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ABSTRACT: PEGylation is a well-established and clinically proven half-life
extension strategy for protein delivery. Protein modification with amine-
reactive poly(ethylene glycol) (PEG) generates heterogeneous and complex
bioconjugate mixtures, often composed of several PEG positional isomers with
varied therapeutic efficacy. Laborious and costly experiments for reaction
optimization and purification are needed to generate a therapeutically useful
PEG conjugate. Kinetic models which accurately predict the outcome of so-
called “random” PEGylation reactions provide an opportunity to bypass
extensive wet lab experimentation and streamline the bioconjugation process.
In this study, we propose a protein tertiary structure-dependent reactivity
model that describes the rate of protein-amine PEGylation and introduces
“PEG chain coverage” as a tangible metric to assess the shielding effect of PEG
chains. This structure-dependent reactivity model was implemented into three
models (linear, structure-based, and machine-learned) to gain insight into how
protein-specific molecular descriptors (exposed surface areas, pKa, and surface charge) impacted amine reactivity at each site. Linear
and machine-learned models demonstrated over 75% prediction accuracy with butylcholinesterase. Model validation with Somavert,
PEGASYS, and phenylalanine ammonia lyase showed good correlation between predicted and experimentally determined degrees of
modification. Our structure-dependent reactivity model was also able to simulate PEGylation progress curves and estimate
“PEGmer” distribution with accurate predictions across different proteins, PEG linker chemistry, and PEG molecular weights.
Moreover, in-depth analysis of these simulated reaction curves highlighted possible PEG conformational transitions (from dumbbell
to brush) on the surface of lysozyme, as a function of PEG molecular weight.

■ INTRODUCTION
PEGylated protein conjugates are widely used as therapeutics.
Since the approval of Adagen and Oncaspar in the 1990s, more
than 20 PEGylated drugs have been approved by the Food and
Drug Administration, with many more in clinical develop-
ment.1,2 Over the years, the prominent success of PEGylation
has led to innovative conjugation chemistries for improved
site-specificity and reduced impact on protein function.
Despite this, most approved PEGylated drugs are still obtained
by “random” nonspecific lysine-targeted chemistry. This
“randomness” results in heterogeneous mixtures of native
protein and “PEGmers” (i.e., mono-, di-, tri-PEGylated protein
species) which require extensive reaction optimization and
purification. We place the word random in quotation marks
because, even though lysine modification has been described as
“random” for decades, the reaction outcome is not random at
all and should be predictable from first principles. Individual
PEG-protein species can also differ in modification site, with
each positional PEG isomer having differential effects on
pharmacologic, toxicologic, and immunogenic activity. For
example, PEG-interferon alpha-2a (PEGASYS) is composed of
nine positional isomers, each displaying significant differences
in efficacy.3 Researchers therefore need to perform time-
consuming and costly stochastic experiments to generate

PEGylated conjugate mixtures with a desired average
therapeutic profile. The ability to optimize reaction conditions
and predict where, and to what extent, lysine residues can be
modified with amine-reactive PEGs would greatly improve the
efficiency of bioconjugation.

Previously, our group has shown that the tertiary structure of
a protein can be used to assess the relative reactivity at each
lysine residue.4 We developed a decision tree based on
experimental data which was used to predict the relative
reaction between amino groups in a protein and an N-
hydroxysuccinimide small molecule compound. To automate
the process and create a widely accessible bioconjugation tool,
we devised PRELYM,5 a Python program that implements the
decision tree to provide qualitative insight into which lysines in
a given protein are most likely to react and their relative order
of reaction.
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Kinetic models,6−12 which provide broader insights to
reaction mechanisms, laboratory-, and industrial-scale process
development, have the potential to help automate the
bioconjugation process through rapid online parameter
optimization in a design of experiment (DOE)-like man-
ner.13−15 For lysine reactions, the multiplicity of conjugation
sites has made kinetic modeling challenging. Early PEGylation
kinetic models were able to simulate the degree of PEGylation
but not distinguish positional PEG isomers. Moreover, those
models frequently used lumped parameters to empirically
define the rate of reaction, thereby limiting the possibility to
extract physical parameters and reducing generalizability. A
more recent and improved model, developed by Pfister and co-
workers, describes amine PEGylation by considering the
intrinsic reactivity of primary amines, steric hindrance from
PEG shielding (once PEG has reacted at one site, further
reactions at near neighbor sites will be sharply diminished),
and diffusional constraints that slow the reaction.12 However,
in this impressive iso-kinetic reactivity model, shielding is
defined in a way that the kinetic rate is only affected by the
extent of PEGylation and not by the site of PEGylation.
Indeed, Pfister’s iso-reactivity model assumes an equal intrinsic
reactivity of each site. While this is valid for a protein with a
low degree of PEGylation, lower intrinsic reactivities of
subsequent reaction sites can be incorrectly predicted as
reduced reactivity through shielding, resulting in inaccurate
interpretations of physical parameters.

For decades, the field of protein PEGylation has needed a
comprehensive model that would identify preferred sites of
PEGylation and then accurately predict conjugation rates and
outcomes. Herein, we present a structure-dependent reactivity
model that describes the rate of protein modification with
amine-reactive PEG reagents to quantitatively predict lysine
reactivity. In this model, we determine the sequence of
reactivity by considering a distance-dependent metric for PEG
shielding to explicitly reflect the effect of the site of
modification on subsequent PEGylations. This model can aid
with rapid optimization of both conjugate yield and specificity,
enabling the development of PEGylated proteins in a data-
driven, efficient, and streamlined manner (Figure 1).

■ RESULTS AND DISCUSSION
A Distance-Dependent Metric for PEG Shielding. In a

previous study, we successfully adopted the iso-reactivity
model to determine amine PEGylation kinetics for butylcho-

linesterase.16 Our fitted parameters agreed with experimental
findings, with monoPEGylated BChE being the dominant
conjugate under the performed reaction conditions (Figure 2
A−B).

Upon closer analysis, we observed that the shielding
parameter for butylcholinesterase (4.4 × 10−4 mol·g−1) was
∼10 times higher than the one determined by Pfister and co-
workers (3.1 × 10−5 mol·g−1) for lysozyme (Table 1). PEG
shielding, an effect that results from protein conjugation, can
be viewed as a diminished exposed surface area for subsequent
PEGylations. Once covalently attached, PEG (or any other
polymer) can dynamically move around the protein surface,
effectively masking available reactive sites and preventing them
from conjugation. Hence, we hypothesized that the variation in
shielding parameters were due to steric hindrance effects in
proximal amine reactive sites. We considered shielding to be
related to the radial distance from the amine reactive sites,
where lysine residues near PEGylated sites are inhibited from
subsequent PEG reactions (Figure 2C).

To validate this assumption, we compared inter-residue
distances for chymotrypsin with a contact map for chymo-
trypsin−poly (carboxybetaine) methacrylate conjugates (Fig-
ure 3).17 We noted that shorter inter-residue distances
correlated with longer polymer-residue contact times, support-
ing our hypothesis of a distance-dependent metric for polymer
shielding through steric hindrance. Although this analysis is
based on zwitterionic poly (carboxybetaine) conjugates,
amphiphilic PEGylated proteins also have strong interactions
with protein surfaces through hydrophobic interactions.18 We
therefore anticipate a similar correlation to be observed for
PEGylated proteins.
A Quantitative, Structure-Dependent Reactivity

Model for Amine PEGylation. Estimation of Key Molecular
Descriptors To Predict Amine Reactivity. Having established a
distance-dependent metric for PEG shielding, we now sought
to incorporate this parameter into a quantitative model to
predict amine reactivity. Quantitative reactivity models are
more beneficial for kinetic analysis and reaction optimization.
However, determining the intrinsic reactivity of each residue is
a time-consuming and laborious experiment and, as such, often
restricted to smaller proteins.4,12,19,20 For larger multimeric
proteins, such as butylcholinesterase with more than 100
amine reactive sites, obtaining experimental reactivity data is a
challenging endeavor and can produce inaccurate results since
not all modified sites can be validated experimentally.

To develop our quantitative model, we first wanted to
identify which molecular descriptors were key to amine
reactivity. Researchers, including ourselves, have noted that
lysine residue reactivity can be profiled intuitively by assessing
exposed surface areas (ESA) and amine pKa values.4,21−23 This
is not surprising since ESA reflects the accessibility of the
amine group and pKa the propensity of nucleophilic attack.
However, our own structure−reactivity studies have also
highlighted the contributions of local secondary structure
and local surface charge. To gain further insight into the
reactivity contributions of these molecular descriptors, two
linear predictive models were developed.

Model 1 used ESA and pKa as reactivity parameters, while
Model 2 (like the PRELYM approach) incorporated an
additional linear term for surface charge when lysine residues
were in a β-sheet or coil fold. Both models were restricted to
linear relationships between reactivity and molecular descrip-
tors (ESA, pKa, surface charge). To account for potential

Figure 1. Overview of the structure-dependent reactivity kinetic
model which can provide site-modification predictions and simulate
PEGylation reactions.
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nonlinearity, a machine-learned regression model (Model 3)
was also developed. Machine-learning models are beneficial
since they are not restricted to linear relationships and can
model significantly more complex relationships between
parameters. The drawback is the inability to draw physical
information from the model, since the parameters within the
model are black-boxed.

Models 1, 2, and 3 were first standardized against
experimental amine reactivity rates in lysozyme.12 Given the
small number of amine sites in lysozyme, this fitting was

performed with very few data points. To increase model
reliability, we further trained the models using experimentally
determined reaction orders in chymotrypsin.4 Model validation
was achieved only when the predicted reactivity order
correlated with experimental findings. The accuracy of the
model’s performance was then assessed against the order of
reactivity in BChE, as predicted using the tertiary-structure
based decision tree (Figure 4). As a control experiment, we
used a randomized model where the reactivities of BchE
residues were randomly distributed.

Model comparison indicated that the linear model 1
achieved an accuracy of 76%, further highlighting the positive
correlation between amine reactivity with amine ESA and pKa.
The machine-learned model 3 showed a statistically insignif-
icant higher accuracy, possibly as a result of Model 3′s ability
to detect subtle nonlinearity. For example, lysine residues K79
and K170 in chymotrypsin are highly exposed (ESA > 200 Å2)
with similar pKa values. However, experimentally K79 had a
low reaction rate and K170 did not react, suggesting deviation
from a linear relationship.4 We believe that the reliability of the
machine-learned Model 3 is being limited by the data
extrapolation needed given available training data (lysozyme
and chymotrypsin are both smaller than 25 kDa) being used to
predict values for a large protein (BChE is approximately 270
kDa). Generating more training data is beyond the focus of

Figure 2. Time progression of BChE PEGylation with 5 kDa mPEG-NHS showing primarily mono-PEGylation. (A) Full PEGylation profile, black
solid line: hydrolyzed PEG, black dashed line: mPEG-NHS and (B) enlarged profile of PEGylated BChE, blue line: native BChE, red line: mono-
PEGylated BChE, green line: di-PEGylated BChE. (C) Depiction of local site hindrance from a PEGylated residue, lysine residues are colored in
red. Model protein: BChE (PDB: 6I2T).

Table 1. Fitted Parameters for Lysozyme and BChE Using
the Iso-reactivity Model12

α (shielding) κ (diffusion) k0 (reactivity)

Lysozyme12 3.1 × 10−5 3.2 × 103 10.7
BChE 4.4 × 10−4 7.2 × 103 7.3

Figure 3. Contact map analysis for chymotrypsin plotted as a heat
map of lysine residue versus all residues. The color intensity on the
heat map corresponds to calculated Euclidean distances measured in
Å. Inter-residue distances between 0−0.33, 0.33−0.66, and 0.66−1.0
Å are depicted in yellow, green, and blue, respectively. Light blue
shade corresponds to contact residence time between pCBMA
polymer and chymotrypsin reproduced from ref 17. Shorter inter-
residue distances correlated with longer polymer-residue contact
times, supporting the use of a distance-dependent metric for PEG
shielding

Figure 4. Linear, structure-based, and machine-learned models were
assessed against the order of reactivity in BChE. A randomized model
was used as a control. Prediction accuracy was defined as the number
of correct predictions divided by the number of total trials.
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this study, but the model would be improved by incorporation
of experimental data with a more diverse range of features (e.g.,
molecular weight, quaternary structure) along with a more
accurate depiction of protein structures in solution by solvation
and relaxation using molecular dynamic studies. However,
previous studies have shown that a significant improvement
was not obtained when using descriptors calculated from
annealed structures from MD,21 highlighting the challenge in
obtaining complete accuracy in these predictive models.

The preferential interaction between PEG and lysine
residues in hydrophobic surroundings, and the stabilization
effect of PEG in α-helices, prompted us to consider
hydrophobicity and helicity as additional features in our
models.24−26 We observed that the association between inter-
residue distance and contact time was slightly stronger when
considering hydrophobicity and helicity with distance.
However, an improvement in the prediction accuracy (∼70%
accuracy after adding features) was not achieved and we could
not establish a correlation between predicted reactivity with
either hydrophobicity or helicity (Figure S1). This may be due
to the close relationship between hydrophobicity and helicity
with pKa, secondary structure, and local charge of lysine
residues. Moreover, hydrophobicity and helicity are calculated
by pooling empirically determined scores of surrounding
residues but do not consider residues that are spatially close
but separated in amino acid sequence.
Defining Parameters To Predict Subsequent PEGylation

Sites. To incorporate our distance-dependent metric for PEG
shielding, we selected the two best-performing models: linear
model 1 and machine-learned model 3 using a positive linear
activation function with two hidden layers and four nodes in
each layer for amine reactivity prediction. It should be noted
that our model can only be employed for biologically relevant
conditions (pH 7−8, for example) as we do not consider
protein structural changes such as unfolding, which can occur
at extreme pH conditions. For predictions outside of this pH
range, we suggest the use of molecular dynamic simulations to
account for protein unfolding along with model reparametriza-
tion since features such as Coulombic charge used in our
model are pH specific.4,12

Having the tools to predict the lysine reactivity, we now
sought to define parameters to predict the sequence in which
an individual lysine would be modified by a molecule that
could then shield the surface from further modification. Once a
PEG chain is attached to a protein, it adopts either a
“dumbbell” shape extending from the site of conjugation to the
solvent or a “shroud” conformation that wraps around the
protein, making shielding sites less predictable.27 Since PEGs

below 10 kDa will predominantly adopt a dumbbell shape, our
model incorporated this assumption although the exact
conformation will depend on the specific protein and site of
conjugation.18,25,27,28 Our model further makes the assump-
tions that the protein structure remains unchanged upon
PEGylation, and the reaction mixture is sufficiently dilute to
uphold the underlying diffusion regime.29−31

We defined a radial distance cutoff where lysine residues
within this radius will be nonreactive due to steric hindrance
(Scheme 1, Figure 2C). Physically, this parameter is
comparable to the radius of PEG coverage but differs from
the radius of gyration, since PEG coverage can be affected by
many factors including the shape of the PEG chain and
interactions with the protein surface. From here on, only
results from a single simulation are shown, while the stochastic
nature of multiple simulations can be seen in Figure S2.

Model Validation with PEGylated Proteins. To confirm
that our structure-dependent reactivity model would generate
acceptable PEGylation reactivities, we tested models 1 and 3
using three proteins: human growth hormone receptor
antagonist (Somavert, pegvisomant), interferon α-2a (PE-
GASYS), and recombinant phenylalanine ammonia lyase.
These three proteins have been PEGylated and are well
characterized in terms of the number and site of modifications.
Human Growth Hormone Receptor Antagonist.

Pegvisomant (trade name Somavert) is a Food and Drug
Administration (FDA) approved human growth hormone
receptor antagonist for the treatment of acromegaly.32

Pegvisomant is covalently modified with a 5 kDa mPEG-
succinimidyl propionate at pH 7.65 and therefore follows the
underlying assumptions in our model.57

Reactivity predictions using linear and machine learning
models both matched experimental findings, with five amino
sites being modified (N-terminal, K38, K120, K140, and K158)
(Table 2). Noticeably, linear model 1 predicts K115 as a
reactive site, albeit with low reactivity while machine learned
model 3 does not, further emphasizing its improved accuracy
and possible detection of nonlinearity in reactivity. Neither
model predicted K120 as a reactive site; however, this residue
has been mutated in pegvisomant and is not present in the
protein crystal structure used for this analysis.33 Noteworthy,
upon K120 modification, the close spatial proximity to K115
suggests further PEGylation reactions would be blocked by
steric hindrance, which aligns with our current predicted
results.
Interferon α-2a and Recombinant Phenylalanine

Ammonia Lyase. We further expanded our model validation
to interferon α-2a and recombinant phenylalanine ammonia

Table 2. Comparison of Experimental Findings for PEG Modification of Somavert34 with Reactivity Predictions Using Linear
and Machine-Learned Models

Linear Model 1 Machine Learned Model

Residue Experimental Modification Reactivity Rate (M−1·min−1) Modification Reactivity Rate (M−1·min−1)

N-terminal × × 13.06 × 19.76
K38 × × 10.97 × 16.36
K41
K70
K115 × 6.04
K120 × N/A N/A N/A N/A
K140 × × 12.38 × 20.55
K145
K158 × × 4.77 × 6.03
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lyase (rAV-PAL). PEGylated interferon α-2a, commercially
known as PEGASYS, is formulated with a 40 kDa branched
PEG chain3 while rAV-PAL is modified with PEG 20 kDa.35

Due to probe size constraints, reactivity predictions for both
proteins were kept at a probe size equivalent to 20 kDa PEG.
Nevertheless, our structure-dependent reactivity predictions
were in good agreement with the experimental findings
(Tables S1 and S2).

Interestingly, for rAV-PAL, the linear model performed
better, with a Pearson correlation coefficient of 0.64 between
the experimentally observed degree of PEGylation and
predicted reactivity. Amine sites K109 and K384 were
inaccurately predicted as modified, but with low reactivity
rates. K384 is in close proximity to K335 (Euclidian distance =
8.85 Å) which is an experimentally determined PEGylation site
and can hinder K384 subsequent modification.

Similarly, for interferon α-2a, the N-terminus and K23 were
predicted incorrectly as reactive sites but with low reactivity
rates. This can be also attributed to the use of a smaller probe
size, due to software constraints, which may have increased the
apparent ESA, thus increasing the predicted reactivity. We
should also highlight that the available PDB file for interferon
α-2a consists of 24 NMR-resolved structural conformers, and
only a single conformer was used for the prediction. Protein
solvation quality may result in dynamic changes in
conformation, releasing constrained sites and increasing ESA.
Improved quantitative predictions can therefore be obtained
by using more accurate solvated structures, obtained for
example, through molecular dynamics simulations to achieve
the lowest energy conformation.
Predicting Site-Specific “PEGmer” Distribution and

PEGylation Reaction Progress. One of the major challenges
in PEGylation is the ability to produce the desired PEG-
protein conjugate at high yields. In recent years, extensive
research efforts have been made on developing novel

PEGylation reagents and conjugation chemistries to improve
the efficacy of these chemical reactions.36,37 However, for
amine-targeted PEGylation, the multiplicity of conjugation
sites can result in complex and heterogeneous mixtures of
distributed populations of PEG-protein conjugates, with
various grafting densities, and PEG positional isomers.
Isolation of the desired bioconjugate will then require
supplementary purification steps which can reduce conjugate
yield and impact the cost of the final product. Moreover, each
unique PEG-protein conjugate, also known as a “PEGmer”, can
display variable bioactivity, and pharmacokinetic properties.3,38

Characterization of the various PEGmers is therefore necessary
to understand therapeutic efficacy and often a requirement for
regulatory approval.39 Kinetic reactivity models can help
resolve experimental observations and facilitate bioconjugation
optimization, minimizing developmental costs. To demon-
strate these advantages, we used our validated structure-
dependent reactivity model to gain further insight into the
PEGylation reaction.

PEGmer Distribution. To simulate the PEGylation reaction,
we selected linear model 1 due to its simplicity and high
prediction accuracy. After fitting to optimal parameters, we
now wanted to obtain detailed information on the extent of
PEGylation, the distribution of the various PEGmer
populations, and respective amine modifications. Figure 5A
compares experimental findings with our simulated PEGylation
reactions using horseradish peroxidase (HRP), bovine serum
albumin (BSA), human arginase, diisopropyl fluorophospha-
tase (DFPase), and methioninase (METase). Overall, our
model was able to accurately predict PEGmer distribution for
all examined proteins.

These results indicate that our model can identify ideal
reaction conditions for optimal PEGylation, to ensure high
conversion and purification yields of the desired conjugate.
Since the reaction site with the highest predicted reactivity is

Figure 5. Comparison between model simulation and literature data. (A) Distribution of PEGmers for horseradish peroxidase (HRP), bovine
serum albumin (BSA), human arginase, diisopropyl fluorophosphatase (DFPase), and methioninase (METase). Reaction progress curves of α-
lactalbumin with (B) mPEG-SMB and (C) mPEG-SPA. Reaction progress curves of lysozyme with mPEG-SPA and constant ESA calculated with a
10 kDa PEG probe (17 Å) for (D) 5 kDa, (E) 10 kDa, (F) 20 kDa PEGylation. Reactions are simulated with respective experimental
conditions.12,40−45 Symbols represent literature values, and solid lines represent simulated values. In B−F, (○) Native Protein, (◇) PEG-1, (△)
PEG-2, (□) PEG-3, (×) PEG-4, (●) PEG-5. Relative concentration was calculated by normalizing against the initial mass concentration of the
native protein.
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not always the first to react, and rather reaction order follows a
probability distribution, the stochastic nature of reaction can
be included (Figure S2B) and fine-tuned to select for reaction
conditions producing highly uniform PEGylated proteins. By
merging our structure−reactivity predictions with kinetic
modeling, we were also able to monitor the time progression
of site-specific PEGmers (Figure S3A). Combined with our
previously devised amine-reactive inhibitor, which can be used
to selectively quench fast-reacting sites, we can further exploit
reaction conditions to achieve highly flexible conjugation.46

Moreover, our structure-dependent reactivity model can be
used alongside other predictive algorithms to synthesize
protein conjugates with a tailored activity and stability profile
in a structured manner without the need for extensive trial-
and-error experiments.12,40

Simulated PEGylation Reaction Curves. PEGylation
reaction curves were simulated for the lysozyme, α-
lactalbumin, and antibody single-chain variable fragment
(Figure 5B−F, Figure S5), with low root-mean-square error
(RMSE). To account for the influence of different reactivity
due to PEG chemical reactivity, molecular weight, and reaction
conditions (e.g., buffer, pH, temperature, etc.), we included a
prefactor to the predicted reactivity (Table 3).

Figure 5 B and C depict the PEGylation reaction curves for
α-lactalbumin with succinimidyl esters of methoxy poly-
(ethylene glycol) α-methyl butanoic acid (mPEG-SMB) and
propanoic acid (mPEG-SPA). PEG-shielding in α-lactalbumin
using both SPA and SMB linkers with 5 kDa PEG chains
showed consistent results (16 and 17 Å PEG coverage),
confirming PEG shielding was independent of the reactive
group chemistry. The lower reactivity of mPEG-SMB is
accurately predicted, as can be seen by the incomplete
conversion of native α-lactalbumin over time. This highlights
our model’s applicability to different PEG chemistries, where
the reaction prefactor can sufficiently address the difference in
linker reactivity, dissimilar to earlier PEGylation kinetic models
(Figure S6).40 We also observe the reactivity of mPEG-SPA is
similar in lysozyme and α-lactalbumin through similar reaction
prefactors in 5 kDa PEGylation reactions (Table 3, Figures
S3−S4). This suggests lysine-NHS ester reactivity is retained
between different protein structures.

Moreover, we note that our model can be successfully
implemented even with the same set of parameters for different
PEG chain lengths (5, 10, 20 kDa, Figure 5 D−F, Table 3,
Figures S3−S4). This demonstrates an added benefit that only
three parameters (diffusion, shielding, and reaction prefactor)
need to be optimized, expanding the model generalizability,
and reducing computational cost. However, to adequately
incorporate in the model the changes in ESA due to different
probe sizes (and consequently PEG molecular weights), the
reaction prefactor needs to be adjusted for the predicted

reactivities. Although this slightly reduces model flexibility,
since unique parameters are now required to be fitted for each
probe size, this allows us to unravel when the PEG shielding
effect becomes important (Table 3, Figures S3−S4). Indeed,
PEGylation with a 20 kDa polymer leads to an emphasized
shielding effect, determined by the unreactive sites 15 Å from
site of PEG modification. In contrast, for 5 and 10 kDa PEG
chains, the reaction coverage is <11 Å, and thus, no significant
shielding constraints were imposed. Here, the value of 11 Å
was considered the threshold for reaction cutoff, as this was the
smallest Euclidean distance calculated between two adjacent
lysine residues in lysozyme. Thus, any shielding effect smaller
than 11 Å was not thought to impact reactivity. Lastly, the
increasing degree of shielding from lysozyme, α-lactalbumin, to
single-chain variable fragment (scFv) can be explained by the
increasing hydrophobicity of the protein surface (Figure S7).

It is interesting to note that our model underestimated the
formation of a tetra-PEGylated lysozyme conjugate using PEG
5 kDa (Figure 5 D, Figure S3). This observation suggested that
there may be a change in polymer conformation on the protein
surface at high grafting densities that was dependent on PEG
size. We hypothesized that when the PEG grafting density was
high, longer PEG chains may have experienced more repulsion
and were more extended toward the surrounding solvent,
consequently reducing PEG coverage on the protein surface,
allowing the exposure of more reaction sites. The conforma-
tional transition from a dumbbell to brush conformation at high
grafting density has been thoroughly studied on surfaces,
where the change in conformation is remarked by the relation
between the distance between two grafts (D) and a polymer
size-dependent Flory radius (Rf).47 However, experimental
evidence of conformational changes at high degrees of
PEGylation on protein surfaces has been scarcely observed,
with reports limited to diPEGylation,48−50 or simple globular
structures such as nanoparticles,51,52 although high density
PEGylation has been achieved in lysozyme.53 Recently, high-
density PEGylation of ovalbumin has been reported,54 with
specific references toward a brush-like conformation at Rf/D >
2. In a similar manner, we estimated an Rf/D ratio of 1.47 and
2.22 for tetra-PEGylated lysozyme for a PEG length of 5 and
10 kDa, respectively (see Supporting Information for
calculation details). This corresponded to a dumbbell-to-
brush transition, as observed by the low degree of tetra-
PEGylated lysozyme with the 5 kDa PEG chain (Figure 5D−
F). Although lysozyme is a simple model protein, our reaction
model provides an innovative way of examining polymeric
conformational changes on the surface of PEGylated proteins.

■ CONCLUSIONS
In this study, a structure-dependent reactivity model that
introduced the radius of PEG chain coverage as a tangible,

Table 3. Parameters Corresponding to Figure 5Aa,b

Protein PEG Mw (kDa) PEG linker κ (×10−3, Å2) Reaction Cut-off (Å2) Reaction Prefactor Experimental RMSE RMSE12

LALBA 5 SMB 6.3 16 29 0.02 0.1
5 SPA 6.5 17 143 0.06 0.06

LYZ 5 SPA 2.8 <11 (<11) 100 (150) 0.06 (0.04) 0.08
10 SPA 2.8 <11 (<11) 100 (100) 0.04 (0.04) 0.1
20 SPA 2.8 <11 (15) 100 (79) 0.1 (0.1) 0.1

aValues in brackets reflect changes in ESA from different probe sizes corresponding to different PEG molecular weights. bParameters were fitted for
each protein according to respective reaction conditions. The threshold for reaction cut-off was optimized to 11 Å, since it is approximately the
smallest Euclidian distance between lysine residues in lysozyme. PEG coverage below 11 Å is considered insignificant.
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structure-specific shielding parameter was developed. This
structure-dependent reactivity was implemented in three
models to unravel how protein-specific molecular descriptors
can shed light on the relative reactivity of lysine residues.
Model accuracy was found to be over 75% in the prediction of
BChE reactivity order using linear and machine-learned
models. Further validation with PEGylated proteins showed
a good correlation between predicted and experimentally
determined degree of modification. Application of our model
to simulate PEGylation progress curves and estimate site-
specific PEGmer distribution led to accurate predictions with
an on average 35% reduction in RMSE from the original model
across different proteins, PEG linkers, and molecular weights.
Moreover, this analysis provided us with unique insights into
PEG conformational changes on highly grafted protein surfaces
as a function of PEG molecular weight.

While our model has been trained for protein PEGylation,
application can be extended to different polymers or small-
molecule initiators by reparametrization, emphasizing its wider
benefit to the bioconjugation field. Moreover, future work on
temperature and pH dependency of the model particularly can
further enhance the model’s generalizability by fitting the
intrinsic rate constant through an Arrhenius-like relationship.
Overall, implementation of this reactivity model has the
potential to help develop and design experimental work in a
more efficient and cost-effective manner.

■ EXPERIMENTAL PROCEDURES
Inter-residue Distance Calculations. Protein crystal

structures were retrieved from the Protein Data Bank (PDB)
(Table 4). PDB coordinate files were loaded in Matlab 2019,

and inter-residue distances, calculated as Euclidean distances.
Lysine-lysine residue distances were calculated as the distance
between ε-amines (denoted as NZ in PDB coordinate files);
distances between a given lysine and other residues were
calculated as the distance between the ε-amine group and the
α-carbon (denoted as CA in PDB coordinate files) of each
residue.

Estimation of Individual Lysine Exposed Surface
Area, pKa, Surface Charge, Hydrophilicity, and Helicity.
Exposed Surface Area (ESA). The exposed surface area for
each residue was calculated with UCSF Chimera55 using a
Shrake−Rupley (“rolling ball”) algorithm. Probe sizes were
selected to resemble the approximate size of PEG 5, 10, or 20
kDa, or an atom-transfer radical polymerization (ATRP)
initiator molecule (4.2 Å).4 Probe sizes for PEG were
estimated by respective radii of gyration (Rg) assuming freely
jointed chains (12−24 Å).4 For large proteins (≥60 kDa), a
maximum probe size of 8.8 Å was used. Calculated ESA
followed an approximately linear relationship with the various
probe sizes (Figure S8).
pKa. The pKa of protein residues was calculated using H++

at experimental pH 8 with continuum electrostatics.56,57 A
protein dielectric constant of 10, water dielectric constant of
80, and salt concentration of 0.15 M were used for the
calculation. For proteins with missing residues, H++ could not
be used and thus PROPKA was used alternatively for empirical
pKa calculation.58,59

Residue Surface Charge, Hydrophobicity, and Helicity.
The Coulombic charge (kcal·e−1·mol−1) of protein residues
was calculated with UCSF Chimera, and the charge for lysine
ε-amino groups was recorded. Residue hydrophobicity and
helicity were calculated using ExPASy ProtScale with Kyte &
Doolittle and Levitt scales, respectively. The Kyle and Doolittle
scale considers both structural contributions from the lysine
side chain group and its interaction with water to determine
the hydropathy index. The Levitt scale calculates helicity by
measuring the frequency of amino acid occurrence in an α
helix. ProtScale calculations proceed through a sliding window
technique which weighs the scores of seven residues with the
residue in question assigned to the center with a 100% weight,
which linearly decreases to 10% for the outermost
residue.60−62

Linear, Tertiary Structure-Based, and Machine-
Learned Model to Predict Individual Amine Reactivity.
Three models (linear, tertiary structure-based, and machine-
learned) were developed to predict the rate of PEGylation at
each lysine residue. Linear and structure-based models are
detailed as below:

Linear model:

= · + · +k KESA p1 1 a 1 (1)

Tertiary structure-based model:

= · + · +k KESA p2 2 a 2 (2)

when β-sheet and coil,

= · + · + · +k KESA p Charge3 3 a 3 3 (3)

where α, β, γ, and δ are regression parameters and the
subscripts denote different coefficients for each model. When
residues are in a β-sheet or coil fold, the tertiary structure-
based model incorporates an additional linear term for surface
charge due to their closer proximity to ionizable groups in the
protein, as previously determined.4 The coefficients of each
model were fitted with intrinsic reaction rates for lysozyme and
molecular descriptors as detailed above. The model fitting
optimization was run 1,000 times, and the parameters
corresponding to the minimum least-squares difference
between literature intrinsic rates and regressed reaction rates
were recorded. The model fits obtained were α1 = 0.06, β1 =

Table 4. Proteins Used in This Study with Respective PDB
ID and Number of Available Amine Reactive Sites

Protein PDB ID Number of amine
reactive sites

Lysozyme 1LYZ 6−7
Chymotrypsin 4CHA 15
Butylcholinesterase (BChE) 6I2T 136
Bovine Serum Albumin (BSA) 4F5S 60
Diisopropyl Fluorophosphatase

(DFPase)
1PJX 25

Horseradish Peroxidase (HRP) 1H57 7
Methioninase (METase) 1UKJ 33
Human Arginase 1WVA 23
Human Growth Hormone 3HHR 10
Α-lactalbumin 1A4 V 12
Single Chain Variable Fragment (scFv) 6PIL 10
Tetrameric phenylalanine ammonia lyase

(rAV-PAL).
5LTM 16a

Interferon-a 2a 1ITF 8a

aOriginal proteins possess 19 reactive sites (rAV-PAL) and 10
reactive sites (interferon-a 2a), respectively. Calculated reactive sites
were reduced to 16 and 8, respectively, due to missing residues in the
PDB structure.
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−1.32, γ1 = 15.02, α2 = 0.087, β2 = −1.61, γ2 = 17.16, α3 =
11.97, β3 = −6.89, γ3 = −14.25, and δ3 = 17.16, with R2 for the
linear, structure-based, and machine-learned models as 0.85,
0.94, and 0.93, respectively. The models are denoted as
follows: linear model (Model 1), tertiary structure-based
model (Model 2), and machine-learned model (Model 3).

A feed-forward model was built using the Statistics and
Machine Learning Toolbox in Matlab 2019. Experimental
kinetic rate constants for lysozyme reacting with 5 kDa PEG
and respective calculated descriptors were used to train the
model.12 Since lysine residues in lysozyme are primarily found
in the α-helix fold of the protein, a hold-out method was first
used to validate the prediction for residues with α-helix
secondary structures to prevent prediction against unseen data.
The trained model was then used to predict reaction rates of
chymotrypsin with an ATRP initiator molecule (4.2 Å).
Predicted reaction rates were sorted in descending order into
fast-reacting (3 out of 10 sites), slow-reacting (4 out of 10 sites),
and nonreacting (3 out of 10 sites), as determined
experimentally.4 The trained model was validated only if the
predicted reaction order matched experimental data.

To assess how the three models in this study compared to
our PRELYM decision tree4 model, a test set composed of 136
lysine residues and N-termini present in butyrylcholinesterase
(BChE) with 5 kDa PEGylation was built. We stress that
PRELYM was built for small molecule modification of lysine
residues. This test set was first predicted qualitatively using the
tertiary structure-based decision tree model.4 Molecular
descriptors (ESA, pKa, residue surface charge, hydrophobicity,
and helicity) of BChE were then used to quantitatively predict
the reactivity of each amino site, and reactivities were sorted
from fast to slow and categorized into fast- (16 out of 136
residues), slow- (43 out of 136 residues), and nonreacting (77
out of 136 residues) to match that of the tertiary-structure
based decision tree. The accuracy of the quantitative model
was assessed by the number of correct predictions divided by
the total number of reactive sites. Further, a “reactivity cutoff”
parameter was used to define the highest predicted reactivity
that is categorized as “nonreactive” in the decision tree. This
cutoff is used subsequently to render sites with a predicted
reactivity below this value to be nonreactive.
Structure-Dependent Reactivity Model and Parame-

ter Fitting. Scheme 1 depicts the characteristics of the
‘structure-dependent reactivity model’ developed in this study.
This model was first used to identify the relative intrinsic
reactivities of lysine residues and the N-terminus with a
reactivity cutoff of 3.9 M−1·min−1 using predictive models 1−3.

The average of the predicted reactivities was used to represent
the reactivity for the current PEGylation reaction. It should be
noted that although raw, unaveraged kinetic constants can be
used to monitor reaction progression,12 the average value was
used to reduce computational time while still producing
physically sound kinetic constants.

For subsequent PEGylations, since the highest predicted
reactivity was not guaranteed to react, we introduced
stochasticity by the Gillespie-like algorithm, which was used
to select the reaction site through eqs 4−5.63 Here, kv is the
cumulative probability of reaction of a reactive site v, defined
as the cumulative predicted reactivity of each site divided by
the sum of reactivities from all sites. Thus, kv is a numerical
value between 0 and 1. By generating a random number
“rand”, the algorithm can then select a reactive site μ with a
probability proportional to its reactivity. Since the ratios
between intrinsic kinetic constants match well with the
concentration of PEGmers (Figure S9), we only considered
intrinsic reactivity as a defining factor for site selectivity.

<
= =

k krand
v v1

1

v
1

v
(4)

=
=

k
R

Rnv
v

v 1 v (5)

In the kinetic part of the model (Scheme 1, right), N is the
total number of reactive sites, Pj is the molar concentration of
j-pegylated protein (j∈[0,N]), kj,avg is the intrinsic reactivity for
the j-th PEGylation reaction, and ε is the reaction prefactor
that modifies for PEG linker chemistries and reaction
conditions. φj is a modifier for diffusional (κ) effects. εkj,avgφj
is then representative of the observed reactivity of the j-th
PEGylation. PEG, PEGd, and kd are the concentrations of
methoxy poly(ethylene glycol) N-hydroxysuccinimide (mPEG-
NHS), hydrolyzed mPEG-NHS, and the hydrolysis rate
constant, respectively. The hydrolysis rate constant is 0.21
min−1 for mPEG-NHS and ∼0.01 min−1 for succinimidyl
esters of methoxy poly(ethylene glycol) propanoic acid
(mPEG-SPA) and α-methyl butanoic acid (mPEG-
SMB).12,40,64 The hydrolysis rate constants for other PEG
linkers were approximated from literature.65,66 The set of N +
3 differential equations were solved with ode15s on Matlab
2019. The model fitting optimization was run 50 times, and the
parameters (κ, reaction prefactor, distance cutoff) correspond-
ing to the minimum root-mean-square error (RMSE, eq 6)
between literature values and simulated values were recorded.

Scheme 1. Kinetic Constant Estimation for Subsequent PEGylation (Left); Key Ordinary Differential Equations (ODEs) of the
Kinetic Model (Right)12
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Cex and Ccalc denote the experimental and simulated
concentrations, and n denotes the number of experiments.

= C C
n

RMSE
( )ex calc

2

(6)

The 95% confidence interval for fitted parameters is
constructed based on F-test statistics.67 Briefly, the 95% F-
test score was calculated with degrees of freedom np and n,
where np is the number of parameters to be fitted and n is the
number of experiments. The confidence interval was calculated
with eq 7, where q corresponds to the (1 − q) quantile of the
F-distribution, p is the set of optimizable parameters, and p* is
the best fit set of parameters. D(p) and D(p*) are RMSE
values calculated from sets p and p*, respectively. Random
noise was then induced to the optimized parameters p* to
generate p, which are used to calculate the updated RMSE
value D(p) between simulated and experimental data. The
range of parameters that give RMSE values within the 95%
confidence interval is then recorded.
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