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Introduction
Cancer is a major threat to human life, and studies have 
shown that breast cancer is the second most prevalent can-
cer in women after skin cancer.1 It is also the second leading 
cause of cancer death in women after lung cancer.1 Scientific 
evidence has shown that over the last four decades, early breast 
cancer detection combined with improved treatment strate-
gies significantly reduced patients’ mortality and morbidity 
rates.2,3 As a result, mammography-based breast screening 
has been well established for early breast cancer detection. 

However, mammographic image interpretation is a difficult 
and time-consuming task, which also has large inter-reader 
variability in the cancer screening environment. To help 
improve the efficacy of screening mammography, in the last 
two to three decades, there has been a significant interest in 
the development and advancement of computer-aided detec-
tion (CAD) schemes of mammograms including detection of 
breast mass and micro-calcifications.

In CAD schemes for breast mass detection, a mass is 
defined as a space-occupying lesion seen in more than one 
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projection,4 and is frequently characterized by its shape and 
margin. In general, a mass with more regular and rounded 
shape has a high probability of being benign whereas a mass 
depicting an irregular and spicular shape has a high probabil-
ity of being malignant. Studies have shown that CAD can 
improve the breast cancer detection rate at its early stages.5,6

Many CAD schemes have been developed for mass detec-
tion using various features (ie features based on shape, texture, 
spiculation, and presence of calcifications7–10) and different 
classifiers including linear discriminant analysis (LDA), support 
vector machines (SVMs), artificial neural networks (ANNs), 
Bayesian belief networks, and rule-based classifiers.7,9–15 In 
the literature, ANNs and SVMs are the two most popular 
classifiers that have been widely explored for mass detection 
and/or classification.7,11,16–20 However, a problem that is fre-
quently associated with fixed-topology ANN classifiers is the 
determination or design of the optimal network topology or 
structure. In many approaches, the ANN topology is frequently 
determined by trial-and-error methods or experiments,8,11,16,20 
which often lead to suboptimal solutions.

Genetic algorithms (GAs) are algorithms that are inspired 
by natural evolution, and proceed in a similar way as events that 
occur in natural evolution. The advantage of GAs is that they 
are purported to find globally optimal solutions that do not get 
trapped in local optima, which is a frequent issue associated 
with gradient descent algorithms in training of fixed-topology 
ANNs. In the literature for mass detection or classification, 
GAs and evolutionary algorithms have mainly been used for 
feature selection21,22 or parameter optimization,23,24 and rarely 
for directly determining the classifier topology.25

In this study, we analyze a method that uses GAs 
to evolve ANNs with optimal weights and structure 
(hidden nodes, input features, and connections), which is 
called “Phased Searching with NEAT in a Time-Scaled 
Framework”26 in our mass detection scheme. This framework 
is based on the NeuroEvolution of Augmenting Topolo-
gies (NEAT) algorithm proposed by Stanley and Miikku-
lainen27 and Stanley et  al.28 The NEAT algorithm evolves 
both the weights and structure of ANNs, unlike most meth-
ods that only evolve the connection weights and have fixed 
topologies.29,30 NEAT’s performance has been analyzed and 
proven in various and diverse domains.28,31–35

Recently, it was shown that Phased Searching with 
NEAT in a Time-Scaled Framework26 and another variant of 
NEAT (feature-deselective NEAT or FD-NEAT)36,37 per-
formed well in a lung nodule detection scheme of CT images. 
The advantage of Phased Searching over conventional NEAT 
is that feature selection is enabled in Phased Searching, and 
it produces simpler networks than FD-NEAT and NEAT, 
which are faster to train and validate, and require less param-
eter (connection weight) tuning.

In this paper, we analyze Phased Searching’s perfor-
mance in a computer-aided mass detection scheme, and com-
pare its performance and optimization efficacy with four other 

established classifiers in this task, namely the fixed-topology 
ANNs, LDA, bagged decision trees, and SVMs using a com-
mon testing image dataset. The details of our experimental 
procedures and results are reported in the following sections.

Materials/Dataset
Our image dataset consists of 1,600 regions of interests (ROIs), 
which were randomly extracted from a large database of digi-
tized screen-film-based mammograms. The detailed descrip-
tion of the image data characteristics has been previously 
reported.38–41 In this dataset, 800 ROIs are positive in which 
each consists of one mass region detected by radiologists dur-
ing the original mammogram reading, and was later verified 
by pathology examinations from the biopsy specimens. The 
remaining 800 ROIs are negative, but involve the false-positive 
(FP) mass regions detected by our previous CAD scheme.39–41

The size of each ROI is 512  ×  512 pixels, which was 
extracted from the center of each identified suspicious mass 
lesion. We used a multilayer topographic region growth 
algorithm9,38 to automatically segment the lesions. If there 
was noticeable segmentation error, the lesion boundary was 
corrected or re-drawn. Each lesion ROI was reduced or sub-
sampled by a pixel averaging method using a kernel of 8 × 8 
pixels in both x and y directions. The pixel size was thus 
increased from 50 × 50 µm in the original digitized image to 
400 × 400 µm in the reduced image. Examples of a malignant 
mass and an FP detection from our dataset are displayed in 
Figures 1 and 2, respectively, along with their corresponding 
segmentations extracted by our mass segmentation scheme.

Methods
Neuroevolution. Neuroevolution methods use the 

evolutionary algorithms to train ANNs and can be divided 
into various groups based on the different encoding meth-
ods to optimize the connection weights and/or topology of 
the ANNs.42 With the fixed-topology neuroevolution sys-
tems,43,44 the ANN topologies are fixed and only the node 
connection weights are evolved. Methods that evolve both the  
ANN weights and topologies are termed “topology and weight 
evolving artificial neural networks (TWEANNs).”27,32,45 With 
TWEANNs, each individual in the population has a full 
specification with complete weight representation or informa-
tion. Fitness evaluation is also accurate as there is a one-to-one 

Figure 1. Example of a malignant mass ROI (A) and its corresponding 
segmentation mask (B).
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mapping between the genotype and its phenotype.42 Another 
advantage of TWEANNs is that there is an option to start 
with minimal structure, and to increment structure only if 
there is an associated fitness improvement.

With TWEANNs, how to encode the individual genome 
is essential. The main issue associated with reproduction 
through the crossover process in TWEANNs is the compet-
ing conventions problem, also known as the permutations prob-
lem or variable length genome problem.46 A systematic encoding 
system is required to ensure that there are no glitches in the 
evolutionary process, such as offspring genomes with the 
same structures being assigned to different innovation num-
bers or historical markings. Furthermore, a good encoding 
system will also ensure a more compact genome representa-
tion. Various types of encoding systems have been proposed 
in the literature.47–52

NEAT is another recently developed neuroevolution 
method that has been proven effective in various applications 
and successfully solved the competing conventions problem in 
TWEANNs.27,28 NEAT works through the process of com-
plexification, namely the networks start with minimal topol-
ogy, and structure is only incremented when it is found to 
improve or enhance network performance.33 However, one of 
the pitfalls of NEAT is that feature selection is not enabled 
in NEAT. Feature selection is tremendously important as the 
exclusion of relevant features leads to suboptimal solutions, 
whereas the exclusion of irrelevant or redundant features adds 
unnecessary dimensions to the search space. In recent years, 
several variants of NEAT have been introduced and incor-
porated to feature selection or deselection (exclusion).26,31,53–55 
For a more in-depth discussion on neuroevolution methods in 
the literature, the reader is referred to several literature reviews 
or surveys about the topic.42,56

Phased Searching with NEAT in a Time-Scaled Frame-
work. In Ref. 26, Phased Searching with NEAT in a Time-
Scaled Framework was presented and examined on 360 CT 
scans from the public Lung Image Database Consortium 
(LIDC) database. The method was shown to outperform the 
conventional NEAT in terms of sensitivity results, complexity 
of evolved networks, and evolution time.

Phased searching is based on the NEAT algorithm, 
which is distinct from other neuroevolution methods in three 
ways:27 (1) crossover of different topologies is performed using 

innovation numbers as historical markings, (2) structural 
innovation is protected by speciation, and (3) incremental 
growth is performed from almost minimal structure. Phased 
searching outperforms NEAT in that it enables automatic  
feature selection or deselection on the input feature set, removes 
redundant structure, and also evolves simpler networks that are 
faster to be trained and validated in the evolutionary run.

With Phased Searching with NEAT in a Time-Scaled 
Framework, the search for useful network topologies is evolved 
in alternating between complexification and simplification 
phases.26 During the complexification phases, useful structure 
(features, nodes, and connections) is added to the networks 
whereas during the simplification phases, redundant and irrel-
evant structure is discarded. Hence, the process of discarding 
redundant and irrelevant connections enables the search for 
optimal structure to proceed faster. For a detailed description 
of Phased Searching with NEAT in a Time-Scaled Frame-
work, the reader is referred to Ref.26.

In the previous work in Ref.26, the complexification and 
simplification phases were implemented with equal genera-
tion numbers. In this study, we analyzed the performance of 
Phased Searching with equal and different generation num-
bers for the complexification or simplification phases. We 
implemented a new fitness function computed as the maxi-
mization of the area under the receiver operating character-
istic (ROC) curve (AUC) on the training subsets. Namely, 
the network that maximized the AUC result on the training 
subset was selected, and subsequently applied to the test-
ing subset. The computation of the fitness function as the 
maximization of the AUC is a proven criterion function as 
it has been analyzed and shown to perform well on other  
GA-based schemes or methods.21,24

We also modified SharpNEAT 2.2.0,57 which is a C# 
implementation of NEAT, to implement Phased Searching 
with NEAT in a Time-Scaled Framework. We also per-
formed the training and validation of our mass detection 
scheme using a 10-fold cross-validation method, the details 
of which are provided in the Experimental Setup and Clas-
sification Methodology section. In any GA process, several 
runs on the training subsets have to be repeated to perform 
a global search over the search space for the optimal network 
before the trained network is applied on the testing subsets. 
We selected the network that maximized the AUC result on 
the training subset over five runs. This process was repeated 
10 times for the 10 different training subsets using our 10-fold 
cross-validation method (namely, five runs for each training 
subset, repeated 10 times for the 10 individual subsets).

Feature computation. In this study, we computed 271 
image features for our mass detection scheme on all 1,600 
ROIs of our database. The top-level block diagram of our 
mass detection scheme is displayed in Figure 3. The computed 
features are based on shape, spiculation, texture, contrast, 
isodensity, presence and location of fat, and/or calcifica-
tions. We also included 27 previously computed features for 

Figure 2. Example of an FP ROI (A) and its corresponding segmentation 
mask (B).
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mass detection in our previous studies.9,39 A summary of the 
computed features is provided in Table 1. In this section, we 
present a brief overview of these features; for their detailed 
description, the reader is referred to Ref.58.

Various shape features have been proposed in the litera-
ture for mass detection or classification.7,11,14 We computed a 
mixture of novel and previously proposed shape features as 
listed in Table 1. The modified compactness59,60 and shape fac-
tor ratio61,62 are the most common and established shape fea-
tures that have appeared in the literature. For a full description 
of the shape features, the reader is referred to Refs.58,63.

We proposed four fat-related features to determine the 
presence and location of fat within the segmented lesions. 
First, we applied an empirically determined threshold of 
2,600 to extract the fat regions within the lesion segments. 
Then, we computed four features on the extracted fat regions: 
area, ratio of the fat area to the lesion segment area, num-
ber of fat regions within the mass (the fat regions were seg-
mented by eight-connected-component labeling), and the 
average distance between the centroids of the segmented fat 
regions and the centroid of the whole lesion segment. We also 
computed three features to detect the presence of calcifications 
within the lesion segments, which are listed in Table 1 and 
are self-explanatory.

In the literature, many studies have proposed various 
texture features for mass detection or classification.11 We 
computed some previously determined features (22  gray-
level run length and 4 gray-level co-occurrence matrix-based 
features) on original (undilated) lesion segments. On dilated 
lesion segments, we computed 24 average and maximum val-
ues of gray-level co-occurrence matrix-based features, and 66 
average and maximum values of gray-level run length-based 
texture features.

We have also computed some spiculation features on 
the lesion segments based on the divergence of the normal-
ized gradient (DNG) and the curl of the normalized gradi-
ent (CNG). If an FP ROI is modeled as a circular region 
with homogeneous intensity against a darker background, 
the computation of the DNG feature should produce a maxi-
mum value at the location of its center point. On the other 
hand, the computation of the CNG feature will produce a 
high result at the location of the center point of a spicular 
region. We computed altogether 20 spiculation-based features 
(including mean, maximum, minimum, standard deviation, 
and median of the CNG and DNG, and the same statistical 

features computed on the maxima points located near the 
center regions of the lesion segments), on Gaussian-blurred 
images of the lesion segments.

In Ref.58 we presented a novel approach of computing four 
previously determined contrast measures8,62,64 over differently 
predefined inner and outer regions of the lesion segments. Our 
approach differs from previous approaches in that we com-
pute the contrast features over different-sized regions of the 
lesion and over different regions of the lesion background. 
This approach is based on our observation that different inner 
regions of the lesion have different structural appearances and 
intensities eg, pixels immediately adjacent to the mass contour 
frequently have a different structure and appearance from the 
pixels near the center of the mass region. Additionally, differ-
ent regions of the lesion background have a different structural 

Table 1. Summary of computed image features for our mass 
detection scheme.

Feature group/type Description

Shape Eccentricity, equivalent diameter,  
extent, convex area, major axis  
length, minor axis length, orientation,  
solidity, shape factor ratio, ratio of  
major to minor axis length, modified  
compactness

Fat Size (pixel number), size factor ratio  
(size/mass area), region number,  
average distance to the mass center  
(average distance/mean radial length  
of mass region)

Calcifications Size (pixel number), size factor ratio  
(size/mass area), region number

Texture (lesion segment  
only)

4 gray level co-occurrence matrix  
based features, 22 average and  
maximum values of gray level run  
length based texture features

Texture (dilated lesion 
segments)

24 average and maximum values  
of gray level co-occurrence matrix  
based features, 66 average and  
maximum values of gray level run  
length based texture features

Spiculation Features computed on the maxima  
points and on the whole image of  
the divergence of the normalized  
gradient (DNG) and the curl of the  
normalized gradient (CNG)

Contrast Contrast based features (previously  
defined in Refs.8,9,64) computed  
for different-sized regions and  
locations of the lesion segments  
and background

Isodensity Isodensity based features (previously  
defined in Ref.8) computed for  
different-sized regions and  
locations of the lesion segments  
and background

Previously-computed  
features

27 intensity, contrast, shape, border  
segment, and local topology based  
features previously described in  
Refs.9,39,65
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Figure 3. A flow diagram of our mass detection scheme.
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appearance ie the pixel intensities near the lesion contour are 
slightly higher than the pixel intensities further away.

To compute the contrast-based features, we extracted 
the outer region (O), by dilating the lesion segment with flat, 
disk-shaped, or “disc” structuring elements (SEs) of three 
different sizes: (1) mean radial length of the mass, (2) 1/2 of 
the mean radial length, and (3) 1/4 of the mean radial length, 
whereby the mean radial length was defined previously.61 We 
also defined the inner region of the lesion (I) by the whole 
inner segment of the lesion within its contour, and also 
defined two other regions of the lesion by performing an ero-
sion operation on I. To obtain the other two inner segments, 
we performed an erosion operation on I using a “disc” SE of  
three different sizes: (1) mean radial length of the mass, 
(2) 1/2 of the mean radial length, and (3) 1/4 of the mean 
radial length. After the erosion operation, we obtained the 
eroded image denoted by I1, and the resultant image by sub-
tracting I1 from I, denoted by I2. Thus, the new contrast-based 
features were computed between the inner and outer regions 
of the mass (between O and I, O and I1, and O and I2). In this 
way, we computed altogether 5 × 3 × 4 = 60 contrast-based 
features per lesion segment.

Finally, we computed 27 ROI morphological features 
that were defined in our previous publications.9,39,65 These fea-
tures consisted of different intensities, contrasts, shapes, bor-
der segments, and local topological-based features.

Performance comparisons with other classifiers. To 
assess Phased Searching’s performance, we performed per-
formance comparisons with other well-established classifiers 
for the mass detection task, namely fixed-topology ANNs, 
SVMs, bagged decision trees, and LDA. The parameter tun-
ing for each classifier was performed on the training subsets 
that were kept completely separated from the testing subsets.

First, we trained and optimized a LIBSVM classi-
fier66 with the radial basis function (RBF) kernel, defined 
as K(xi,xj)  =  exp(−γ||xi-xj||2), γ  .  0, on the training set of 
instance–label pairs (xi, yi), i =  1, …, l, where xi  ∈  Rn and 
yi  ∈  {1, −1}, ∀i =  1, …, l. A recommended five-fold cross-
validation method with a parallel “grid-search”67 was used to 
determine the penalty parameter of the error term and γ.

Second, we analyzed a standard feed-forward ANN with 
a single hidden layer and with a hyperbolic tangent activation 
function at the hidden nodes, and a linear activation func-
tion at the output node (default parameters in the Matlab 
Neural Network toolbox). The number of input nodes was 
equal to the number of features (271). The fixed-topology 
ANN was trained by a backpropagation algorithm whereby 
the network’s performance was analyzed for 2–40 nodes in 
the hidden layer (using the AUC computed on the training 
set as the performance measure), which was always initialized 
with random weights.

Third, the LDA and decision tree classifiers are also popu-
lar and used for mass detection.11,68–72 We included them in our 
study. Bagged decision trees are an ensemble of classification 

trees, and in initial experiments, they gave a better response 
than the single decision tree with binary splits for classifica-
tion. The LDA classifier is a traditional classification method 
that has a high performance for linearly separable problems; 
however, it might adapt poorly for non-linear separable data.

The input features were linearly normalized (between 
0 and 1) for the SVM, fixed-topology ANN, and Phased 
Searching classifiers. For LDA and bagged decision trees, 
normalization of the input features did not affect the classifier 
outcomes, and was thus omitted.

Experimental setup and classification methodology. 
Training and validation of our mass detection scheme was 
performed in a 10-fold cross-validation framework. In this 
method, the 800 malignant true-positive (TP) ROIs and 800 
FP ROIs were randomly segmented into 10 exclusive subsets. 
Classifier training was then performed on nine TP and nine 
FP subsets, with the remaining one TP subset and one FP 
subset used for testing. This process was repeated iteratively 
using the different combinations of the nine TP and nine 
FP subsets each time so that each of the TP and FP ROIs 
was tested once with a classifier-generated probability score. 
Finally, the results on all 10 testing subsets were averaged and 
used to generate a ROC curve. By averaging the results on 
the 10 testing subsets, we can obtain the mean and standard 
deviation intervals at specific points on the ROC curve.

We also computed the AUCs of each examined classifier, 
and performed statistical significance tests on the obtained 
results. Furthermore, we performed an analysis on the fea-
tures selected by Phased Searching in terms of frequency of 
selection per feature grouping/type. This analysis is impor-
tant to examine the features that were beneficial for Phased 
Searching, and were thus included in the learning process and 
throughout the evolutionary run(s).

We performed an analysis of varying the alternat-
ing complexification and simplification parameter values of 
Phased Searching. In the original study performed on 360 
lung CT scans from the LIDC database,26 Phased Searching 
was examined only for equal values of the alternating com-
plexification or simplification phases or cycles. Thus, in this 
study, we analyzed Phased Searching’s performance for equal 
and unequal values of the complexification and simplification 
phases. We performed the following analysis on the networks 
evolved by Phased Searching: (1) best fitness per generation, 
(2) complexity (number of connections) of the best network 
per generation, and (3) average network complexity per gen-
eration. The AUCs obtained by varying the complexification 
or simplification parameters are tabulated.

Results
The computed ROC curves for all analyzed classifiers are 
displayed in Figure 4. We also computed and tabulated the 
average AUC results with standard deviation intervals over 
the 10 folds of each classifier in Table 2. The results indicate 
that SVM, fixed-topology ANNs, and Phased Searching 
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outperform the bagged decision trees and LDA classifiers. The 
SVM classifier slightly outperformed the ANN and Phased 
Searching classifiers.

Table 3 displays the P-values comparing the AUC results 
of the different classifiers. In Table 3, the diagonal P-values 
are equivalent and thus omitted. It shows that Phased Search-
ing outperforms the bagged decision trees and LDA clas-
sifiers, and the difference in the AUC results is statistically 
significant for bagged decision trees (P , 0.001), but not for 
LDA (P = 0.270). SVM outperforms Phased Searching with 
a statistical significance (P  =  0.026). Fixed-topology ANNs 
slightly outperform Phased Searching, but the difference is 
not statistically significant (P  =  0.242). SVM also outper-
forms fixed-topology ANNs, but it is not statistically signifi-
cant (P = 0.196). LDA is significantly outperformed by ANN 
(P = 0.024) and SVM (P = 0.002).

Table 4  shows the distributions of the features selected 
or retained by Phased Searching at the end of the evolution-
ary runs. The middle column of Table  4  shows the number 

of features in each group (eg, there are 4 fat-related features 
out of 271 total features). The far-right column thus displays 
the percentage of features that were retained in the group and 
their standard deviation intervals computed over the 10-fold 
cross-validation experiments. For example, 80.0% of the fat-
related features (80.0% × 4 = 3.2 features) were retained by 
Phased Searching with a standard deviation interval of 23.0% 
or 0.92 features.

Figures 5–7 display the results of the analysis performed 
as the change of complexification and simplification parameters 
selected in Phased Searching algorithm. The figures display 
the average and standard deviation intervals of the best fitness, 
complexity of the best network, and average network complex-
ity, respectively, of the networks evolved over the 10-fold cross-
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Figure 4. ROC curves of the five compared classifiers computed over the 
10-fold cross-validation experiments–(1) Phased Searching with NEAT 
in a Time-Scaled Framework using the maximization of AUC as the 
fitness function, (2) fixed-topology ANNs, (3) SVMs, (4) bagged decision 
trees, and (5) LDA. The error bars are symmetric, and are two standard 
deviation units in length.

Table 2. Average AUC values and the corresponding standard 
deviations for the five compared classifiers computed using the 
10-fold cross-validation experiments.

Method AUC

Phased Searching 0.856 ± 0.029

ANN 0.871 ± 0.025

SVM 0.886 ± 0.026

Decision trees 0.807 ± 0.015

LDA 0.841 ± 0.028

Table 3. Student’s t-test performed at the 5% significance level to 
study if the AUC results of the different classifiers are significantly 
different from each other. The P-value of rejecting the null hypothesis 
is given in the table. The diagonal P-values in the table are 
equivalent; thus, they have been omitted (–).

Method p-value

Phased  
Searching

ANN SVM Decision  
trees

LDA

Phased 
Searching

– 0.242 0.026 ,0.001 0.270

ANN – – 0.196 ,0.001 0.024

SVM – – – ,0.001 0.002

Decision trees – – – – 0.004

LDA – – – – –

 

Table 4. Features selected or retained by Phased Searching with 
NEAT in a Time-Scaled Framework. The 271 proposed features are 
divided into nine feature groups or types listed in the far-left column. 
The number of the features represented in each group is represented 
in the middle column. The average percentages of the features 
selected by Phased Searching with standard deviation intervals are 
shown in the far-right column.

Feature  
group/type

Number of  
features

Average percentage 
and std. dev. intervals

Shape 11 77.3 ± 13.0%

Fat 4 80.0 ± 23.0%

Calcifications 3 80.0 ± 17.2%

Texture (mass segment  
only)

26 68.1 ± 10.1%

Texture (dilated mass  
segments)

90 75.4 ± 5.0%

Spiculation 20 65.5 ± 13.8%

Contrast 60 75.8 ± 5.6%

Previously-computed  
morphological features

27 74.1 ± 7.4%

Isodensity 30 28.3 ± 4.8%
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validation experiments. The AUC results corresponding to the 
performed parameter analysis are tabulated in Table 5.

Discussion
The results show that Phased Searching outperformed bagged 
decision trees and LDA in the classification task, and its per-
formance was not significantly different from the ANN clas-
sifier (P = 0.242). SVM produced the best performance among 
all the classifiers analyzed, and significantly outperformed 
Phased Searching at the 5% significance level (P  =  0.026). 
This result is somehow unexpected. We had initially expected 
that the number of input features (271) was too large for the 
task at hand, and that Phased Searching’s ability to select rel-
evant features during the complexification phases and discard 
(deselect) irrelevant and redundant features during the sim-
plification phases would give it an advantage over the other 
classifiers. The results indicate, however, that the inclusion 
of the 271 features was beneficial for the classifiers analyzed, 
especially for the fixed-topology ANN and SVM classifiers.

Another advantage of the SVM classifier over ANNs is 
that it is a maximum margin classifier, namely it minimizes 
the classification error and maximizes the geometric margin 
simultaneously. In doing so, unlike ANNs, SVM does not suf-
fer from “overfitting” on the training sets. Phased Searching, 
which is an ANN-based classifier, can thus also be affected by 
“overfitting.” Furthermore, as Phased Searching relies entirely 
on GAs during the training and evolution processes, the GA 
algorithm enables it to search globally optimal solutions; how-
ever, its performance might be affected by the lack of a refine-
ment procedure (such as backpropagation training).42

Although Phased Searching was outperformed by SVM, 
it performed better than the LDA and decision tree classi-
fiers, both of which are widely used and are highly popular 
for mass detection.11,68–72 Furthermore, Phased Searching’s 
overall performance is comparable with and simultaneously 
uses fewer features than fixed-topology ANNs. Although it 
is slightly outperformed by SVM, it requires the computa-
tion of fewer features, which reduces the computational time 
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requirement at the feature computation stage, and also reduces 
the overall training and validation time requirement of the 
mass detection scheme.

The results of the analysis of features selected by 
Phased Searching at the end of 800 generations show that 
the fat, calcification, and shape-related features were most 
frequently selected or retained by Phased Searching. The 
isodensity and spiculation features were the least frequently 
selected features.

The results of analyzing the complexification or simpli-
fication parameters in Table 5 and in Figures 5–7 show that 
varying these parameters only produced a small change in the 
AUC results of Phased Searching. The highest AUC result 
of 0.856  ±  0.029 was obtained from an experiment involv-
ing 50  generations of complexification and 150  generations 
of simplification, which indicates that those were the best 
parameters for the classification task at hand.

This outcome cannot be ultimately predicted from the 
analysis performed on the fitness of the best networks evolved 
for more than 800 generations in Figure 5, as the graphs for 
the unequal complexification or simplification runs overlap too 
closely. However, in Figures 6 and 7, namely the analysis of the 
best network and average network complexities, we observe 
that the network complexities in the experiment involving the 
50 complexification and 150 simplification generations stabi-
lized at a fixed value or range at the end of 800 generations. 
For the experiments of equal complexification and simplifica-
tion generations (ie, 200, 100, and 50), the average and the 
best network complexities displayed an increasing trend, and 
continued to increase at the end of 800 generations. This trend 
in the network complexities was also observed in the original 
experiments that analyzed Phased Searching’s performance in 
a lung nodule detection task, which was conducted solely with 
equal complexification and simplification phases.26

The average and the best network complexities obtained 
for the other two experiments conducted with unequal 

complexification or simplification generations (namely, 35 
complexification or 165  simplification generations, and 
20 complexification or 180  simplification generations) in 
Figures 6 and 7 show that unlike the experiment with a mix 
of 50 complexification and 150 simplification generations, the 
network complexities gradually decreased and did not stabi-
lize at the end of 800 generations for these two experiments. 
The results in Figures 5–7 and the corresponding AUC results 
in Table 5 indicate that the optimal network topologies (con-
nections and nodes) were evolved for the 50 complexification 
and 150  simplification generation parameter values, which 
produced the best network and average network complexities 
to evolve and stabilize the classification task at hand.

Although this study demonstrates promising results, it 
is rather preliminary and has a number of limitations. For 
example, this is a laboratory-based technology development 
study using a testing dataset with an equal number of positive 
to negative images, which does not represent the actual cancer 
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out of five runs), averaged on the 10 folds of Phased Searching with NEAT in a Time-Scaled Framework with alternating generations of complexification 
or simplification phases.

Table 5. Average AUC values and standard deviations obtained 
by varying the complexification and simplification generations of 
Phased Searching with NEAT in a Time-Scaled Framework (the 
complexification or simplification phases were alternated over 
an 800 generation evolutionary time scale). The AUC results 
correspond with the best fitness and network complexity analysis 
performed in Figures 5–7.

Alternating complexification/ 
simplification generations

AUC 

200 gens. complexify/200 gens. simplify 0.853 ± 0.020

100 gens. complexify/100 gens. simplify 0.855 ± 0.026

50 gens. complexify/50 gens. simplify 0.854 ± 0.027

50 gens. complexify/150 gens. simplify 0.856 ± 0.029

20 gens. complexify/180 gens. simplify 0.853 ± 0.021

35 gens. complexify/165 gens. simplify 0.855 ± 0.027
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prevalence ratio in general breast screening practice. Also, 
as a relatively small image testing dataset, the potential case 
selection bias might exist making it unable to fully represent 
the diversity in the general breast cancer screening popula-
tion. Therefore, the robustness of this new approach and our 
new scheme needs to be further validated using the large and 
diverse image databases in future studies.

Conclusions
We conducted experiments to analyze a new GA-based classi-
fier, Phased Searching with NEAT in a Time-Scaled Frame-
work in a challenging computer-aided mass detection task, and 
compared its performance with several other well-established 
classifiers in the field. Phased Searching achieved an AUC 
result of 0.856 ± 0.029, and significantly outperformed a bagged 
decision tree classifier (P , 0.001), and slightly outperformed 
an LDA classifier (P  =  0.270). Phased Searching was only 
significantly outperformed by the SVM classifier (P = 0.026), 
and performed comparably with the fixed-topology ANN 
classifier (P  =  0.242). The highest AUC result was achieved 
in this task by the SVM classifier (AUC  =  0.886  ±  0.026). 
Analysis performed on the network complexities evolved by 
Phased Searching indicates that it can evolve optimal network 
topologies provided that its complexification and simplification 
parameters are optimally chosen, as it produced AUC results 
that are comparable to the state-of-the-art classifiers, but with 
fewer number of features being selected, and thus a lower 
training and validation time requirement. From this study, it 
can also be concluded that the three classifiers, namely SVM, 
fixed-topology ANN, and Phased Searching with NEAT in a 
Time-Scaled Framework, are performing comparably well in 
our computer-aided mammographic mass detection scheme.
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Supplementary Data
The parameters are based on SharpNEAT 2.2.0,57 and 
remained constant throughout the evolutionary run. The best 
parameter values were obtained on the training subsets of the 
10-fold cross-validation experiments, which were kept com-
pletely separated from the testing subsets:

1.	 Population number (number of genomes/networks): 200
2.	 Species number: 10
3.	 Number of generations (per run): 800
4.	 Connection weight range: {−0.05, 0.05}. This parameter 

gets or sets the connection weight range to use in the 
genomes eg, a value of 5 defines a weight range of −5 to 
5. The weight range is strictly enforced ie when creating 
new connections and mutating existing ones.

5.	 Probability that all the excess and disjoint genes 
were copied into an offspring genome during sexual 
reproduction: 0

6.	 Interspecies mating rate: 0.01
7.	 Elitism proportion: 0.2. The species genomes are first 

sorted by fitness. The top N% are kept, whereas the other 
genomes are removed to make way for the offspring.

8.	 Selection proportion: 0.2. The species genomes are first 
sorted by fitness. Then, the parent genomes are selected 
for producing offspring from the top N%. Selection is 
performed before elitism is applied, thus selecting from 
more genomes than will be made elite is possible.

We also used the hyperbolic tangent activation function 
at the hidden nodes and a modified sigmoidal activation func-
tion27 at the output node.

The following parameter values were used only during 
the complexification phases:

1.	 Probability of adding a new node: 0.15
2.	 Probability of adding a new connection: 0.35
3.	 Connection weight mutation probability: 0.5
4.	 Probability that a genome mutation was a “delete 

connection” mutation: 0.001
5.	 Proportion of offspring from asexual reproduction 

(mutation): 0.8
6.	 Proportion of offspring from sexual reproduction (cross-

over): 0.2
These parameter values follow a logical pattern eg, con-

nections (links) need to be added more often than nodes. The 
following parameter values were used only during the simpli-
fication phases:

1.	 Connection weight mutation probability: 0.6
2.	 Probability that a genome mutation was a “delete 

connection” mutation: 0.4
3.	 Proportion of offspring from asexual reproduction 

(mutation): 1
4.	 Proportion of offspring from sexual reproduction 

(crossover): 0.
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