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Methylation-dependent regulation of HIF-1a
stability restricts retinal and tumour angiogenesis
Yunho Kim1,*, Hye Jin Nam1,*, Junyeop Lee2,3, Do Young Park2, Chan Kim2,4, Young Suk Yu1, Dongha Kim1,

Se Won Park1, Jinhyuk Bhin5, Daehee Hwang5, Ho Lee6, Gou Young Koh2 & Sung Hee Baek1

Hypoxia-inducible factor-1a (HIF-1a) mediates hypoxic responses and regulates gene

expression involved in angiogenesis, invasion and metabolism. Among the various HIF-1a

posttranslational modifications, HIF-1a methylation and its physiological role have not yet

been elucidated. Here we show that HIF-1a is methylated by SET7/9 methyltransferase, and

that lysine-specific demethylase 1 reverses its methylation. The functional consequence of

HIF-1a methylation is the modulation of HIF-1a stability primarily in the nucleus, independent

of its proline hydroxylation, during long-term hypoxic and normoxic conditions. Knock-in mice

bearing a methylation-defective Hif1aKA/KA allele exhibit enhanced retinal angiogenesis and

tumour vascularization via HIF-1a stabilization. Importantly, S28Y and R30Q mutations of

HIF-1a, found in human cancers, are involved in the altered HIF-1a stability. Together, these

results demonstrate a role for HIF-1a methylation in regulating protein stability, thereby

modulating biological output including retinal and tumour angiogenesis, with therapeutic

implications in human cancer.
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H
ypoxia is a state in which the oxygen concentration is
relatively lower than that of homeostasis under normoxic
conditions1–3. Oxygen is one of the most significant

elements for the metabolic regulation of the organism, because
the lack of oxygen leads to improper energy production levels.
In this state, cells reduce oxygen consumption to adapt to
hypoxia and to maintain homeostasis. Hypoxia occurs under
physiological and pathological conditions, such as ischaemia
and wound healing, and in embryonic stem cell and solid
tumour microenvironments4–10. Hypoxic responses are mediated
by hypoxia-inducible factor-1 (HIF-1), a heterodimeric
transcription factor that is composed of an oxygen-regulated
a-subunit (HIF-1a or HIF-2a) and a constitutively expressed
b-subunit (HIF-1b)11,12. HIF-1a is unstable under normoxic
conditions, whereas HIF-1a is stabilized under hypoxic
conditions. The HIF-1a/b heterodimer is recruited to a
hypoxia response element and activates target gene expression
involved in vascularization, glucose transport, energy metabolism
and cell migration, to adapt to low oxygen conditions.

Regulating HIF-1a stability is an important step in adapting to
hypoxic conditions. Under normoxic conditions, HIF-1a is
hydroxylated by prolyl hydroxylase domain (PHD)-containing
protein 1/2/3 and then the von Hippel–Lindau (VHL) tumour
suppressor protein recognizes hydroxylated HIF-1a for degrada-
tion by the cullin2 E3 ligase complex13–17. In contrast, under
hypoxic conditions, PHDs use oxygen as a cofactor and the
enzymatic activities of PHDs decrease. Therefore, HIF-1a
hydroxylation decreases, leading to HIF-1a stabilization. Not
only hydroxylation but also other posttranslational modifications
including SUMOylation, acetylation and phosphorylation are
known to regulate HIF-1a functions. Previous studies have shown
that HIF-1a is stabilized by SENP1, which desumoylates HIF-1a
and inhibits the interaction between HIF-1a and VHL18. HIF-1a
phosphorylation by p38 contributes to the inhibition of binding
to VHL during ischaemia19. In contrast, HIF-1a acetylation has
been shown to induce VHL-mediated ubiquitination of HIF-1a20.

HIF-1a plays a crucial role in physiological and pathophysio-
logical angiogenesis by directly regulating vascular emdothelial
growth factor (VEGF), a master regulator of angiogenesis in
endothelial cells. Hif1a-null embryos die at E10.5 due to defective
vessel formation in the placenta, yolk sac and branchial
arches21,22. Phd1/3 double knockout (KO) mice and Phd2
conditional KO mice show erythemic appearances23. Abnormal
HIF-1a regulation causes uncontrolled blood vessel growth and
numerous vascular diseases24,25. In Hif1aþ /� mice, femoral
artery ligation experiments show decreased limb perfusion and
increased spontaneous amputation5, indicating that HIF-1a plays
a role in blood flow during hindlimb ischaemia. HIF-1a gain-of-
function in mice increases VEGF expression, microvessel density,
tumour growth and angiogenesis, whereas HIF-1a loss-of-
function in mice inhibits tumour growth and angiogenesis26,27.

In recent times, several reports have indicated that protein
methylation can be recognized as a modification that regulates
protein stability28,29. We reported that methylation-specific
ubiquitination machinery includes the damage-specific
DNA-binding protein 1 (DDB1)/cullin 4 (CUL4) E3 ubiquitin
ligase complex and a DDB1–CUL4-associated factor 1 adaptor,
which recognizes monomethylated substrates induced by
enhancer of zeste homologue 2 (EZH2) methyltransferase30.
SET7/9 is a SET domain-containing methyltransferase that acts
on histone H3K4 and on several non-histone proteins including
DNA methyltransferase 1 (DNMT1), E2F1 and signal transducer
and activator of transcription 3 (refs 31–33). SET7/9-dependent
methylation of DNMT1 and E2F1 regulates the stability of these
proteins32,34. Lysine-specific demethylase 1 (LSD1, also known as
AOF2 or BHC110) demethylates mono- and dimethylated H3K4

or H3K9 via an amine oxidase reaction35,36. LSD1 interacts
with androgen receptor in vitro and in vivo, and stimulates
androgen receptor-dependent transcription35. LSD1 may switch
the substrate H3K4me1/2 to H3K9me1/2 in the context of
androgen receptor gene regulation. In addition to its role as a
histone demethylase, LSD1 demethylates non-histone proteins
such as p53 and Dnmt1. LSD1 controls the tumour suppressor
activity of p53 via demethylation37. LSD1 plays essential roles in
maintaining global methylation in embryonic stem cells by
regulating Dnmt1 demethylation31.

In this study, we provide evidence that LSD1-mediated
demethylation of HIF-1a leads to HIF-1a stabilization under
hypoxic conditions. To validate the in vivo function of HIF-1a
methylation, we generate a methylation-deficient Hif1aKA/KA

knock-in mouse and characterize the phenotypes of enhanced
retinal angiogenesis and tumour growth and angiogenesis
promotion via HIF-1a stabilization. Furthermore, we discuss
the physiological relevance of HIF-1a methylation-dependent
regulation of protein stability in human cancers.

Results
SET7/9-mediated HIF-1a methylation occurs in the nucleus.
Although ubiquitination, SUMOylation, acetylation and proline
hydroxylation of HIF-1a have been reported to play important
roles in regulating HIF-1a functions38, physiological roles of
HIF-1a methylation have not yet been elucidated. As protein
methylation is conducted by protein methyltransferases, we
examined whether HIF-1a possesses a consensus sequence
targeted by specific methyltransferases. Near the lysine 32 site
of HIF-1a, we found a SET7/9-specific recognition motif
designated by [K/R]-[S/T/A]-K (in which the methylation
lysine site is underlined; Fig. 1a)39–41. We performed
liquid chromatography mass spectrometry/mass spectrometry
(LC-MS/MS) analysis for HIF-1a and confirmed that HIF-1a is
methylated at the lysine 32 residue (Fig. 1b)41. The association of
SET7/9 with HIF-1a was validated by co-immunoprecipitation
assays at endogenous expression levels in the absence or presence
of MG132 (Fig. 1c). As endogenous HIF-1a protein level under
normoxic condition is detectable only in the presence of MG132
(ref. 42), we found the association of SET7/9 with HIF-1a in the
presence of MG132.

We performed an in vitro methylation assay using purified
GST-SET7/9 proteins as enzymes and GST-HIF-1a proteins as
substrates. The introduction of SET7/9 increased HIF-1a
methylation; however, the mutagenesis of lysine to alanine
almost completely abolished HIF-1a methylation at the K32 site,
as assessed by an in vitro methylation assay (Fig. 1d). To
determine whether the catalytic activity of SET7/9 is required for
HIF-1a methylation, either SET7/9 wild-type (WT) or an H297A
mutant (MT) with impaired methyltransferase activity was
introduced43. Immunoprecipitation assay with anti-methyl-
lysine antibodies revealed that the SET7/9 WT, but not H297A
MT, significantly induced HIF-1a methylation (Fig. 1e),
indicating that SET7/9 is responsible for HIF-1a methylation in
an enzymatic activity-dependent manner. A specific antibody for
methylated HIF-1a at K32 was generated using a methylated
HIF-1a peptide and dot blot analysis confirmed that this antibody
recognized the methylated peptide specifically (Supplementary
Fig. 1a). Set7/9-deficient primary mouse embryonic fibroblasts
(MEFs) exhibited significantly reduced HIF-1a methylation level
compared with WT MEFs and methylated HIF-1a was detected
only from WT MEFs in the presence of MG132 (Fig. 1f).

Next, we determined when and where HIF-1a methylation
occurs. HIF-1a methylation was detected under normoxic
conditions with MG132 treatment, to inhibit 26S proteasome-
dependent degradation, and hypoxic challenge led to decreased
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HIF-1a methylation (Fig. 1g). Intriguingly, this reduced HIF-1a
methylation level under hypoxic conditions was restored during
long-term hypoxia (Fig. 1g). Using the anti-methyl HIF-1a
antibody, we further examined whether HIF-1a methylation
occurs in the cytoplasm or the nucleus and found that HIF-1a
methylation occurred primarily in the nucleus (Fig. 1h). We
examined the potential effects of methylation on HIF-1a
localization and immunostaining data revealed that both HIF-
1a WT and K32A MT, which is deficient of methylation,
remained exclusively in the nucleus in the absence or presence of
MG132 in hypoxic condition (Fig. 1i). These data indicate that
SET7/9-mediated HIF-1a methylation, which occurs in the
nucleus, does not affect the subcellular localization of HIF-1a.

HIF-1a demethylation by LSD1 increases HIF-1a stability. To
understand the function of HIF-1a methylation, we identified
HIF-1a-interacting proteins involved specifically in protein
methylation and demethylation processes by affinity chromato-
graphy. Intriguingly, LSD1 histone demethylase was identified as
a HIF-1a-interacting protein from LC-MS/MS analysis (Fig. 2a
and Supplementary Data 1). Co-immunoprecipitation assay
confirmed that HIF-1a and LSD1 bound at endogenous

expression levels under hypoxic condition or in the presence of
MG132 (Fig. 2b). LSD1 protein level was induced on hypoxia in
WT MEFs (Fig. 2c). As LSD1 has been shown to be a hypoxia
target gene44, we measured messenger RNA level of LSD1 on
hypoxia and found the slight induction of LSD1 mRNA level on
hypoxia (Fig. 2d).

We found that the protein levels of HIF-1a in Lsd1� /� MEFs
were decreased significantly compared with those in Lsd1þ /�

MEFs (Fig. 2e). To further examine whether LSD1 enzymatic
activity is required for regulating HIF-1a protein stability,
reconstitution experiments with either LSD1 WT or an
enzymatically inactive LSD1 K661A MT in Lsd1� /� MEFs were
performed. Increased HIF-1a protein levels were restored in
only LSD1 WT-reconstituted cells but not in LSD1 K661A
MT-reconstituted cells under hypoxic conditions (Fig. 2f).
Treatment of pargyline, an LSD1 inhibitor, which blocks LSD1
enzymatic activity, led to the HIF-1a destabilization (Fig. 2g). As
HIF-1a is methylated by SET7/9, we examined whether LSD1 is
responsible for HIF-1a demethylation. Indeed, LSD1 led to
HIF-1a demethylation both in vivo and in vitro (Fig. 2h and
Supplementary Fig. 1b). However, enzymatic activity of LSD1 did
not affect binding affinity to HIF-1a (Supplementary Fig. 1c) and
the amino-terminal domain of HIF-1a encompassing 1–200
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Figure 1 | Identification of HIF-1a methylation by SET7/9 methyltransferase at the K32 residue. (a) Identification of a putative SET7/9 methylation site

in HIF-1a. (b) Mass spectrometric analysis of HIF-1a purified from HeLa cells indicates HIF-1a methylation at the K32 residue. (c) Co-immunoprecipitation

of endogenous HIF-1a with SET7/9 from HeLa cells treated with or without MG132. (d) In vitro methylation assay of HIF-1a WT or K32A proteins was

performed with either purified SET7/9 WT or enzymatic MT (H297A) proteins. (e) HIF-1a methylation was determined in HeLa cells expressing either

SET9 WT or H297A MT. Immunoprecipitation assay with anti-methyl lysine antibody, followed by immunoblot (IB) analysis with anti-HIF-1a antibody was

performed. (f) HIF-1a methylation level was determined in WT or Set7/9� /� MEFs treated with or without MG132. (g) Immunoprecipitation with

anti-HIF-1a antibody from HeLa cells treated with MG132, followed by IB analysis with anti-HIF-1a-me antibody. (h) Nuclear and cytoplasmic fractionation

of HeLa cells was performed and methylated HIF-1a levels were monitored. HeLa cells were exposed to hypoxic conditions with or without MG132 for the

indicated times. Lamin A/C was used as a nuclear marker and tubulin was used as a cytoplasmic marker. (i) HeLa cells were transfected with Flag-HIF-1a
WT or K32A MT in the presence or absence of MG132 under hypoxic condition. Cells were stained with anti-Flag antibody (red) as indicated. The nuclei

were stained with 4,6-diamidino-2-phenylindole (DAPI, blue). Scale bar, 10mm.
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amino acids showed direct binding to LSD1 (Supplementary
Fig. 1d). Co-immunoprecipitation assay revealed that HIF-1a and
LSD1 showed comparable binding in the absence or presence of
SET7/9 (Supplementary Fig. 1e), confirming that the binding

between HIF-1a and LSD1 was not affected by HIF-1a
methylation status. As expected, Hif-1a target gene activation
on hypoxia was further attenuated in Lsd1� /� MEFs, but it was
further activated in Set7/9� /� MEFs (Supplementary Fig. 1f,g).
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Figure 2 | LSD1-mediated HIF-1a demethylation increases HIF-1a protein stability. (a) HIF-1a-interacting proteins were purified from HEK293T

cells under hypoxic conditions by Flag-M2 agarose. Bound proteins were resolved by SDS–PAGE and prepared for LC-MS/MS analysis.

(b) Co-immunoprecipitation of endogenous LSD1 with HIF-1a from HeLa cells in the absence or presence of MG132. LSD1 and HIF-1a protein levels of

nuclear fraction in WT MEFs (c) and LSD1 mRNA levels (d) were monitored under hypoxic conditions for the indicated times. Values are expressed as

mean±s.d. (n¼ 3). (e) HIF-1a protein levels of nuclear fraction in Lsd1þ /� and Lsd1� /� MEFs were compared in the presence or absence of hypoxic

challenge for 6 h. (f) Lsd1� /� MEFs were reconstituted with either WT or a catalytically inactive MT (K661A) of LSD1. HIF-1a protein levels of nuclear

fraction were monitored. (g) Nuclear HIF-1a protein levels were compared. Lsd1þ /� MEFs were pretreated with pargyline for 12 h and exposed to hypoxic

conditions for 6 h. (h) HIF-1a methylation was decreased in HeLa cells by overexpressing LSD1 with MG132 treatment. (i) IF assay was performed in HeLa

cells with the indicated antibodies. Cells were exposed to hypoxic condition for 6 h with or without MG132 treatment. Scale bar, 10mm. (j) IB analysis of

HeLa cells expressing the indicated proteins was performed. (k) HeLa cells expressing indicated proteins were incubated in a hypoxia chamber for 6 h and

treated with CHX (20 mg ml� 1), collected at the indicated times and analysed by IB assay. (l) Protein extracts from HeLa cells co-transfected with the

indicated plasmids were subjected to pull-down with Ni2þ -NTA beads. HIF-1a ubiquitination was assessed by anti-HIF-1a antibody in the presence of

MG132. (m) HIF-1a hydroxylation was determined in HeLa cells expressing HIF-1a WT, K32A, P2A or P2A/K32A MT with or without DMOG in the

presence of MG132. (n) Immunoprecipitation with anti-Flag antibody from HeLa cells expressing Flag-HIF-1a WT, K32A, P2A or P2A/K32A MT in the

presence of MG132, followed by IB analysis with anti-HIF-1a-me antibody was performed. (o) SET7/9-dependent HIF-1a ubiquitination was determined

after transfection with HIF-1a WT, K32A or P2A MT. Ubiquitination assay was performed as in l.
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To further examine whether the methylation status of HIF-1a
affects its protein stability, we performed immunofluorescence
(IF) assay in the absence or presence of MG132 under hypoxic
conditions. The introduction of SET7/9 WT reduced HIF-1a
protein levels under hypoxic conditions, whereas the SET7/9
enzymatic MT failed to affect HIF-1a stability (Fig. 2i). MG132
treatment blocked the SET7/9-dependent decrease in HIF-1a
protein levels under hypoxic conditions. Next, we examined
whether the introduction of LSD1 antagonizes the SET7/
9-dependent destabilization of HIF-1a proteins. IB analysis
showed that the introduction of SET7/9 reduced HIF-1a protein
levels, and that LSD1 WT, but not the LSD1 enzymatic MT,
blocked the SET7/9-dependent decrease in endogenous
HIF-1a protein levels on hypoxia (Fig. 2j). Treatment of the
protein synthesis inhibitor, cycloheximide showed that SET7/9
overexpression significantly decreased the half-life of endogenous
HIF-1a, whereas LSD1 overexpression increased the half-life of
HIF-1a (Fig. 2k). To further examine whether the 26S
proteasome-dependent degradation pathway is involved in the
regulation of HIF-1a protein levels, we performed HIF-1a
ubiquitination assay with SET7/9 or LSD1 in the presence
of MG132. Indeed, SET7/9 significantly increased HIF-1a
ubiquitination and the introduction of LSD1 almost completely
abolished the increase in HIF-1a ubiquitination (Fig. 2l).

HIF-1a is hydroxylated by PHD1/2/3 in the cytosol and
the hydroxylated HIF-1a is subject to degradation by the CUL2
E3 ubiquitin ligase complex under normoxic conditions.
Under hypoxic conditions, the enzymatic activities of PHDs
are decreased and the decrease in HIF-1a hydroxylation
leads to HIF-1a stabilization13,15. Therefore, we examined
whether HIF-1a methylation affects its hydroxylation. A
HIF-1a methylation-deficient K32A MT showed comparable
hydroxylation levels and treating this MT-expressing cells with
dimethyloxalylglycine (DMOG), a prolyl hydroxylase inhibitor,
attenuated HIF-1a hydroxylation as in the case of HIF-1a WT
(Fig. 2m), indicating that HIF-1a methylation is independent of
its hydroxylation. In parallel, a HIF-1a hydroxylation-deficient
P2A MT (P402A/P564A) exhibited methylation levels
comparable to those of WT, indicating that HIF-1a
hydroxylation does not affect SET7/9-dependent methylation in
the nucleus (Fig. 2n). We further examined the ubiquitination of
HIF-1a WT, K32A MT or P2A MT in the presence of MG132
and found that HIF-1a K32A mutation led to a marked reduction
in HIF-1a ubiquitination in the presence of SET7/9, in contrast to
HIF-1a WT and P2A MT (Fig. 2o). The methylated HIF-1a
proteins are found to be hydroxylated as well (Supplementary
Fig. 1h,i). Together, these data indicate that LSD1-dependent
demethylation of HIF-1a stabilizes HIF-1a proteins under
hypoxic conditions by reversing SET7/9-mediated HIF-1a
methylation-dependent degradation by 26S proteasomes, which
is independent of HIF-1a hydroxylation.

Hif1aKA/KA knock-in mice display a haematologic abnormality.
To examine the roles of HIF-1a methylation in vivo, we generated
Hif1aKA/KA knock-in mice. To replace lysine 32 of HIF-1a with
alanine in the mouse genome, we designed a knock-in MT
targeting vector, which contained substituted DNA sequences in
the second exon and an flippase recognition target (FRT)-flanked
puromycin-resistant (Puror) cassette in intron. Lysine to alanine
substitution was introduced by site-directed mutagenesis, which
generated the AfeI site (Fig. 3a). The knock-in of Hif1aKA/KA was
confirmed by both AfeI digestion and PCR product sequencing
using allele-specific primers (Fig. 3b). Hif1aKA/KA mice have been
backcrossed to a C57BL/6 background for at least seven genera-
tions. No lethality was associated with the targeted Hif1aKA/KA

alleles, as Hif1aKA/KA mice were normal from birth until adult-
hood and largely indistinguishable from their WT or heterozygote
littermates in viability and fertility, exhibiting an expected Men-
delian distribution ratio. First, we determined whether HIF-1a
methylation was abolished in primary MEFs obtained from
Hif1aKA/KA mice compared with those from heterozygous and
WT mice. Immunoprecipitation assay with anti-HIF-1a-me
antibodies confirmed that HIF-1a methylation was not detected
in Hif1aKA/KA MEFs in contrast to WT and heterozygous MEFs
(Fig. 3c). Compared with HIF-1a protein level, HIF-2a protein
level was comparable in WT, Hif1aþ /KA and Hif1aKA/KA mice
(Supplementary Fig. 2a,b).

Elevated HIF-1a levels are associated with increased erythro-
poietin (Epo) levels, leading to erythrocytosis45–47. To examine
the possibility that a lack of HIF-1a methylation leads to
erythrocytosis via increased HIF-1a protein levels, we examined
the blood phenotype in Hif1aKA/KA mice compared with that in
WT mice. WT and Hif1aKA/KA mice were injected with DMOG
to eliminate hydroxylation effect and the phenotypes were
monitored. Hif1aKA/KA mice exhibited reddened snouts, paws
and peritoneum along with enlarged spleens (Fig. 3d). HIF-1a
protein level was increased in the lungs and spleens of Hif1aKA/KA

mice treated with DMOG compared with WT mice (Fig. 3e). We
also examined the haematological parameters of peripheral blood
from Hif1aKA/KA mice compared with WT mice. Hif1aKA/KA

mice had significantly increased numbers of red blood cells
along with high haemoglobin concentrations (Fig. 3f and
Supplementary Fig. 2c). Haematocrit values were also increased
in Hif1aKA/KA mice compared with WT mice (Fig. 3f and
Supplementary Fig. 2c). Furthermore, Vegf-a, Glut-1 and Epo
mRNA levels were increased in Hif1aKA/KA MEFs compared with
WT MEFs on exposure to hypoxic conditions or DMOG
treatment for 24 h (Fig. 3g). Vegf-a and Epo mRNA levels were
increased in Hif1aKA/KA lung extracts compared with WT on
exposure to hypoxic conditions for 14 days or DMOG treatment
for 7 days (Fig. 3h). IB analysis revealed that protein level of EPO
is also increased in Hif1aKA/KA lung extracts compared with WT
(Supplementary Fig. 2d). Together, these data indicate that
Hif1aKA/KA mice had haematologic abnormalities and enhanced
HIF-1a levels.

Increased cell motility and tumour growth in Hif1aKA/KA MEFs.
HIF-1a expression was drastically enhanced in Hif1aKA/KA

MEFs compared with WT MEFs on exposure to hypoxic
conditions at the indicated time points (Fig. 4a). We monitored
the half-life of HIF-1a in WT and Hif1aKA/KA MEFs and found
that the half-life of HIF-1a in Hif1aKA/KA MEFs treated with
cycloheximide was further extended (Fig. 4b). We also compared
the HIF-1a protein levels along with its methylation level from
mouse lung extracts after incubating WT and Hif1aKA/KA mice in
hypoxic chambers for 14 days. HIF-1a protein levels were
increased concomitant with decreased HIF-1a methylation levels
on exposure to hypoxic conditions in mouse lung extracts
(Fig. 4c).

To examine whether SET7/9 and LSD1 modulate cell motility,
we performed cell motility assays by overexpressing SET7/9 or
LSD1 in MEFs in the absence or presence of hypoxic challenge.
The introduction of SET7/9 resulted in decreased cell motility,
whereas the introduction of LSD1 increased cell motility on
exposure to hypoxic conditions (Fig. 4d). As increased HIF-1a
levels are related to cancerous phenotypes under hypoxic
conditions, we examined whether Hif1aKA/KA MEFs exhibit a
greater number of cancerous phenotypes than WT MEFs
by performing cell migration and colony formation assays.
Compared with WT MEFs, Hif1aKA/KA MEFs showed increased
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cell migration (Fig. 4e). Furthermore, colony formation assay
revealed that Hif1aKA/KA MEFs showed increased colony
numbers compared with WT (Fig. 4f). To examine whether
HIF-1a methylation could negatively regulate tumorigenic
behaviour in vivo, we injected MDA-MB231 cells stably
expressing HIF-1a WT and K32A MT subcutaneously into
athymic nude mice. HIF-1a K32A MT-expressing cells resulted in
the increased tumour formation, weight and volume compared
with the cells expressing HIF-1a WT (Fig. 4g, Supplementary
Fig. 2e,f). Hence, ectopically expressing methylation-defective
HIF-1a K32A MT provides cells with tumour growth advantage.

Enhanced retinal angiogenesis in Hif1aKA/KA knock-in mice.
Hypoxia-induced HIF-1a stabilization activates the transcription
of several target genes encoding angiogenic growth factors, which
stimulate the proliferation and migration of endothelial cells,
leading to angiogenesis under both physiological and pathological
conditions48. To investigate the role of HIF-1a methylation in
physiologic angiogenesis, we examined retinal vascular growth
during development at postnatal day 5 (P5) in WT, Hif1aKA/þ

and Hif1aKA/KA mice. WT mice and Hif1aKA/þ showed no
significant difference in vascular phenotype in terms of radial
length and vascular density (Supplementary Fig. 3a–c). However,
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compared with control WT mice, the retinal vessels of
Hif1aKA/KA mice displayed increased radial length (1.2-fold)
and vascular density (1.3-fold; Fig. 5a–c). Protein levels of HIF-1a
in ganglion cell layer were increased by 45% in hypoxic avascular
area of the retina in Hif1aKA/KA mice compared with control WT
mice (Fig. 5a,d and Supplementary Fig. 3d). To examine the role
of HIF-1a methylation in pathological angiogenesis, we generated
an oxygen-induced retinopathy (OIR) model49 that mimics
human ischaemic retinopathies. Compared with control WT
mice, Hif1aKA/KA mice exhibited reduced avascular areas
of the retina (76%) but increased neovascular tuft areas (43%)
(Fig. 5e–g), whereas Hif1aKA/þ showed no significant difference
(Supplementary Fig. 3e–g). The retina of Hif1aKA/KA mice
showed higher HIF-1a (65%) and VEGF (30%) expression
levels than those of control WT mice (Fig. 5h–j). These data
indicate that HIF-1a stabilization in Hif1aKA/KA mice accelerates
compensatory vascular growth into the avascular retina and

abnormal vascular growth under ischaemic conditions. Together,
these findings indicate that deficiency in HIF-1a methylation
leading to the HIF-1a stabilization enhances physiological or
pathological angiogenesis.

Increased tumour growth and angiogenesis in Hif1aKA/KA mice.
To determine the effects of HIF-1a methylation on tumour
angiogenesis and progression, we employed a Lewis lung carci-
noma (LLC) tumour model by subcutaneously implanting LLC
tumour cells into the flanks of WT and Hif1aKA/KA mice. At 18
days after tumour cell implantation, Hif1aKA/KA mice displayed
24.0% and 26.1% increases in tumour volume and weight,
respectively, compared with WT mice (Fig. 6a,b). In addition,
intratumoural necrosis was 31.7% less in Hif1aKA/KA mice
compared with that in WT mice (Fig. 6c,d). Moreover, tumour
vascular densities in the peritumoural and intratumoural areas
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were 47.2% and 44.1% higher, respectively, in Hif1aKA/KA mice
than those in WT mice (Fig. 6e,f), indicating that tumour
angiogenesis was highly promoted in Hif1aKA/KA mice. This
enhanced tumour neovascularization attenuated intratumoural
hypoxia in tumours of Hif1aKA/KA mice compared with those of
WT mice (Fig. 6g,h). Detailed analysis of tumour micro-
environment also revealed 2.1-fold increased proliferation of
tumour cells (Fig. 6i,j) with no remarkable difference in apoptosis
in the centre of tumours of Hif1aKA/KA mice compared with
those of WT mice (Fig. 6k,l). Taken together, these findings
indicate that HIF-1a methylation deficiency promotes tumour
angiogenesis, thereby accelerating tumour growth.

Biological relevance of HIF-1a methylation in human cancers.
We searched for HIF-1a mutations occurring in various human
cancers, to identify a potential link between HIF-1a methylation
and cancer progression. The catalogue of somatic mutations in
cancer and cancer cell line encyclopedia, which are open-access

resources for the interactive exploration of multidimensional
cancer genomics data sets, were used to identify HIF-1a muta-
tions in human cancers50,51. Although a mutation of HIF-1a at
the K32 site where HIF-1a methylation by SET7/9 occurs was not
detected in the database, amino acids such as S28 and R30 near
the K32 methylation site were found to be frequently mutated in
various human cancers (Fig. 7a and Supplementary Fig. 4). For
example, a HIF-1a S28Y mutation was reported in human
oesophageal, haematopoietic and lymphoid cancers51, and a
HIF-1a R30Q mutation was reported in melanoma51,52.

To examine whether the mutations of HIF-1a occurring in
cancer affect its methylation status and lead to the regulation of
protein stability, we performed methylation assays with SET7/9
using various HIF-1a MTs in the presence of MG132. HIF-1a
methylation was detected from S14R, R17G, R18Q and R19Q
mutations as in the case of WT but not from S28Y and R30Q
mutations as in the case of the K32A mutation (Fig. 7b).
Given that the S28 and R30 sites correspond to SET7/9 target sites
in the basic helix-loop-helix domain, we hypothesized that
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S28Y and R30Q mutations of HIF-1a might have impaired
SET7/9-dependent methylation, resulting in increased stability of
the HIF-1a MT protein. To examine this possibility, we
determined whether SET7/9 modulates HIF-1a MT protein
stability. Intriguingly, R17G, R18Q and R19Q mutations of
HIF-1a were affected by SET7/9, leading to the destabilization of
HIF-1a; however, S28Y and R30Q mutations of HIF-1a within
the SET7/9 consensus sequence were resistant to methylation-
dependent degradation (Fig. 7c). In parallel, in vitro methylation
assay confirmed that GST-SET7/9 methylated HIF-1a WT and
R17G MT, but failed to methylate K32A and R30Q MT (Fig. 7d).

Furthermore, we performed Transwell cell migration assays
to determine the migratory potential of Hif1a� /� MEFs
reconstituted with HIF-1a WT, K32A, R17G or R30Q. SET7/9
expression decreased the migratory potential of HIF-1a WT- or
R17G-reconstituted MEFs and LSD1 expression increased the
migratory potential of these MEFs. However, SET7/9 and LSD1
expression failed to affect the migratory properties of Hif1a� /�

MEFs reconstituted with HIF-1a K32A or R30Q (Fig. 7e). These
data suggest the potential importance of the HIF-1a methylation
status within SET7/9 consensus sites in human cancers.

Discussion
As the function of HIF-1a is regulated primarily at the level of
protein stability, most previous studies have focused on the

regulation of PHD enzymatic activities resulting in HIF-1a
degradation. During hypoxia, the enzymatic activities of PHDs
decrease, thus allowing decreased HIF-1a proline hydroxylation.
Then, HIF-1a escapes VHL binding and 26S proteasome-
dependent degradation. Not only proline hydroxylation but also
other posttranslational modifications of HIF-1a are responsible
for regulating HIF-1a stability. We found that SET7/9-dependent
methylation and LSD1-dependent demethylation of HIF-1a
regulate protein stability primarily in the nucleus in a proline
hydroxylation- and VHL-independent manner during normoxic
and hypoxic conditions (Fig. 7f). We speculate that HIF-1a
methylation-dependent degradation may be a fine-tuned process
in the nucleus that functions to eliminate both leaky pools of
HIF-1a under normoxic conditions and the remaining pool of
HIF-1a during long-term hypoxia for the onset of efficient
transcriptional activation of HIF-1a.

Among various posttranslational modifications, methylation
plays a role in many nuclear processes, such as transcriptional
regulation and replication. However, most previous studies have
highlighted histone methylation, thus making it difficult to use
animal models to address the physiological function of methyla-
tion in vivo. In the present study, we show that HIF-1a is
methylated by SET7/9 and demethylated by LSD1 in the nucleus
as in the case of histones. Although we cannot exclude the
possibility that other methyltransferases can methylate other
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Figure 6 | Mutation at the K32 site of HIF-1a promotes tumour growth and angiogenesis. (a–l) At 18 days after tumour cell implantation, tumour

samples were harvested and histological analyses were performed. Unless otherwise indicated: scale bars, 200mm. Values are mean±s.d. (n¼ 14 for each

group, t-test, *Po0.05, **Po0.01). (a) Comparison of tumour growth curves between WT and Hif1aKA/KA mice after tumour implantation. (b) Comparison
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10347 ARTICLE

NATURE COMMUNICATIONS | 7:10347 | DOI: 10.1038/ncomms10347 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


lysine sites of HIF-1a depending on different upstream signals,
hypoxia-dependent HIF-1a methylation and demethylation at
K32 site is conducted by SET7/9 and LSD1, respectively. The
finding that HIF-1a methylation affects protein stability led us to
generate HIF-1a methylation-deficient mice to explore the
biological function of HIF-1a methylation in vivo. Hif1aKA/KA

mice exhibited enhanced retinal angiogenesis and tumour
vascularization via HIF-1a stabilization, indicating the potential

involvement of SET7/9 and LSD1 in regulating retinal and
tumour angiogenesis.

Set7/9 KO mice are normal and largely indistinguishable from
their WT littermates in both viability and fertility53; thus, the
roles of SET7/9 in cancer have not been explored in mouse
models. However, several reports have suggested potential roles
for SET7/9 in cancer. The SET7/9-mediated methylation of p53
has been shown to facilitate its acetylation, which subsequently
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increases p53 protein stability43,54. LSD1 is overexpressed in
many cancers and LSD1 inhibition by amine oxidase inhibitors
impairs cancer proliferation55–57. Furthermore, LSD1 has been
reported to promote androgen receptor- and oestrogen receptor-
dependent transcription in prostate and breast cancer cells,
respectively35,58–60. Our data showing that LSD1 overexpression
in cancer stabilizes HIF-1a and facilitates tumour angiogenesis
may explain better how LSD1 promotes not only hormone-
dependent cancers but also other types of cancer.

Previously, we reported that methylation-dependent
ubiquitination machinery including the DDB1–CUL4-associated
factor 1/DDB1/CUL4 E3 ubiquitin ligase complex recognizes
monomethylated RORa induced by EZH2 (ref. 30). The
oncogenic function of EZH2 may be augmented by the
methylation-dependent degradation of tumour suppressive
proteins such as RORa in cancer, thus providing an attractive
prototype, suggesting the cross-regulation of oncogenes and
tumour suppressor genes for efficient tumour progression. The
identification of an adaptor molecule containing a methyl
recognition domain linking methylated HIF-1a to the E3
ubiquitin ligase complex for degradation would be helpful for
understanding methylation-dependent HIF-1a degradation in the
nucleus and its biological importance in cancers.

HIF-1a overexpression caused by genetic alteration has been
reported in various human cancers61,62. A remarkable frequency
of common genetic alterations that are associated with HIF-1a
expression occurs in cancer patients. For example, the loss-of-
function of VHL by genetic alteration results in the constitutive
expression of HIF-1a and in onset of VHL disease, a dominantly
inherited familial cancer syndrome characterized by susceptibility
to retinal and central nervous system haemangioblastomas, clear
cell renal cell carcinomas, pheochromocytoma, pancreatic islet
cell tumours and renal, pancreatic and epididymal cysts63,64. The
loss-of-function of p53 has been shown to increase HIF-1a
protein levels and HIF-1a transcription activity in cancers.
Although genetic alterations of various genes have been shown to
affect HIF-1a expression, genetic mutations of HIF-1a in cancer
have not been well studied. In addition, it has been shown that
HIF-1a functions as a tumour suppressor in the context of kidney
cancer65.

Taken together, our studies demonstrate that a methylation/
demethylation cycle is involved in the regulation of HIF-1a
stability in hypoxia signalling pathways, resulting in enhanced
retinal angiogenesis and tumour vascularization in vivo in
Hif1aKA/KA mice. Our findings indicate that S28Y and R30Q
mutations of HIF-1a within the SET7/9 consensus sequence
makes HIF-1a resistant to methylation-dependent degradation.
These data suggest the potential importance of the HIF-1a
methylation status within SET7/9 consensus sites in human
cancers and provide an avenue for the development of future
anticancer therapeutics.

Methods
Cell culture. MEFs, HEK293T and HeLa cells (ATCC) were cultured in DMEM
medium supplemented with 10% fetal bovine serum (Welgene) with penicillin
(100 U ml� 1) and streptomycin (100 mg ml� 1). The cell lines have been tested for
Mycoplasma contamination.

Antibodies. The following commercially available antibodies were used:
anti-HIF-1a (NB100–132, Novus; 10006421, 1:1,000 dilution for IB analysis,
Cayman; 1:1,000 dilution for IB analysis, 1:200 for IF analysis; MAB 1536, R&D
Systems, 1:1,000 dilution for IB analysis); anti-HIF-2a (NB100–122, Novus, 1:1,000
dilution for IB anlysis); anti-Xpress (R910-25, Invitrogen, 1:5,000 dilution for
IB analysis); anti-FLAG (F3165, Sigma, 1:10,000 dilution for IB analysis);
anti-methyl-Lys (ab23366, Abcam); anti-CD31 (clone 2H8, MAB1398Z, Millipore,
1:200 dilution for immunohistochemical (IHC) analysis); anti-HA (MMS-101R,
Covance, 1:5,000 dilution for IB analysis); anti-VEGF (AF493NA, R&D System,
1:200 dilution for IHC analysis); anti-EPO (sc-7956, 1:1,000 for IB analysis),

anti-Brn3b (sc-6026, 1:200 dilution for IHC analysis) from Santa Cruz; anti-LSD1
(#2139, 1:1,000 dilution for IB analysis), anti-hydroxyl-HIF-1a (#3434, 1:5,000
dilution for IB analysis), anti-Caspase3 (#9661, 1:200 dilution for IHC analysis),
anti-Ki-67 (#9027, 1:100 dilution for IHC analysis) and anti-SET7/9 antibodies
(#2813, 1:1,000 dilution for IB analysis) from Cell Signalling. Anti-HIF-1a-K32
methyl antibodies were generated by Abfrontier (South Korea, 1:5,000 dilution
for IB analysis).

Animals. Male C57BL/6J mice at 8–10 weeks of age were used in the experiments.
The mice were placed in a hypoxic chamber with a constant flow of 10% oxygen
balanced with nitrogen for the indicated times. Food and water were available
ad libitum. For DMOG treatment, 2 mg of DMOG was dissolved in 0.1 ml PBS
and injected intraperitoneally into male mice. All animal procedures were
approved by the Institutional Animal Care and Use Committee of Seoul
National University.

Generation of Hif1aKA/KA knock-in mice. To replace lysine 32 of HIF-1a with
alanine, an NheI site was introduced into the second exon of HIF-1a, into which an
flippase recognition target (FRT)-flanked Puror cassette was inserted. Lysine to
alanine substitutions were introduced by site-directed mutagenesis, which gener-
ated the AfeI site. A targeting vector containing this alteration was electroporated
into embryonic stem cells and positive clones with homologous recombination at
the Hif1a locus were selected for electroporation with a plasmid expressing pro-
tamine-cre recombinase to remove the Puror cassette. A heterozygous Hif1aKA/þ

ES clone was selected and injected into mouse blastocysts, yielding chimeric mice
that transmitted the MT allele. The F7 generation was genotyped by PCR analysis
of tail DNA samples using allele-specific primers and the MT mice were confirmed
by both AfeI digestion and PCR product sequencing. The genotyping primers used
were as follows: primer forward: 50-GTAGGTGGGAAGGTATTGATG-30 and
primer reverse: 50-AGAACTCACCG GCATCCAGAAG-30 . The full-size image of
agarthe gel is shown in Supplementary Fig. 7.

Quantitative reverse transcriptase–PCR. mRNA abundance was detected using
an ABI Prism 7500 system and 2X PreMix SYBR Green (Enzynomics). Primer
pairs were designed to amplify 90–200 bp mRNA-specific fragments and were
confirmed as unique products by melting curve analysis. The PCR conditions were
as follows: 95 �C (15 min) and 40 cycles of 95 �C (30 s), 60 �C (30 s) and 72 �C
(30 s). The quantity of mRNA was calculated using the DDCt method and
normalized to that of b-actin. All reactions were performed as triplicates. The
following primers were used: Vegf-a forward: 50-TGATGGAAGACTAGACAA
AGTTCA-30 , Vegf-a reverse: 50-TTTTCCACCAGTTCCA ACTTGA-30 ; Glut1
forward: 50-AGAGGTGTCACCTACAGCTC-30 , Glut1 reverse: 50- AA CAGGATA
CACTGTAGCAG-30; Epo forward: 50-gctggcttagccctctcac-30 , Epo reverse: 50-ctg
tccgctcctagcatgt-30 ; Lsd1 forward: 50-CGGCATCTACAAG AGGATAAAACC-30 ,
Lsd1 reverse: 50-CGCCAAGATCAGCTACATAGTTTC-30; and Hif-1a forward:
50-CAGAGCAGGAAAGAGAGTCATAGAAC-30, Hif-1a reverse: 50-TTTCGCTT
CCTCTGAGCATTC-30 .

Ubiquitination assay. HeLa cells were transfected with combinations of plasmids
including HisMax-ubiquitin. After the cells were incubated for 48 h, they were
treated with MG132 (10mg ml� 1) for 6 h, lysed in buffer A (6 M guanidium-HCl,
0.1 M Na2HPO4/NaH2PO4, 0.01 M Tris-HCl pH 8.0, 5 mM imidazole and 10 mM
b-mercaptoethanol) and incubated with Ni2þ -NTA beads (Qiagen) for 4 h at
room temperature. The beads were washed sequentially with buffer A, buffer
B (8 M urea, 0.1 M Na2PO4/NaH2PO4, 0.01 M Tris-Cl pH 8.0 and 10 mM
b-mercaptoethanol) and buffer C (8 M urea, 0.1 M Na2PO4/NaH2PO4, 0.01 M
Tris-Cl pH 6.3 and 10 mM b-mercaptoethanol). Bound proteins were eluted
with buffer D (200 mM imidazole, 0.15 M Tris-Cl pH 6.7, 30% glycerol, 0.72 M
b-mercaptoethanol and 5% SDS) and were subjected to IB analysis.

Soft agar colony formation assay. MEFs were immortalized by 3T3 protocol.
The anchorage-independent growth of MEFs was determined by analysing colony
formation in soft agar. Cells (105) were placed in DMEM media containing 0.4%
noble agar (Sigma, A5431) and 10% fetal bovine serum for 5 weeks in 5% CO2

incubator.

Generation of the OIR mouse model. The OIR mouse model was generated
according to previous report49. Briefly, newborn mice at P7 and their nursing
mothers were exposed to 75% oxygen in a hyperoxic chamber (ProOx Model 110,
BioSpherix, NY) for 5 days and then were returned to room air for 5 days. Their
retinas were harvested on P17. The mice were handled in accordance with the
ARVO Statement for the Use of Animals in Ophthalmic and Vision Research
(http://www.arvo.org/about_arvo/policies/statement_for_the_use_of_animals_in_
ophthalmic_and_visual_research/).

Histological analysis of retinal angiogenesis. The retinas were incubated with
isolectin B4 (L2140, Sigma) overnight with one or more of the following antibodies:
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hamster anti-CD31 monoclonal antibody, rabbit anti-HIF-1a polyclonal antibody,
goat anti-VEGF polyclonal antibody or goat anti-Brn3b polyclonal antibody49.
After washing several times, the samples were incubated for 4 h at room
temperature with fluorescein isothiocyanate (FITC)-conjugated streptavidin
(BD Pharmingen, 1:1,000 dilution) or the following antibodies: FITC-conjugated
anti-hamster IgG (Jackson ImmunoResearch, 1:1,000 dilution), Cy3-conjugated
anti-goat IgG antibody and Cy3- or Cy5-conjugated anti-rabbit IgG (Jackson
ImmunoResearch, 1:1,000 dilution). For the control experiments, the primary
antibody was omitted or substituted with pre-immune serum. Whole-mount or
sectioned stained retinas were visualized and digital images were obtained using a
Zeiss LSM 510 or 780 confocal microscope equipped with argon and helium-neon
lasers (Carl Zeiss). Morphometric analyses of the retina were made using ImageJ
software (http://rsb.info.nih.gov/ij)66 or LSM Image Browser (Carl Zeiss). Radial
length of blood vessels in postnatal retina was measured as the shortest distance
from the optic nerve head to the peripheral vascular front in each quadrant retina.
Vascular density in whole-mounted retina was calculated as CD31þ blood vessel
area divided by total measured area of the retina and presented as a percentage.
Neovascular tuft and avascular areas in OIR retina were measured using the Lasso
tool of Adobe Photoshop software as previously described67. Signal intensities of
HIF1a were measured in the avascular area of the retina and analysed using Image
J software.

Tumour models and histological analysis. Murine LLC cells were purchased
from the American Type Culture Collection. To generate tumour models,
suspensions of LLC cells (1.5� 106 cells in 100ml) were implanted subcutaneously
into the dorsal flanks of mice. Tumour volume was measured with a caliper every
2 days. Tumour volume was calculated according to the formula 0.5�A�B2,
where A is the greatest diameter of a given tumour and B is its perpendicular
diameter. At 18 days after tumour implantation, the mice were anaesthetized by
intramuscular injection of anaesthetics (ketamine 80 mg kg� 1 and xylazine
12 mg kg� 1) and primary tumours were harvested, processed and sectioned for
histological analyses. In brief, frozen tumour tissues embedded in OCT freezing
medium (Leica) were cut into 50 mm sections and incubated with hamster
anti-CD31, anti-Ki67 or anti-caspase3 antibody overnight. After the samples were
washed several times, they were incubated for 2 h at room temperature with
Cy3- or FITC-conjugated anti-hamster IgG (Jackson ImmunoResearch, 1:1,000
dilution) or Cy3-conjugated anti-rabbit IgG (Jackson ImmunoResearch, 1:1,000
dilution). Next, the samples were mounted and imaged using a LSM510 confocal
microscope (Carl Zeiss). Density measurements of blood vessels, hypoxic area,
apoptotic area and necrotic areas were performed with Image-J software. Number
of Ki67þ cells were manually counted and averaged. To analyse the hypoxia in
the tumour, Hypoxyprobe-1 (60 mg kg� 1, Natural Pharma International) was
intravenously injected 60 min before perfusion fixation. Tumours were then col-
lected, processed, sectioned and stained with FITC-conjugated anti-Hypoxyprobe
antibody (1:1,000 dilution).

Xenograft assay. HIF-1a short hairpin RNA stably expressing cells (targeting
for 30-untranslated region: 50-TATGCACTTTGTCGCTATT AA-30) were
reconstituted with either HIF-1a WTR or K32AR (short hairpin RNA-resistant
forms). For tumour formation in vivo, cells (106) with equal volume of matrigel
(BD Biosciences) were injected subcutaneously at the left flank with HIF-1a
WT- and right flank with HIF-1a K32A stably expressing cells into 5-week-old
athymic nu/nu female mice (n¼ 10). Tumours were measured weekly and the
experiment was terminated at 4 weeks after injection. Tumours were excised and
weighed. Tumour volumes were measured 1/2� length2�width.

In vitro methylation and demethylation assays. In vitro methylation assays
were performed by incubating GST-HIF-1a and GST-SET7/9 proteins in
methylation buffer (50 mM Tris-HCl pH 8.5, 20 mM KCl, 10 mM MgCl2, 10 mM
b-mercaptoethanol and 250 mM sucrose) with 1 mCi of 3H-SAM at 30 �C
overnight. For in vitro demethylation assay, methylation of GST-HIF-1a was
performed on GST bead-bound HIF-1a proteins for overnight by adding
GST-SET7/9 proteins. The beads were extensively washed with wash buffer
(50 mM NaH2PO4 pH 8.0, 10 mM Tris-HCl pH 8.0, 500 mM NaCl and 0.5% Triton
X-100) to remove bead-bound SET7/9 protein, followed by addition of His-LSD1
protein in demethylation buffer (50 mM Tris-HCl pH 8.5, 50 mM KCl, 5 mM
MgCl2, 5% glycerol and 0.5 mM phenylmethylsulphonyl fluoride (PMSF)). After
incubating the reaction mixtures at 37 �C for overnight, the reaction buffer was
removed and 2� sample buffer were added. The reaction mixtures were boiled for
10 min, then run by SDS–PAGE and analysed by autoradiography. The full-size
images of all autoradiographs and Coomassie stainings are shown in
Supplementary Figs 5, 7 and 8.

Immunoprecipitation assays and immunoblot analysis. For in vivo immuno-
precipitation experiments, HeLa cells were put in hypoxic chamber for indicated
times and treated with 5 mM MG132 (Calbiochem) for 6 h before harvest. Cells
were harvested in 1 ml EBC200 buffer (50 mM Tris-HCl pH 8, 200 mM NaCl and
0.5% NP-40) followed by centrifugation for 15 min at 13,000 r.p.m. Nine hundred
microlitres of total cell lysates were incubated with indicated antibodies at 4 �C

for overnight. Thirty microlitres of a 50% slurry of protein G-Sepharose and
A-Sepharose in IP150 buffer (25 mM Tris-HCl pH 7.8, 1 mM EDTA, 10% glycerol,
150 mM NaCl and 0.1% NP-40) were then added to the reaction mixtures and
incubated for 2 h at 4 �C. After rapid centrifugation, the resulting Sepharose pellets
were washed five times with IP150 buffer and boiled for 7 min with addition of
2� sample buffer. Co-immunoprecipitated proteins were analysed by SDS–PAGE,
followed by immunoblotting using anti-HIF-1a, anti-SET7/9 or anti-LSD1
antibodies (1:1,000) in 3% BSA diluted in PBS-T. After washes in PBS-T, the
membrane was incubated for 1 h in the presence of the species-appropriated
horseradish peroxidase-conjugated secondary antibody (Jackson) and then washed
in PBS-T. Immunolabelled proteins were visualized using LumiFlash Ultima
Chemiluminescent substrate (Visual Protein) by LAS-4000 mini (Fuji). The
full-size images of all immunoblots are shown in Supplementary Figs 5–8.

Purification of HIF-1a-binding proteins. HIF-1a-binding proteins were purified
from extracts of HEK293T cells expressing Flag-tagged HIF-1a. As a negative
control, mock purification from HEK293T cells expressing an empty vector was
performed. The HIF-1a-binding proteins were precipitated using Flag M2 agarose
beads (Sigma, 100 ml of 50% slurry) from B100 mg of cell extracts. After overnight
incubation at 4 �C, the beads were washed three times with a BC150 buffer (20 mM
Tris-HCl pH 7.9, 15% glycerol, 1 mM EDTA, 1 mM dithiothreitol, 0.2 mM PMSF,
0.05% Nonidet P40 and 150 mM KCl), two times with a BC300 buffer (20 mM
Tris-HCl pH 7.9, 15% glycerol, 1 mM EDTA, 1 mM dithiothreitol, 0.2 mM PMSF,
0.05% Nonidet P40 and 300 mM KCl), two times with a BC150 buffer and three
times with a TBS buffer (50 mM Tris-HCl pH 7.4 and 150 mM NaCl), to remove
nonspecific bindings, and the bound proteins were eluted by competition with the
Flag peptide (0.1 mg ml� 1). The eluted proteins were resolved by SDS–PAGE and
prepared for LC-MS/MS analysis.

Immunofluorescence assays. HeLa cells were cultured in poly-D-lysine-coated
coverslip. For IF assay, cells were washed two times with PBS buffer and fixed with
2% formaldehyde for 30 min. Cells were then washed two times with 0.1% Triton
X-100 in PBS. For permeabilization, cells were incubated in 0.5% Triton X-100 in
PBS for 5 min and washed two times with 0.1% PBS-T. Cells were incubated in
blocking solutions (5% BSA in 0.1% PBS-T), to block nonspecific binding of the
antibody for 30 min, and incubated in primary antibodies diluted in blocking
solution. After four washes with 0.1% PBS-T, cells were incubated in secondary
antibodies (Invitrogen, Molecular Probes) and 4,6-diamidino-2-
phenylindole. After four washes with 0.1% PBS-T, coverslips were mounted
with Vectashield (H-1000) and imaged by microscope (Carl Zeiss).

Statistical analysis. Data were analysed by Student’s t-tests for group differences,
by one-way analysis of variance for condition (normoxia or hypoxia) differences
and group differences separately, and by two-way analysis of variance for condition
and group differences together using GraphPad Prism software; *Po0.05,
**Po0.01, ***Po0.001.
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