toward oxidative
phosphorylation. PDK is an inhibitor of pyruvate dehydro-
genase, which normally catalyzes the conversion of pyru-
vate to acetyl CoA for entry into the tricarboxylic acid
cycle. Upregulation of PDK leads to a decrease in pyruvate
dehydrogenase activity, consequently decreasing oxida-
tion of pyruvate in the mitochondria and increasing the
pyruvate-to-lactate conversion in the cytosol. Indeed, VHL
mutant islets show a drastic increase in the expression of
MCT4 (Fig. 5C), a monocarboxylate transporter that me-
diates efflux of lactate from glycolytically active cells (31).
Quantitative PCR analysis indicates that loss of Vhlh in
�-cells results in increased glycolytic metabolism. In
agreement with these results, we detected increased lac-

tate in the growth medium upon culturing mutant islets
(Fig. 5D). Thus, given that LDHa, PDK, and MCT4 are all
downstream targets of HIF� proteins, the concerted in-
creased activity of these genes points to a modification of
intracellular respiration that may lead to a block in glu-
cose-stimulated insulin secretion.

DISCUSSION

The von Hippel-Lindau tumor suppressor gene product
(VHL) is an essential component of the cellular response
to hypoxia (8,9). To gain insight into the role of VHL in
�-cell formation and function, we have specifically inacti-
vated Vhlh in �-cells by Cre-loxP mutagenesis. Elimination
of Vhlh in embryonic and mature �-cells reveals that VHL
is dispensable for �-cell formation and differentiation.
However, loss of VHL has profound effects on �-cell
function, demonstrating a novel role for VHL in maintain-
ing glucose homeostasis.

Mice lacking Vhlh in adult �-cells develop severe glu-
cose intolerance. The phenotype onset occurs with a slight
delay that is not completely understood, and future work
could address whether slow turnover of the existing stores
of VHL might provide an explanation. Our results show
that total insulin protein content in Vhlh-deficient islets is
not significantly reduced. These results point to a specific
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defect in insulin secretion as the underlying cause of the
glucose intolerance phenotype. Basal unstimulated insulin
secretion in Vhlh-deficient mice parallels that of control
littermates. In fact, when challenged with high glucose,
mice lacking VHL in �-cells normalize blood glucose �3 h
after the control group, an effect that might be explained
by basal insulin secretion. In vitro, Vhlh-deficient islets fail
to secrete elevated levels of insulin when incubated with
high glucose, uncovering a role for VHL in regulating the
metabolic response. The ability of Vhlh-deficient islets to
secrete insulin in the presence of KCl indicates the
presence of a competent secretory system, placing the
defect further upstream. As absolute levels of insulin
secreted in the presence of KCl are lower in Vhlh-
deficient islets, a defect in the exocytotic machinery
cannot be ruled out. It is, however, important to note
that the relative increase in insulin secretion in the
presence of KCl compared with basal levels is similar
between control and mutant mice.

These results raise the question of how the loss of VHL
affects insulin secretion. Previous work has demonstrated
that hypoxia impairs insulin secretion (32–34). VHL inac-
tivation, via HIF-1� stabilization, mimics certain aspects of
the cellular response to hypoxia, and canonical target
genes of the HIF complex, including Vegf and Glut1, are
significantly upregulated in VHL-depleted islets. Similar to
our in vivo studies, in vitro experiments performed on
isolated islets have shown that hypoxic conditions lead
to an almost complete block in glucose-stimulated insu-
lin secretion, while basal secretion is only slightly
reduced (32,34). While the mechanism by which hypoxia
impairs insulin secretion is not completely understood,
it is generally believed to involve the depletion of energy
stores in �-cells. During hypoxia, and through HIF-1�
function, a switch from oxidative phosphorylation to
aerobic glycolysis occurs, resulting in impaired ATP
production (1). The ATP-to-ADP ratio has been pro-
posed as a major regulator of insulin secretion (rev. in
29). Defects in ATP production have been linked to
impairment of insulin secretion in response to glucose
(27,33,35). Furthermore, mitochondrial mutations that
result in decreased ATP production have been linked to
diabetes in humans (36 –38).

Both hypoxia and loss of VHL induce the expression of
genes related to the glycolytic pathway that could lead to
decreased ATP production. We observe upregulation of
several genes that indicate a switch from oxidative phos-
phorylation to glycolytic metabolism in Vhlh-deficient is-
lets. Among other genes, increased expression of Gapdh,
Pfk, and Pgm2 is observed. Further evidence of a shift
away from oxidative phosphorylation as the primary en-
ergy source in Vhlh-deficient islets was the dramatic
increase in expression of genes involved in lactate forma-
tion (LDHa), regulation of lactate formation (PDK), and
lactate secretion (MCT4) as well as increased lactate in
the culture medium. Overexpression of LDHa has been
shown to attenuate glucose-induced insulin secretion in
the mature �-cell line MIN6 (39). Together, these observa-
tions point to defects in glucose metabolism as a possible
cause for �-cell dysfunction in Vhlh-deficient mice. The
VHL–HIF-1� axis controls the expression of a large num-
ber of genes. We cannot formally exclude that alterations
in other genes might influence �-cell function. Indeed,
expression of the glucose transporter, Glut-2, is reduced
in Vhlh-deficient islets. Decreased expression of Glut-2
has been reported in several animal models of diabetes

(40–42). In vitro, islets of Glut-2–deficient mice display
impaired glucose-stimulated insulin secretion (43). There-
fore, defective islet glucose uptake could play a role in
�-cell impairment in Vhlh-deficient mice. However, a re-
duction but not elimination of Glut-2 expression (Fig. 5B)
might not hinder glucose uptake below the Km threshold
for glucokinase. Under these circumstances, the contribu-
tion of Glut-2 in the development of the observed pheno-
type might be minor. Further analysis will elucidate the
precise consequence of decreased levels of Glut-2 in
Vhlh�/� islets.

Additional evidence points to defective signaling due to
hypoxia as a contributor to diabetes. Upregulation of
hypoxia-related genes has been observed in pre-diabetic
and diabetic Zucker diabetic fatty (ZDF) rats (44). Recent
studies suggest that inhibition of the hypoxic response
also affects �-cell function. A dramatic decrease in HIF-1�
(ARNT), the partner of HIF-1�, was reported in islets
obtained from type 2 diabetic patients, indicating an
involvement of the hypoxia genes in �-cell dysfunction
(45). Furthermore, the authors showed that a �-cell–
specific knockout of HIF-1� in transgenic mice leads to
abnormal glucose tolerance, and the genetic changes in
islets overlap with those found in islets from diabetic
patients. In agreement with our results, some of the genes
affected in �-cells lacking HIF-1� are involved in glucose
sensing and metabolism. It is possible that dysregulation
of the glycolytic pathway (either by upregulation or down-
regulation) impairs �-cell function.

Although our results strongly suggest that cell autono-
mous changes in �-cells impair glucose regulation, we
cannot formally exclude the scenario that the aberrations
in islet architecture caused by increased Vegf expression
might influence �-cell function. However, previously re-
ported studies in other existing mouse models that ectopi-
cally express Vegf either in �-cells or in the pancreas have
failed to report glucose-intolerant phenotypes (46,47).
Nonetheless, it cannot be excluded that inappropriately
increased vascularization might impede insulin secretion,
possibly through incorrectly established contacts between
the �-cells and the endothelium. Future work will need to
address this issue.

VHL is a tumor suppressor gene. Germline VHL muta-
tions in humans predispose to certain types of tumors,
affecting several organs, including the kidney and pan-
creas (10). Although the most frequent pancreatic mani-
festation of VHL disease is serous cysts, a small
percentage of VHL patients develop nonfunctional islet
cell tumors (17,18). We have not observed islet tumor
formation in Vhlh-deficient mice. However, it is important
to note that in our studies, inactivation of Vhlh has been
restricted to �-cells. The cell of origin of islet tumors in
VHL patients is not known. Therefore, islet tumor forma-
tion might require loss of VHL in other non–�-cells.
Alternatively, islet tumor formation in Vhlh-deficient
�-cells might involve a second event, as has been de-
scribed for other VHL-related tumors such as in the kidney
(48).

In summary, we have shown that loss of VHL in �-cells
leads to defects in glucose homeostasis. We believe that
the �-cell–specific Vhlh-deficient mice might be a useful
tool as a “genetic hypoxia” model, to unravel the possible
link between hypoxia signaling and impairment of �-cell
function. This is particularly important, since the �-cell
response to hypoxia could also be relevant for therapeutic
approaches to diabetes. Islet transplantation studies have
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noted a dramatic increase in HIF-1 levels soon after
transplantation that causes apoptosis and a block in
insulin secretion (49). Thus, preventing hypoxic condi-
tions might not only affect transplant survival but also
prevent changes in insulin secretion.
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