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Abstract

Studying land use change in protected areas (PAs) located in tropical forests is a major con-

servation priority due to high conservation value (e.g., species richness and carbon storage)

here, coupled with generally high deforestation rates. Land use change researchers use a

variety of land cover products to track deforestation trends, including maps they produce

themselves and readily available products, such as the Global Forest Change (GFC) data-

set. However, all land cover maps should be critically assessed for limitations and biases to

accurately communicate and interpret results. In this study, we assess deforestation in PA

complexes located in agricultural frontiers in the Amazon Basin. We studied three specific

sites: Amboró and Carrasco National Parks in Bolivia, Jamanxim National Forest in Brazil,

and Tambopata National Reserve and Bahuaja-Sonene National Park in Peru. Within and in

20km buffer areas around each complex, we generated land cover maps using composites

of Landsat imagery and supervised classification, and compared deforestation trends to

data from the GFC dataset. We then performed a dissimilarity analysis to explore the dis-

crepancies between the two remote sensing products. Both the GFC and our supervised

classification showed that deforestation rates were higher in the 20km buffer than inside the

PAs and that Jamanxim National Forest had the highest deforestation rate of the PAs we

studied. However, GFC maps showed consistently higher rates of deforestation than our

maps. Through a dissimilarity analysis, we found that many of the inconsistencies between

these datasets arise from different treatment of mixed pixels or different parameters in map

creation (for example, GFC does not detect reforestation after 2012). We found that our

maps underestimated deforestation while GFC overestimated deforestation, and that true

deforestation rates likely fall between our two estimates. We encourage users to consider
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limitations and biases when using or interpreting our maps, which we make publicly avail-

able, and GFC’s maps.

Introduction

Deforestation in and around protected areas (PAs) is a persistent threat to ecosystems and

human livelihoods [1, 2] https://www.zotero.org/google-docs/?ntlTvF. PAs within tropical for-

ests experience particularly high deforestation rates due in part to the suitability of land for

agricultural production [3–5] https://www.zotero.org/google-docs/?ZcL6SV. Tracking land

use change in these areas using remote sensing is important to understand deforestation trends

and dynamics [6, 7]. For instance, spatial land use change data can indicate what areas are of

potential deforestation risk (e.g., due to logging or agricultural frontiers), which is key infor-

mation used by government officials, conservation organizations, and researchers in designing

management and policies. Due to the highly local dynamics of PA deforestation and high con-

servation interest in these areas, it’s important to draw from land cover products that are accu-

rate and effectively represent land use change trends.

Researchers use a variety of methods and spatial datasets to detect land use change in and

around PAs. Many studies generate remote sensing products themselves [8, 9], while others

use readily available land cover maps [10–12]. Generating one’s own land cover maps has ben-

efits including having more say over the land cover map’s attributes, such as land cover classes

and the map’s time range. Available land cover map products, such as the Global Forest

Change dataset [13], MODIS Land Cover [14], or SoilGrids [15], are extremely useful because

they allow for large scale analysis and make these analyses accessible to scholars who might not

have the skills, resources, or time to create accurate remote sensing products of their own.

The Global Forest Change (GFC) data [13] is particularly well known and highly utilized

for assessments of land use change in and around PAs [1, 10–12, 16], thereby contributing to

understanding of PA deforestation on a global level. GFC has mapped forest loss since 2000

and is valuable due to its high resolution (30m), standardized classes, yearly updates, and con-

venient and cost-free use (such as availability through Google Earth Engine). This wealth of

data and ease of use has contributed to GFC being used to inform policy and management.

For instance, GFC is an input in Global Forest Watch, a web tool that many organizations use

to track land use change [17], and has been considered for use informing REDD+ policy deci-

sions [18]. GFC is also used to calculate carbon budgets [19, 20], thereby informing climate

change policy.

However, a number of studies have found accuracy issues for this dataset, such as lower

accuracy for some ecosystems [21, 22], underestimation of forest cover [20, 22], and moderate

inaccuracies in identifying the year of deforestation [23]. While some of these errors in fact

reflect stated limitations of this product [24], assessing both the biases and limitations of GFC

are valuable to most accurately convey land use trends.

To test the accuracy of GFC and other land cover maps, many studies have quantified dif-

ferences between maps or compared maps to ground-truthed data [22, 25–28]. However, few

papers comprehensively address why biases occur, often termed uncertainty or dissimilarity

analyses [29]. There are many reasons for dissimilarity between datasets, including classifica-

tion errors, different treatment of mixed pixels, and differences within algorithm parameters,

all of which can affect classification imagery results and present certain biases. Dissimilarity

analyses can help expose each map’s biases, which ultimately informs researchers and manag-

ers on the strengths and limitations of different products, allows for correction, and
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contextualizes past and future studies that use these datasets. Furthermore, using multiple

products can help ascertain land use transitions by corroborating trends or unveiling nuance

through their dissimilarities.

In this study, we created Landsat-derived land cover maps and compared them with GFC

products. We use these two products to 1. Understand how these two land cover maps repre-

sent land use change trends in and around PAs; 2. Quantify differences between the two land

cover maps; and 3. Conduct a dissimilarity analysis to detect why differences occur and to

quantify bias.

We centered our analysis on land use changes between 2008 and 2018 in three PA com-

plexes in the Amazon Basin: Amboró and Carrasco National Parks in Bolivia, Jamanxim

National Forest in Brazil, and Tambopata National Reserve and Bahuaja-Sonene National

Park in Peru. We chose three PA complexes in the Amazon Basin because this area is charac-

terized by high rates of land use change, including deforestation related to agriculture, logging,

and mining. The escalating rate of deforestation in the Amazon basin is troubling due to high

species endemism, biodiversity, sites of cultural importance, Indigenous communities, its role

in global climate systems, and high carbon storage found here [30–33]. Accurate and detailed

understanding of land use change in the Amazon–and the creation of publicly-available

remote sensing data whose biases are explicit–can aid in communication around land cover

change in the Amazon, feed into future research, such as modeling efforts, and inform policy

and management decisions.

Methods

Case study selection

We chose our three case study sites, Amboró and Carrasco National Parks in Bolivia, Jaman-

xim National Forest in Brazil, and Tambopata National Reserve and Bahuaja-Sonene National

Park in Peru, because they are similar sizes, exhibit high levels of deforestation compared to

other PAs in the Amazon Basin (Table 1), and are associated with different sets of deforesta-

tion drivers. The Bolivian and Peruvian sites each include two adjacent PAs, and the study site

in Bolivia also contains the integral management area around Amboró National Park. Includ-

ing all three case studies affords us the opportunity to examine the performance of different

land cover products in capturing land use change patterns in a variety of contexts.

Amboró and Carrasco National Parks face deforestation pressures associated with the

migration of Andean settlers and expansion of small-scale agriculture [34–36]. The multi-use

Integrated Management Natural Area (IMNA), which surrounds Amboró National Park, was

created in 1995 in response to social unrest following the controversial expansion of park

boundaries in 1991 [34]. The IMNA allows for multiple land uses, but the rest of the park is

strictly protected by law. Both Amboró and Carrasco are overseen by the Bolivian National

Service for PAs with international financial assistance.

Jamanxim National Forest in Brazil was part of a matrix of PAs created as part of a sustain-

able development planning initiative to limit the deforestation associated with highway BR-

Table 1. General characteristics of our three case study sites. We calculated deforested area here using the Global Forest Change dataset.

Amboró & Carrasco National

Parks

Jamanxim National

Forest

Tambopata National Reserve & Bahuaja-Sonene National

Park

Country Bolivia Brazil Peru

Total area (km2) 13,598 13,242 14,169

Total deforested area 2000–2018

(km2)

526 1,573 93

https://doi.org/10.1371/journal.pone.0268970.t001
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163. Jamanxim, however, has faced pressures for downsizing and downgrading related to both

pending infrastructure projects and land claims made within the PA [37, 38], which is con-

cerning because this area has already suffered significant deforestation and forest degradation

from logging and ranching [39].

Tambopata National Reserve and Bahuaja-Sonene National Park draw on a participatory

model of conservation governance shaped by the incorporation of indigenous communities

and small farmers in the conservation planning process for an area with a history of ecotour-

ism [40]. Nevertheless, the Madre de Dios region of Peru and Tambopata in particular have

also experienced a surge in small-scale gold mining during the study period of this research,

which threatens the conservation area and its buffer zone [8, 16, 41, 42].

For all three case study sites, we included the area within the PA boundaries (acquired from

the World Database on Protected Areas [43]) and a 20 km buffer around the PA. This allowed

us to capture dynamics in the area surrounding the PAs, where phenomena such as leakage

can impact land use processes [44].

Remote sensing within case study sites

Image compositing and cloud masking. We used Google Earth Engine [45] to create

cloud-free image composites of each case study. These composites encompassed pixels from

Landsat 5 (TM) [46], Landsat 7 (ETM+) [47], and Landsat 8 (OLI) [48] 30m Surface Reflec-

tance (SR) datasets. Unlike top of atmosphere (TOA) data, SR products have passed through

an atmospheric correction process and thus provide reflectance values as they would be mea-

sured at ground level.

In our compositing algorithm, we restricted data collection to the dry season (15 May to 15

October) for 2008 and 2018. We masked clouds by pixel quality analysis using the CFMask

algorithm within Google Earth Engine [49]. The compositing algorithm prioritized Landsat 8

imagery for the 2018 imagery and Landsat 5 for the 2008 imagery.

We collected ancillary environmental data to enhance land classification accuracy. This

data included elevation from the SRTM Digital Elevation Data at 30m, Enhanced Vegetation

Index (EVI) (calculated with bands from our cloud-free composites), and difference in sea-

sonal EVI [50] between wet and dry seasons. These additional data were added as bands to the

remote sensing data. Using the difference in seasonal EVI allows for better differentiation of

land covers that have larger seasonal phenological differences, like agriculture, from land cov-

ers that have smaller seasonal phenological differences, like forests [51, 52]. To calculate EVI

difference for a specific year, we created cloud-free imagery and calculated EVI for the dry sea-

son (mid-May to mid-October) and the wet season (mid-October to mid-May, advancing into

the subsequent year). We then subtracted the dry season EVI images from the wet season and

took the difference to find absolute change.

Training data collection. We selected 1000 randomly positioned points within each case

study (total 3000) for training data collection. Around each point, we created a 250x250m win-

dow. Using the online platform Geosurvey (Quantitative Engineering Design; https://qed.ai),

we classified land into categories: agriculture, forest, bare soil, urban, wetland, desert, and

water. Geosurvey uses satellite image sources including Bing Aerial, Google Hybrid, and

Mapbox to present high resolution imagery (1m or finer) and allow users to manually classify

imagery by drawing polygons around each land cover present within a training window. We

considered pasture and cropland as agriculture. In some instances, it was unclear whether land

was pasture or very early successional forest. In these cases, we classified it as agriculture.

Areas that had been recently logged but had little detectable vegetation were classified as bare

soil. We classified river banks as bare soil and all buildings as urban.
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While Geosurvey generally presents the most up-to-date images, an important limitation is

that it does not list the acquisition date of the imagery shown or allow users to look at historical

imagery. Because we classified 2018 imagery in 2019, the Geosurvey imagery should generally

correspond to our composited images. However, in the case that the land cover patterns

changed between the time of the Geosurvey images and our 2018 imagery, there is the poten-

tial for classification errors. We attempted to reconcile this by comparing potentially problem-

atic polygon windows with our 2018 (much coarser resolution) cloud-free composites.

Supervised classification. Using the spectral imagery with added elevation, EVI, and EVI

seasonal difference bands and training polygons from Geosurvey, we ran a supervised classifi-

cation in R version 3.6.2 (R Core Team 2021) using a random forest algorithm with 100 trees

[53–55]. After looking at the initial results of the classification, we found sub-optimal classifi-

cation results for agriculture, bare soil, urban, wetland, and water land cover classes. This is

due to a disproportionately high number of forest points (forest was the most common land

use in all case study sites). Therefore, to partially reconcile the bias towards forest training

data, in Google Earth Engine we collected approximately 10–100 more polygons (250x250m)

in the land cover classes agriculture, bare soil, urban, water, and, only in the Peru case study,

wetland. This ensured that we had at least 50 polygons (though sometimes up to several hun-

dred polygons) for each major land cover in each case study. These extra classified polygons

were randomly distributed across the case studies to avoid possible issues of spatial correlation

of nearby polygons, and the inclusion of these extra polygons improved classification results.

Our resulting final land cover maps are used in the subsequent analyses and are also made

publicly available for future use (see S1 Table).

Accuracy of remote sensing products. To assess the accuracy of our maps we applied a

10 k-fold cross validation to obtain a sample confusion matrix comparing reference (training

data) and predicted land cover classifications for each of our study areas. We then transformed

these sample matrices to estimated population matrices using equation 1 from Pontius et al.

(2011) [56]. Calculating estimated population matrices achieves a less biased understanding of

accuracy, reflecting conditions over the entire study area rather than simply in the sampled

areas. From the estimated population matrices, we calculated overall quantity and allocation

difference using the overallQtyD and overallAlloD functions from the diffeR package in R

[57]. Quantity difference is the difference in the total amount of pixels (regardless of where

they are located) within land cover classes between reference and predicted data. Allocation

difference takes into account the spatial disagreement (error in the position) of pixels. We

additionally derived user’s and producer’s accuracy measures from our estimated population

matrices [58], which reflect commission and omission errors, respectively. User’s accuracy is

the number of correctly classified samples of class A divided by the total number of samples

classified as A. Therefore, user’s accuracy is also referred to as “reliability” because the map

user is interested in how well the map represents the on-the-ground reality. Producer’s accu-

racy is the number of correctly classified samples of class A divided by the total number of A
reference samples. Here, the map producer is interested in how accurate a specific land cover

is classified. We provide overall quantity and allocation difference and producer’s and user’s

accuracies for the 2018 land cover maps only (these are the maps for which we have training

data).

Global Forest Change data collection

We downloaded GFC data [13] within case study areas in Google Earth Engine. To only cap-

ture deforestation occurring between 2008 and 2018, we selected the “LossYear” band, which

indicates what years pixels were deforested, and used an expression to only include pixels with
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a loss year between 2008 and 2018 (with all other pixels assigned NA, indicating no change

between 2008–2018). The GFC dataset also includes a band for “forest gain.” However, this

data is not categorized by year and encompasses gain between the years 2000–2012, and thus

does not address reforestation that occurred in the last 6 years of our study period. We used

the forest gain band to check for potential reforestation between 2008–2012. If a pixel was

deforested between 2008 and 2012, but was marked as reforested, we counted it as “no

change.” We reclassified all data into a binary classification including “deforested” and “no

change” pixels, representing change between 2008–2018.

Analysis of trends

To analyze land change trends between 2008–2018 in our maps, we calculated percent pixel

change to and from each land cover class. We visualized transitions with Sankey graphs using

the ggalluvial package [59]. Sankey graphs show the proportion of data (pixels) transitioning

between each set of land covers. For the GFC dataset, which has binary “deforested” and “no

change” classes, we reported the percent of pixels that were deforested between 2008 and 2018.

We did all analyses separately for pixels within the PA boundaries and pixels in the 20 km

buffer around the PAs.

Comparison of Our and Global Forest Change’s Land Cover Maps

Overlap analysis. To directly compare our classified maps with the GFC maps, we simpli-

fied our remote sensing maps into binary “deforested” versus “no change” classes. We consid-

ered “deforested” transitions as a change from a natural land cover (forest, wetland, or desert)

to an anthropogenic land cover (agriculture, urban, bare soil, and water). We considered water

an “anthropogenic” land cover because forest to water transitions sometimes represent the cre-

ation of mines, which is a common land use transition in parts of the study area [8]. All other

transitions (such as agriculture to bare soil or bare soil to urban) were considered “no change.”

We additionally considered transitions between desert and bare soil as “no change” due to the

difficulty of our algorithms in distinguishing between the two, which caused a falsely high per-

cent of “deforested” transitions. This binary classification of our seven land classes and their

transitions is not without fault, but we believe it is a reasonable way to categorize the transi-

tions. “Reforested” areas were also treated as “no change” in order to fairly and directly com-

pare to GFC.

To first calculate dissimilarity between our maps and GFC’s maps for each case study, we

created a confusion matrix between the two maps and again computed quantity and allocation

differences to obtain us a baseline understanding of how these maps differ. This confusion

matrix also allowed us to determine detailed information on the nature of agreements and dis-

agreements between the two maps. Specifically, we determined 1) where the maps agreed there

was no deforestation, 2) where the maps agreed there was deforestation, 3) where only GFC

detected deforestation, and 4) where only our maps detected deforestation. To spatially portray

these changes, we assigned the rasters for our and GFC’s maps slightly different values and

subtracted them. In the Bolivian study site, while there were points where desert was defor-

ested (desert to agriculture transitions), we do not include this in our analyses or visual com-

parison with GFC because GFC was not designed to capture deforestation of desert

ecosystems (desert areas are mostly registered as “No Data” within the GFC dataset, perhaps

because they generally do not have vegetation taller than 5m, which is the GFC criteria for

“forested” areas) [13].

Dissimilarity analysis. To further understand why there were differences between our

classified maps and the GFC maps, we carried out a detailed analysis on areas of disagreement.
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We did not include desert pixels in this analysis, due to the aforementioned limitation of GFC

in detecting deforestation of desert ecosystems. For each case study, we randomly chose 200

pixels where our maps and the GFC disagreed on whether there was net deforestation between

2008–2018. For each of the 600 total pixels, we used high resolution monthly composite imag-

ery from PlanetLabs [60] to zoom into a 30x30m window, representing the Landsat pixel size.

We first identified the land cover for May 2018 (corresponding to the beginning of the time

range that we used to composite 2018 satellite imagery), classifying imagery into the 7 classes

used in our classification scheme. If the 30x30m window was not composed of more than 80%

of one land cover, we classified it as “mixed.”

We then categorized pixels by inducing possible explanations for dissimilarity. To fully

understand the context around points, we looked forward and backwards two years (2016

through 2020) to understand dynamics or timing of change (such as history of deforestation,

or to ascertain whether an area was actively reforesting). We additionally used our remotely

sensed image classifications for 2008 and 2018 as well as GFC data including forest gain, the

year of forest loss, and the percent forest cover in 2000 to contextualize differences. For forest

cover in 2000, we considered pixels with tree covers greater than 70% as “forested” [61]. The

explanations for dissimilarity were induced by EK, who looked through 150 points (around 50

per case study) and determined 6 main reasons. The remaining 450 points were classified by

both EK and MF into the 6 categories.

We analyzed dissimilarity by tallying, for each protected area complex, how many points

fell into each explanation for dissimilarity and, where relevant, which dataset better repre-

sented land cover on the ground. For most explanations for dissimilarity, neither map was nec-

essarily right or wrong, and instead the disagreement reflected different algorithm parameters

or differing treatment of difficult land covers (like mixed pixels or early successional forest).

Results

Remote sensing accuracy

Our classification returned over 90% overall accuracy for all the three sites (with quantity

and allocation differences highest in Bolivia and lowest in Peru; Table 2). User’s and pro-

ducer’s accuracy values showed that forest was accurately classified for all case studies

(greater than 94% user’s and producer’s accuracy). Agriculture, bare soil, desert (for

Bolivia and Peru), and wetland were also fairly well-classified, with above 70% accuracy

for user’s and producer’s values, and generally higher values for user’s accuracy (Table 2).

Table 2. Validation results for our classification maps.

Bolivia Brazil Peru

Overall quantity difference 2.88% 1.74% 0.93%

Overall allocation difference 3.99% 1.51% 0.50%

Overall accuracy (100 minus the combined quantity and allocation difference) 93.13% 96.75% 98.57%

Accuracy by land cover class User’s Producer’s User’s Producer’s User’s Producer’s
1. Agriculture 91.7% 80.9% 93.9% 81.0% 95.0% 73.2%

2. Forest 94.2% 98.1% 97.4% 99.4% 98.8% 99.8%

3. Bare soil 86.6% 85.5% 77.4% 76.1% 77.3% 70.2%

4. Urban 81.0% 67.2% 83.7% 56.2% 91.9% 71.9%

5. Water 59.5% 19.9% 96.1% 96.2% 98.5% 88.1%

6. Desert 92.0% 84.9% NA NA 94.7% 97.1%

7. Wetland 90.0% 74.1% 95.8% 82.6% 92.5% 80.8%

https://doi.org/10.1371/journal.pone.0268970.t002
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Our classification had low accuracy for urban cover in Bolivia and Brazil (between 50–

70% producer’s accuracy), and extremely low accuracy for water in Bolivia (with only

19.9% producer’s accuracy). Urban cover was not common in the case studies, making up

less than 0.1% of the total area. Additionally, water cover made up less than 0.01% of the

area in the Bolivia site.

Among misclassified pixels, agriculture was most often misclassified as forest, and vice

versa, for all case studies (with the exception of Peru, where forest was misclassified as both

agriculture and wetland; S1 File). Bare soil was often misclassified as agriculture or forest. In

Bolivia, which has the highest desert area of our land covers, bare soil and desert were often

mistaken for one another. Finally, urban, water, and wetland land covers were all most often

misclassified as forest.

Land cover trends

Our maps indicated that all PAs saw some level of deforestation between 2008–2018 and defor-

estation rates were consistently higher in the buffer regions than in the PAs (Fig 1). Our Brazil

site had the highest deforestation rates (% area lost between 2008–2018), at 3.6% within Jaman-

xim National Forest and 6.7% in the 20km surrounding Jamanxim (Table 3). Deforestation

rates were more modest in Amboró (<1%) and Carrasco (<2%) National Parks in Bolivia,

though relatively high in the IMNA integrated use region around Amboró (5.0%). Finally,

deforestation rates were relatively low within Tambopata National Reserve and Bahuaja-

Sonene National Park (<1% for both sites), and slightly higher in the 20km buffer surrounding

these Peruvian PAs (2.7%).

Beyond deforestation, looking at all land cover transitions in our land cover maps gives

us insight into land use change patterns. Within Amboró and Carrasco National Parks in

Bolivia, 1.0% of pixels transitioned land covers between 2008 and 2018. Of these pixel

transitions, 33.1% were forest transitioning to agriculture or bare soil, while 21.7% were

agriculture or bare soil transitioning to forest (while 0.56% of the PAs were agriculture or

soil in 2008, 0.75% were agriculture or soil in 2018; Fig 2). In the 20km buffer in Bolivia,

8.3% of pixels transitioned between 2008 and 2018, and 32% of these transitions were

between bare soil and desert. Otherwise, deforestation and reforestation rates were similar

in the buffer area, and proportions of land covers stayed nearly constant between 2008

and 2018 (agriculture and bare soil area only increased by 0.03% of the PAs’ area between

2008 and 2018).

In Jamanxim National Forest in Brazil, 5.2% of pixels transitioned in the PA and 11.3%

of pixels transitioned in the 20km buffer between 2008–2018. Conversion of forest to agri-

culture or bare soil was the most common transition type both within the PA (68.3% of

transitions) and in the buffer area (57.0% of transitions). While agriculture and bare soil

covered 4% of the PA and 11.6% of the buffer region in 2008, they covered 6.5% of the PA

and 16.4% of the buffer region in 2018. A smaller percent of pixels transitioned from agri-

culture to forest (19.5% in the PA and 13.4% in the buffer). Rates of land use change

between other classes were very small. Most of the deforestation occurred on the eastern

side of the PA (and it should be noted that there is another PA bordering Jamanxim on the

west side).

Inside the boundaries of Tambopata National Reserve and Bahuaja-Sonene National Park

in Peru, only 0.9% of pixels transitioned between 2008 and 2018. While 40.0% of land use

change here represented deforestation (transitions from forest to other land covers), 45.0% of

land use change represented reforestation (transitions to forest). Conversely, 3.6% of pixels in

the 20km buffer transitioned between 2008 and 2018, with 63.3% of pixels transitioning from
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forest to other land classes and 26.3% of pixels transitioning from non-forest land covers to

forest. In particular, soil and water areas (combined) increased from 2.2% to 2.9% of the total

buffer area between 2008 and 2018. Conversion of forest to agriculture was concentrated

around existing agriculture, in the north of Tambopata National Reserve, while conversion

from forest to soil and water occurred in the northwest corner of the buffer (there is another

PA bordering our case study on the southeast side).

Comparison between our and GFC’s maps

Our and GFC’s land cover maps show similar general deforestation trends, though GFC tended

to record higher levels of deforestation (Table 3). For instance, GFC estimates of deforestation in

Jamanxim were 55% higher than our analysis and estimates in the 20km buffer region of the Peru

site were twice as high as our estimate. The only region where our maps detected more deforesta-

tion than GFC was in the 20km buffer for Bolivia, where we found desert vegetation converted to

agriculture (GFC does not consider desert conversions as deforestation). If we do not include des-

ert to agriculture transitions in our calculation of deforestation, GFC has a slightly higher defores-

tation rate. Our land cover maps show that a very small number of pixels were reforested, with

0.12% of pixels in Brazil, 0.69% in Bolivia, and 0.23% in Peru.

Spatial overlap analysis further showed disagreement between our and GFC’s land cover maps

(Figs 3–5). In the Brazil site, 7.4% of pixels disagreed about whether there was deforestation

between 2008–2018 (quantity difference: 2.3%; allocation difference: 5.1%), compared to 5.7% for

Bolivia (quantity difference: 0.5%; allocation difference: 5.2%; excluding desert points) and 2.8%

for Peru (1.4% quantity difference; 1.4% allocation difference). Of the pixels in which the two

land cover maps disagreed, most pixels were areas where GFC detected deforestation where our

maps did not (Figs 3–5). However, our land cover maps also revealed 229 km2 of desert deforesta-

tion in Bolivia (not included in Fig 3), which was not detected by GFC maps (this comprises 12%

of land cover disagreements when desert deforestation is included in the analysis).

Fig 1. Classified land cover maps for Amboró and Carrasco National Parks in Bolivia, Jamanxim national forest in Brazil, and Tambopata National

reserve and bahuaja-Sonene National Park in Peru. Black lines indicate park boundaries, with a 20km external buffer. Rio Novo National Park and the

Ambiental Do Tapajós Protected Areas park borders Jamanxim to the west, Rio Grande Valles Crucenos borders Amboró National Park to the southeast,

and Madidi National Park borders Bahuaja-Sonene to the east. Maps derived from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI) imagery,

courtesy of the U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0268970.g001

Table 3. Detected deforestation (2008–2018) between our and Global Forest Change’s land cover maps.

Our maps Global Forest Change

Bolivia Percent loss per area Total km2 forest lost Percent loss per area Total km2 forest lost

Carrasco National Park 1.4% 83.5 1.8% 132.4

Amboró National Park 0.4% 18.6 0.6% 28.2

Amboró IMNA 5.0% 84.7 7.8% 131.3

In 20km buffer (including desert deforestation) 7.9% 1169.3

In 20km buffer (excluding desert deforestation) 6.5% 956.4 6.7% 1003.3

Brazil

Jamanxim National Forest 3.6% 471.1 5.6% 739.7

In 20km buffer 6.7% 962.9 9.1% 1319.8

Peru

Tambopata National Reserve 0.8% 24.0 0.8% 22.6

Bahuaja-Sonene National Park 0.4% 39.6 0.4% 42.9

In 20km buffer 2.7% 353.6 5.4% 729.9

https://doi.org/10.1371/journal.pone.0268970.t003
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Fig 2. Sankey graphs demonstrating 2008–2018 land cover transitions. Flow widths represent proportions of land

area transitioning and colors follow the final land classification assignment. Numbers below each graph represent the

percent of pixels within that land area that transitioned. If a transition frequency (i.e. water to urban) accounted for

less than 1% of all transitions, we did not graph it, for visual simplicity. Land classes: F: forest, A: agriculture (and

pasture), S: bare soil, We: wetland, Wa: water, D: desert, U: urban.

https://doi.org/10.1371/journal.pone.0268970.g002
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Dissimilarity analysis

For the pixels in which our land cover map disagreed with GFC’s, we found 6 main explana-

tions for dissimilarity: Mixed Pixels, Disagreement in 2008 Land Cover, Undetected Forest

Gain, Secondary Forest, Time Range Issues, and Unclear (Fig 6). We also identified some less

common explanations, which we list below. More detail on the dissimilarity analysis results for

each study site can be found in S1 Table.

Mixed Pixels (including sparse forest) refer to pixels in which two land covers occurred

(with neither land cover covering more than 80% of the pixel area). Mixed pixels were the big-

gest source of dissimilarity between the two map products, explaining 30.2% of the dissimilar

points. Of mixed pixel disagreements, 79% were half forest and half non-forest cover that GFC

classified as “deforested” and our maps classified as forest (Fig 6).

The second most common explanation for dissimilarity was a Disagreement in 2008 Land

Cover, comprising 19% of the total dissimilar pixels. Differences in classification of 2008 land

Fig 3. Spatial comparison of our and Global Forest Change’s maps in the Bolivia case study. Panel A shows the entire study area

(with the protected area borders in black), panels B and C show two close-up regions (labeled 1 and 2 in panel A), and panel D quantifies

types of disagreement by percent area. Grey indicates where both maps agreed there was no land cover change between 2008 and 2018.

Our maps were derived from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI) imagery, courtesy of the U.S. Geological Survey.

Global Forest Change source: Hansen/UMD/Google/USGS/NASA.

https://doi.org/10.1371/journal.pone.0268970.g003
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cover caused disagreements in the transition type, even if the maps agreed on the 2018 land

cover. For example, if one map determined a pixel to be forested in 2008 while the other deter-

mined it to be non-forest, even if they both determined the land cover in 2018 as non-forest,

one would mark the pixel as “deforested” while the other would mark it as “no change.”

Because we did not have consistent high-resolution imagery for 2008, we couldn’t further

inspect dissimilarity in 2008. However, we did find that our maps classified 75% of pixels in

this category as “deforested” while GFC classified them as “no change” (with GFC specifically

indicating that pixels were deforested in 2008 and remained deforested in 2018; Fig 6).

Some dissimilar points were caused by Undetected Forest Gain, specifically that some pix-

els showed evidence of once being deforested, but in 2018 appeared regrown (with reflectance

patterns similar to mature forests and with little if any visible fluctuation of phenology of these

Fig 4. Spatial comparison of our and Global Forest Change’s maps in the Brazil case study. Panel A shows the entire

study area (with the protected area border in black), panels B and C show two close-up regions (labeled 1 and 2 in panel

A), and panel D quantifies types of disagreement by percent area. Grey indicates where both maps agreed there was no

land cover change between 2008 and 2018. Our maps were derived from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat

8 (OLI) imagery, courtesy of the U.S. Geological Survey. Global Forest Change source: Hansen/UMD/Google/USGS/

NASA.

https://doi.org/10.1371/journal.pone.0268970.g004
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sites between seasons). This problem was specific to the GFC maps, in which forest gain data is

only available for 2000–2012, and possibly not very accurate for that time period. Therefore,

these pixels were generally classified as “deforested” by GFC’s maps but as “no change” by our

maps. Undetected forest gain was most common in Brazil, accounting for 11% of all dissimilar

pixels there. Peru also had 9% dissimilarity due to undetected forest gain, while Bolivia’s rates

were 4.5%.

Fig 5. Spatial comparison of our and Global Forest Change’s maps in the Peru case study. Panel A shows the entire

study area (with the protected area borders in black), panel B shows a close-up region to demonstrate details, and panel

C quantifies types of disagreement by percent area. Grey indicates where both maps agreed there was no land cover

change between 2008 and 2018. Our maps were derived from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI)

imagery, courtesy of the U.S. Geological Survey. Global Forest Change source: Hansen/UMD/Google/USGS/NASA.

https://doi.org/10.1371/journal.pone.0268970.g005
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Secondary Forest refers to pixels which had been deforested but were in the process of

reforesting (evidenced by looking forward and back in time with PlanetLabs). Secondary forest

pixels caused confusion for the classification algorithms, which either classified them as defor-

ested or forested. This category differs from the undetected forest gain category because the

vegetation in secondary forest pixels was not as fully structured (less mature) as forested sites.

Within this category of dissimilar points, GFC classified secondary forest as deforested where

we classified it as forest 89% of the time (Fig 6). Classifying secondary forest as deforestation

may also reflect the limitation of GFC to not register forest gain after 2012. Out of all dissimilar

pixels, 11% were caused by confusion over secondary forest.

We also found disagreements between land cover classification due to Time Range Issues,

or a mismatch between the capturing period of our and GFC’s maps. We captured satellite

data between mid-May and October in 2008 and 2018, prioritizing earlier months in each

year. GFC composites also pulled satellite data from growing season months, but GFC does

not specify the specific time range or how pixels are chosen from that range. We found that

Fig 6. Explanations for dissimilarity among our and Global Forest Change’s maps. N represents the sampling

points (out of 600 total) that fell into each explanation of dissimilarity (excluding desert points). We additionally show

the proportion of pixels Global Forest Change marked as deforested where our maps detected no change, pixels that

our maps marked as deforested where GFC detected no change, and pixels where GFC had no data for forest cover in

2000 or forest loss.

https://doi.org/10.1371/journal.pone.0268970.g006
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deforestation that occurred after May or June was generally not captured in our maps but was

captured by GFC, thus causing a discrepancy. 10% of all dissimilar pixels were caused by time

range issues.

For pixels classified as Unclear, it was apparent from high resolution images that an area

was forested or deforested, but one of the remote sensing products misclassified it without a

clear explanation why. This may ultimately be due to classification errors, and comprised 13%

of the dissimilar pixels (with the least amount of unclear pixels in the Brazil site). In general,

GFC more often misclassified pixels that were forest (with no evidence of once being defor-

ested) as deforested, while our maps more often misclassified deforested pixels as forested.

Errors were more often attributed to GFC in Bolivia, evenly distributed in Brazil, and more

often attributed to our maps in Peru. In total, GFC had only slightly more errors than our

maps (comprising 54% of errors).

Other less common reasons for misclassification included mistaking a natural feature for

agriculture or deforestation (Fig 6). Mountain tops, wetlands, and rivers were all misclassified

at modest rates. Because wetland was one of our classes, our classification did not commonly

mistake wetlands for agriculture, while GFC did so more often. Rivers changing course and

leaving sandy deposits triggered “deforestation” in both datasets. In 36% of instances in this

“other” category, GFC lacked data on forest cover and loss, and this was most common in

Bolivia. Additionally, while not common, it was possible for pixels to fall into multiple catego-

ries of dissimilarity explanations (for example mixed pixel and time range).

Discussion

This study elucidates deforestation trends within and around three PA complexes in the Ama-

zon Basin using author-generated land cover maps and the GFC dataset. Our created land

cover maps have high overall accuracy and generally high accuracy for specific land cover clas-

ses (Table 2). While water and urban areas show poor accuracy values for some case studies,

these land covers represent very small proportions of the study area and should not pose a con-

cern (though we do not recommend use our maps to specifically track changes to water or

urban areas). Using our created maps, we demonstrate varying land use change patterns in our

case studies, such as high conversion of forest to agriculture in and around Jamanxim National

Forest in Brazil, and high conversion of forest to water and bare soil classes near the northern

border of Tambopata National Reserve in Peru. By comparing trends between our maps and

the GFC dataset, we find that GFC overestimates deforestation while our maps underestimate

it. Our study provides novelty by demonstrating that these biases occur due to different treat-

ment of mixed pixels, poor recognition of forest regrowth by GFC, and a propensity for GFC

to misclassify forest as deforested land and our maps to misclassify deforested land as forest.

We suggest, therefore, that true deforestation rates likely fall between the estimates from our

and GFC’s land cover maps (Table 3).

Land change trends in the context of the Amazon Basin

All three case study sites saw deforestation between 2008 and 2018, though rates and likely

drivers differed. In Bolivia, while in the late twentieth century deforestation rates in Amboró

and Carrasco National Parks were growing rapidly, we have found that rates have since stayed

steady or decreased. For context, the rate of deforestation in Carrasco National Park grew

from 2 km2/yr to 35.2 km2/yr between the early 1980s and 2000s [35], but we found a rate of

10.8 km2/yr (taking an average of rates from our and GFC’s maps). Similarly, deforestation

rates in Amboró National Park have risen only slightly, from 1.8 km2/yr in the early 2000s to

2.3 km2/yr in our study, and have decreased in the Amboró IMNA site, from 14.3km2/yr to
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10.8km2/yr. The conversion of primary forest to agriculture and bare soil that we detect in

these Bolivian parks (Fig 2) likely reflects the expansion of mechanized agriculture, cattle

ranching, and small-scale agriculture [62]. It is also notable that deforestation rates are higher

in the integrated use (IMNA) site around Bolivia, and in fact we found higher deforestation in

the IMNA site than in the 20km buffer around the PAs. While the Amboró IMNA area has

fewer restrictions on land use to allow local communities to use the forest to support their live-

lihoods (Bucklin 2010), this is an area of conservation interest and deforestation here should

be monitored in future years.

The high rates of deforestation we observed in Jamanxim National Forest align with under-

standing of forest loss in this area. Previous studies have found high forest loss and fragmenta-

tion in Jamanxim relative to other PAs in the Brazilian Amazon [11, 63] https://www.zotero.

org/google-docs/?8UM1DQ, and that Pará, the state where Jamanxim is located, had some of

the highest rates of deforestation in Brazil throughout the 2000s [19]. Furthermore, this region

has experienced increased deforestation since the Forest Code was amended in 2012, which

reduced environmental protections [64], and deforestation has continued to rise since the end

of our study period [65]. In Jamanxim, a rise in medium- and large-scale deforestation pro-

cesses, such as diverse agricultural activities and intense cattle ranching, may contribute to the

forest loss we detected [63].

However, Jamanxim also had the highest rates of reforestation among our study sites. Over

our study period, 377 km2 of forest regrew and, for context, 148,765 km2 of secondary forests

recovered between 1986–2018 across the Brazilian Amazon [66]. Some of this forest regrowth

may reflect areas in cycles of regrowth and harvesting (repeated logging in the same area),

which we observed while doing the dissimilarity analysis. Forest regrowth may also occur on

agricultural land, for instance where degraded pastures are abandoned and forests subse-

quently regrow [63].

Deforestation rates in the Peru site were modest compared to the other two study sites. The

increase in bare soil and water, particularly in the buffer area north of Tambopata National

Reserve (Fig 2), may reflect the creation of small-scale gold mines. The conversion of forests to

artisanal gold mines is a regional trend: across Madre de Dios, conversion of forests to gold

mines occurred at a rate of 44.4 km2/year from 1999–2016 [67]. Similarly, we found around

54.2 km2/year of forest loss between 2008–2018 in the 20km buffer region around Tambopata

(again taking the average of deforestation rates from our and GFC’s maps).

Differences between datasets

While over 94% of the study sites’ areas were similarly classified by our land cover maps and

GFC, the differences are non-negligible and represent over 4000 km2 of land. Around 2000

km2 of this area of disagreement is found in and around Jamanxim National Forest in Brazil,

representing a significant proportion (15%) of the Brazil study site.

Much of the discrepancy between land cover maps reflects instances where GFC mapped

deforestation where we did not (Figs 3–5), leading to consistently higher deforestation rates in

the GFC maps (Table 3). Other studies have also found that GFC overestimates deforestation,

including in dry tropical forests of Costa Rica [22] and rainforests of Gabon [61]. Cunningham

et al. (2019) noted that this effect was particularly prevalent at high elevations, which they pos-

tulated was caused by high cloud cover and terrain shadowing. Galiatsatos et al. (2020) also

found that GFC overestimated forest loss in Guyana between 2015 and 2017, though they addi-

tionally found that GFC overestimated tree canopy cover percent in 2000—thus, total forest

cover in 2017 was roughly accurate as these two biases averaged each other out. However,

other studies have found the opposite effect. For example, smaller-scale disturbances can be

PLOS ONE Biases and limitations of land cover maps in detecting deforestation in the Amazon

PLOS ONE | https://doi.org/10.1371/journal.pone.0268970 July 6, 2022 17 / 23

https://www.zotero.org/google-docs/?8UM1DQ
https://www.zotero.org/google-docs/?8UM1DQ
https://doi.org/10.1371/journal.pone.0268970


under-detected by GFC in the Amazon [68], and precipitation regimes (dry versus humid

tropics) may affect the direction of bias in the GFC product [22].

There are many explanations why land cover maps differ from each other, including

known limitations, algorithm parameters, or differences with input data or training data [29].

For instance, image acquisition dates of each land cover map are inherent differences between

map methodologies which caused moderate disagreement between our and GFC’s land cover

maps. We found that GFC registered deforestation occurring in later months of the image

acquisition year than our maps, thus logging slightly more deforestation at the tail end of the

year. Other studies have encountered similar temporal constraints [68], and users should be

aware of this when comparing land cover maps. Additionally, some studies have found errors

in the year GFC marks an area as deforested [20, 23], though we did not find this error in our

study.

Another inherent limitation with GFC is a lack of data on reforestation, especially after

2012, which can have large impacts on results interpretation. For instance, while we found

moderate rates of deforestation inside the Bolivian and Peruvian PAs, we found similar rates

of reforestation (Fig 2), thus resulting in little changes in total forest cover. Rates of reforesta-

tion in the Brazil PA, while much lower than deforestation rates, were still sizeable, represent-

ing more reforested land than in the Bolivia and Peru study sites. This highlights that not all

land classified as deforested by GFC has remained in that state (Table 3). We also found a

weakness in GFC’s ability to detect reforestation before 2012. In the dissimilarity analysis,

there were many pixels that disagreed on the land cover in 2008, specifically where our classifi-

cation detected forest while GFC detected deforestation with no forest gain. We suspect that

many of the disagreements may be caused by poor detection of reforestation by GFC. Sannier

et al. (2016) [61] also found that detection of reforestation between 2000–2012 was much less

accurate than detection of deforestation, perhaps due to the difference in spectral signals that

these events create (one gradual and the other generally very stark).

We also found that GFC tended to classify areas as deforested more readily than our maps,

which is reflected within mixed and misclassified (unclear) pixels in our dissimilarity analysis.

This likely indicates differing sensitivity of our and GFC’s classification algorithms in detecting

forest or non-forest land covers, which may occur for a variety of reasons. Phenological differ-

ences due to image acquisition dates, for instance, can affect classification performance [69,

70] https://www.zotero.org/google-docs/?DwUAwS. Disagreement may also be attributed to

the training data collection process, which has high potential for human error [71]. Finally,

input imagery into our classification may also cause differences, especially if certain imagery

more distinctively distinguishes between land covers. While both land cover maps utilized

Landsat imagery and decision tree (random forest) classifiers, we included other input vari-

ables to our classification, namely EVI and seasonal change in EVI, which may have changed

prediction potential. Without a more systematic study on these factors internal to the classifi-

cation scheme, it’s difficult to say to what extent each of these factors has caused the differences

we have seen. In summary, considering that GFC overestimates deforestation while we under-

estimate it, we suggest that true deforestation rates lie somewhere between our two estimates

(Table 3), and again note that these rates do not account for reforestation.

Broader implications and conclusions

When land use change researchers are faced with the choice of which spatial dataset to utilize,

we encourage them to keep in mind how different land cover maps can bias understandings.

We found that our land cover maps and the GFC maps have specific strengths and weaknesses.

Our maps detect forest regrowth and are more sensitive to secondary forest, which could clue
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researchers and land managers to areas that may be reforesting or in a cycle of logging and

regrowth. We also find a moderate amount of conversion of desert to agriculture, which has

important implications for conservation, but is not detected by GFC because desert ecosystems

are generally not considered “forest” by this dataset. Details about specific land cover transi-

tions that our maps provide also ties to more local dynamics, for example better guiding local

decision-making and enforcement, and helping identify local deforestation drivers. On the

other hand, GFC is better suited for more large-scale analyses because of its global scope. Fur-

thermore, a key benefit of GFC over our land cover maps is its ability to detect land change in

discrete years rather than solely between 2008 and 2018, making it more useful when informa-

tion on annual trends is needed. Thus, researchers should consider which land cover map best

suits their research questions.

Broadly, our results demonstrate the challenges in creating land cover maps. Land use is

extremely complex, and different sets of conditions, history, and dynamics are difficult to

interpret from pixelated data [72]. Each set of land cover maps contains its own limitations

and biases, which should not overshadow the value of these products, but rather guide more

intentional usage. In the case of GFC, especially given its wide use, we hope our results will

guide future use and communication and retroactively aid in the interpretation of previous

studies, thus better supporting policy and management applications.

In conclusion, this study gives a transparent understanding of deforestation trends in three

tropical forest PAs and raises awareness on land cover map biases and limitations by demon-

strating the impact that land cover map choice can have on understanding land use change.

Detailed understanding of these transitions is key to monitoring deforestation and studying

deforestation dynamics, thereby helping establishing conservation plans that can best conserve

these areas of incredible ecological, cultural, and biophysical importance [31, 32].
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