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Abstract: The study presents the results of a comparative evaluation of the effect of structural
modifications of fucoidans from the brown alga Fucus evanescens (native, highly purified product
of fucoidan enzymatic hydrolysis, a new regular 1→3;1→4-α-L-fucan, sulphated mainly at C2 and
acetylated at C4 of the fucose residue) on the effector functions of innate and adaptive immunity
cells in vitro and in vivo. Using flow cytometry, we found that all examined fucoidans induce the
maturation of dendritic cells, enhance the ability of neutrophils to migrate and adhere, activate
monocytes and enhance their antigen-presenting functions, and increase the cytotoxic potential of
natural killers. Fucoidans increase the production of hepatitis B virus (HBs) specific IgG and cytokine
Th1 (IFN-γ, TNF-α) and Th2 (IL-4) profiles in vivo. The data obtained suggest that in vitro and
in vivo adjuvant effects of the products of fucoidan enzymatic hydrolysis with regular structural
characteristics are comparable to those of the native fucoidan. Based on these data, the products
of fucoidan enzymatic hydrolysis can be considered as an effective and safe candidate adjuvant to
improve the efficacy of prophylactic and therapeutic vaccines.

Keywords: adjuvants; vaccines; fucoidans; innate and adaptive immunity

1. Introduction

A large number of publications are devoted to the study of the biological activity of fucoidan from
the brown alga Fucus evanescens. The results of these studies are summarized in our work [1]. These
data indicate that the fucoidan from F. evanescens has high biocompatibility, lack of toxicity, safety for
the macroorganism, and has various experimentally and clinically proven pharmacological effects,
including antitumor, anticoagulant, antimutagenic activities, and immunostimulatory, antiinfective,
and antioxidant properties, providing great potential for designing drugs for biomedical use on the
fucoidan basis.

However, no fucoidan has been declared as a drug. The reason is that the structural diversity
of fucoidans is extremely large. Fucoidans represent the family of fucose-containing homo- and
heteropolysaccharides from polysaccharides with a high content of uronic acids and low fucose and
sulfate contents, for example, from Hizikia fusiforme alga, for practically pure α-L-fucans with the
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main component of polysaccharide-fucose (F. evanescens). Except for fucose, these polysaccharides
can contain minor amounts of other monosaccharides (galactose, mannose, xylose, glucose) and also
sulfates, uronic acids, acetyl groups, and protein [2–5]. In particular, fucoidan from F. evanescens has
a similar l-fucosyl backbone of alternating α (1→4) and α (1→3) l-fucosyls with sulphate substitution
at C2. An additional sulphate may occupy position 4 in some of the α (1→3)-linked fucosyls, and the
remaining hydroxyl groups may be randomly acetylated [3,4] (Figure 1).
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Figure 1. Structure of fucoidan from Fucus evanescens.

The figure shows the structure of fucoidan from F. evanescens: fucoidan has a similar l-fucosyl
backbone of alternating α (1→4) and α (1→3) l-fucosyls with sulphate substitution at C2. An additional
sulphate may occupy position 4 in some of the α (1→3)-linked fucosyls, and the remaining hydroxyl
groups may be randomly acetylated.

In order to establish the structure of polysaccharides, the most promising approach is based
on the use of enzymatic transformation of fucoidans that can be extremely useful not only for the
establishment of structural features, but also for access to biologically active fragments [6,7]. As
an example, the product of enzymatic hydrolysis of fucoidan from F. evanescens has been obtained [6].

The present study aimed to comparatively evaluate the effect of fucoidans from the brown alga
F. evanescens (native, highly purified product of fucoidan enzymatic hydrolysis) on effector functions of
innate and adaptive immunity cells in vitro and in vivo.

2. Results

2.1. The Effect of Fucoidans on the Maturation of Dcs Generated from Mice Bone Marrow

We revealed that all fucoidans (F1-3) induce the maturation of dendritic cells (DCs) generated
from the bone marrow of mice, as evidenced by a pronounced increase in the expression of CD83
(the terminal differentiation marker) reducing the expression of CD34 (the marker of immature DCs)
compared to the negative control (p < 0.01). Under the fucoidan action, expression of the activation
marker (CD38) and adhesion molecule (CD11c) increased compared to the negative control (p < 0.05).
The expression of costimulatory (CD80 and CD86) and antigen-presenting molecules (MHC class II)
increased compared to the negative control (p < 0.05). The effect of F3 on the expression of the terminal
differentiation marker (CD83) was more pronounced compared with F1 and F2 (p < 0.05). The presence
of the CD14 monocyte marker on DCs indicates heterogeneity of the population. A decrease in the
expression of CD14 after treatment by fucoidans (p < 0.05) against an increase in CD83 (p < 0.01)
confirms the differentiation of cells into DCs (Table 1).

It should be noted that the effect of fucoidans on the maturation of DC was comparable to the
action of the classical maturation inducer, TNF-α, used as a positive control. Generated DCs have the
phenotypes CD34+/−; CD83+; CD11c+; CD38+; CD80+; CD86+; MHCII+; CD14+/- (Table 1).
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Table 1. The effect of fucoidans from F. evanescens on the immunophenotype of dendritic cells generated
from the bone marrow of BALB/c mice.

Percentage (%) of Cells
Expressing Markers

Negative Control (Immature
DC-GM-CSF and IL-4)

Positive Control
(TNF-α)

Fucoidans

F1 F2 F3

CD34 42.9 ± 4.5 6.9 ± 2.1 ** 10.2 ± 0.9 ** 14.3 ± 5.7 * 12.2 ± 5.6 **

CD83 8.1 ± 1.9 68.1 ± 4.8 ** 53.9 ± 7.5 ** 48.5 ± 6.5 ** 64.7 ± 5.6 **

CD14 57.2 ± 6.2 34.7 ± 4.6 * 40.1 ± 0.7 * 34.8 ± 7.6 * 42.1 ± 5.4 *

CD11c 10.5 ± 3.7 38.5 ± 1.4 ** 21.9 ± 5.9 * 27.1 ± 4.9 * 32.1 ± 4.1 *

CD38 20.2 ± 3.6 35.8 ± 5.3 * 27.9 ± 2.5 * 38.8 ± 8.8 * 37.6 ± 3.2 *

CD80 14.3 ± 4.3 51.1 ± 5.6 ** 28.8 ± 4.2 * 35.7 ± 5.9 * 49.6 ± 8.6 *

CD86 15.6 ± 2.4 57.9 ± 6.7 ** 41.4 ± 3.9 ** 30.2 ± 7.6 * 36.1 ± 5.6 **

MHC-II 20.9 ± 1.7 78.1 ± 2.8 ** 70.7 ± 7.1 ** 63.4 ± 2.5 ** 71.9 ± 6.3 **

The table summarizes the data of flow cytometry analysis of surface marker expression on dendritic cells (DCs)
generated from the bone marrow of BALB/c mice. Each symbol represents means ± SD (a pool of 2 mice; n = 6);
* p < 0.05; ** p < 0.01 compared to the negative control (immature DCs), Student’s t-test. The table summarizes
results obtained from two experiments with a total of 24 mice.

2.2. The Effect of Fucoidans on CD Molecule Expression in Peripheral Blood Human Innate Immunity Cells
(Neutrophils, Monocytes, NK-Cells)

We revealed the pronounced changes in the functional state of neutrophils incubated with
fucoidans: an increase in the expression levels of the activation molecules CD69 and CD14, an increase
of the expression levels of adhesion molecules CD11b, which belong to the β2-integrin family,
and a decrease the expression levels of CD62L molecules from the L-selectin family compared to the
control (p < 0.01). A comparison of measurement results indicates that the expression of CD14 and
CD11b during incubation of neutrophils with F1 was lower (p < 0.05), and CD62L molecules-higher
(p < 0.05) compared to F3 (Table 2).

Table 2. The effect of fucoidans from F. evanescens on CD molecule expression on peripheral blood
human innate immunity cells.

Cell
Subpopulation

CD
Molecule

Results
Fucoidans

Control
F1 F2 F3

Neutrophils

CD69 MFI 74.3 *
(48–87)

82.0 **
(51–104)

87.3 **
(49–123)

31.2
(22–49)

CD14 MFI 52.0 *
(43–82)

78.6 **
(62–101)

75.3 **
(66–94)

25.3
(18–30)

CD11b MFI 2621.3 *
(1738–3670)

2706 *
(1839–3631)

2981 *
(2341–3894)

1023
(802–1264)

CD62L MFI 62 **
(45–78)

37.3 **
(30–45)

34.8 **
(29–44)

174
(142–211)

Monocytes

CD69
% 30 **

(22–44)
29 **

(24–45)
28 **

(23–41)
5

(3–15)

MFI 139 *
(95–146)

114 *
(96–143)

103 *
(89–125)

38
(23–45)

HLA-DR
% 68 *

(55–80)
77 *

(69–85)
75 *

(68–81)
47

(44–51)

MFI 153 **
(118–186)

200 **
(157–241)

149 **
(113–183)

61
(48–74)

CD83
% 4.3 *

(2.0–6.6)
4.8 *

(2.3–7.3)
7.2 *

(4.6–9.7)
0.8

(0.6–0.9)

MFI 3.7 *
(2.2–4.2)

5.3 *
(3.8–6.7)

4.9 *
(3.1–4.7)

1.5
(1.1–1.8)
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Table 2. Cont.

Cell
Subpopulation

CD
Molecule

Results
Fucoidans

Control
F1 F2 F3

NK-cells

CD69
% 57.9 **

(53.6–61.9)
78.1 **

(73.2–81)
78.9 **

(74–81.2)
12.7

(8.5–20.7)

MFI 140.4 **
(105.4–174)

220 **
(154–265)

170 **
(121–202)

42.8
(31.2–64.7)

CD25
% 7.0 *

(5.2–9.3)
6.7 *

(4.5–8.7)
5.6 *

(4.1–6.9)
2.8

(1.3–3.7)

MFI 6.3
(4.8–7.5)

5.2
(3.6–6.8)

6.4
(4.9–7.3)

5.9
(3.5–6.8)

HLA-DR
% 4.7

(3.0–6.4)
8.4 *

(6.2–10.5)
4.4

(2.8–6.9)
4.2

(2.1–6.7)

MFI 2.8
(1.3–3.9)

6.1 *
(4.5–8.9)

2.2
(1.2–4.0)

2.0
(1.1–3.4)

CD8
% 57.6

(53.4–61.2)
56.7

(51.6–59.7)
54.2

(49.3–58.9)
55.5

(49.0–58.1)

MFI 193 *
(179–207)

183 *
(174–191)

163
(152–173)

159
(145–162)

CD107a % 2.6 *
(1.8–3.9)

2.1
(1.6–3.8)

4.0 *
(2.5–5.7)

1.4
(0.7–1.8)

The table summarizes the data of flow cytometry analysis of surface marker expression on human peripheral
blood cells (neutrophilic leukocytes, monocytes, NK-cells) of healthy volunteers (n = 5). The time of incubation of
fucoidans (100 µg/mL) with whole blood was 24 h. * p < 0.05; ** p < 0.01.

All studied fucoidans (F1-3) equally and significantly, compared to the control, increased the
expression of the early activation molecule CD69, recorded both in terms of the percentage (%) of
monocytes expressing CD69 such as MFI (p < 0.05) (Table 2, Figure 2). The activation of monocytes
after treatment by fucoidans was accompanied by an increase in the expression level of HLA-DR (the
antigens of the main histocompatibility complex) (p < 0.05) and a significant increase in the expression
of CD83 (the main marker of mature DC) compared to the control (p < 0.05) (Table 2).

All fucoidans increased the expression of CD69 on NK-cells compared to the control (p < 0.05),
as well as the number of NK-cells expressing CD25 (p < 0.01). Fucoidans F1 and F2 increased the
expression of CD8 (by measuring MFI) compared to the control (p < 0.05), and F1 and F3 increased the
content of NK cells expressing CD107a compared to the control (p < 0.05) (Table 2).

The data of MFI (mean fluorescence intensity) and average percentage (%) of cells expressing
CD molecules are presented as Me (median) and min-max; * p < 0.05; ** p <0.01 compared to the
control, Wilcoxon-test.

The figure shows the results of flow cytometry analysis of CD69 marker expression on peripheral
blood cells (neutrophils, monocytes, NK-cells) of healthy volunteers. The time of incubation of
fucoidans (in concentration, 100 µg/mL) with whole blood was 24 h. Control-PBS without fucoidan;
F1: native fucoidan in complex with polyphenols; F2: highly purified fucoidan; F3: the product of
fucoidan enzymatic hydrolysis. The surface expression of CD69 on innate immunity cells (neutrophils,
monocytes, NK-cells) was assessed in whole blood samples using immunofluorescent staining with
appropriate monoclonal antibodies (MAbs) and the appropriate isotypic controls. A minimum of
10000 cells were analyzed for each sample. Stained cells were analyzed using a BD FACS Calibur flow
cytometer and CellQuest software (Becton Dickinson, USA). The results are shown as the percentage
of CD69 molecules (%) and fluorescence intensity (MFI).
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Figure 2. The effect of fucoidans from F. evanescens on CD69 molecule expression on peripheral blood
human innate immunity cells: (A) neutrophils, (B) monocytes, (C) NK-cells.

2.3. The Effect of Fucoidans on the Expression of Activation Molecules on Peripheral Blood T- and B-Cells

All fucoidans increased the expression of CD69 molecules on the T-cell surface compared to the
control (p < 0.05). Fucoidan F1 contributed to an increase in the expression of CD25, HLA-DR, and
CD71 molecules on T-cell membranes compared to the control (p < 0.05). Fucoidans F2 and F3 had
no effect on the expression of the activation markers CD25, HLA-DR, and CD71. It is possible that
increased expression of these markers will be observed with an increase in the incubation time of
fucoidans with cells. Fucoidans (F1-3) significantly enhanced the expression of markers CD69, CD25,
CD86, CD71, and TLR2 on B-cell membranes compared to the control (p < 0.05); the effects of F1-3 on
B-cells were comparable (Table 3).
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Table 3. The effect of fucoidan from F. evanescens on CD molecule expression on peripheral blood
human adaptive immunity cells.

Cell Subpopu
Lation

CD
Molecule

Results of
Measure Ment

Fucoidans
Control

F1 F2 F3

T-cells

CD69 % 5.8 *
(3.6–7.2)

6.2 *
(3.8–8.9)

6.5 *
(4.1–8.8)

3.0
(1.6–5.4)

CD25 % 9.1 *
(6.2–14.1)

6.4
(4.1–8.8)

5.3
(3.1–7.8)

5.9
(3.7–7.9)

HLA-DR % 5.1 *
(3.4–8.7)

3.8
(2.2–6.1)

3.6
(2.9–6.2)

3.4
(1.9–5.6)

CD71 % 6.4 *
(4.2–8.9)

5.4
(3.2–9.0)

4.9
(3.4–8.1

4.1
(2.1–6.9)

B-cells

CD69 % 25.1 *
(18.5–28.4)

28.7 *
(16.4–32.6)

24.4 *
(17.9–28.6)

11.3
(6.2–14.2)

CD25 % 6.6 **
(4.9–9.5)

5.8 *
(3.3–8.2)

6.9 *
(4.1–10.1)

2.3
(1.2–3.5)

CD86 % 15.9 **
(11.8–18.6)

12.2 *
(8.2–17.5)

14.4 **
(10.5–18.9)

6.5
(3.2–9.4)

CD71 % 30.8 *
(24.6–35.7)

34.5 *
(22.7–39.4)

41.6 *
(20.3–44.8)

24.5
(15.4–27.5)

TLR2 % 9.1 **
(6.7–10.3)

8.8 **
(5.3–13.4)

8.5 **
(5.9–10.8)

3.0
(0.9–5.1)

The table summarizes the data of flow cytometry analysis surface marker expression on human peripheral blood
cells (T- and B-lymphocytes) of healthy volunteers (n = 5). The time of incubation of fucoidans (100 µg/mL) with
whole blood was 24 h. The data of the average percentage (%) of cells expressing CD molecules represent Me
(median) and min-max; n = 5; * p < 0.05; ** p < 0.01 compared to the control, Wilcoxon-test.

2.4. Adjuvant Effect of Fucoidans on the Hb-Specific Immune Response and Cytokine Production In Vivo

HB-specific antibody analysis showed that 4 weeks after immunization, all examined samples
of fucoidans as well as aluminum hydroxide gel (positive control adjuvant) (1–4 groups) induced
a more pronounced immune response compared to the control 5 group (HBs-AG without adjuvant)
(p < 0.05). There were no differences in specific HBs-IgG levels in animals groups 1–3 vaccinated with
HBs-AG and fucoidans compared to group 4, where aluminum hydroxide gel was used as an adjuvant
(Figure 3A).

To establish the involvement of T-cells and specifically Th1/Th2 polarization of immune responses
which induced immunization by HBs-AG, we evaluated cytokine levels in sera. Fucoidans (F1-3) in the
vaccine with HBs-AG in groups 1-3 elicited cytokine (IFN-γ, TNF-α, IL-4) levels higher than the control
group (5) (p < 0.05). The cytokine levels were comparable in groups 1–3 (Figure 3B). The IFN-γ/IL-4
ratios in groups 1–3 (vaccine with HBs-AG with fucoidans F1-3) were equal, i.e., 1,6; 1,7; and 1,5,
respectively, to group 4 (vaccine with HBs-AG with aluminum hydroxide gel)-1,1 (Figure 3B).

The figure summarizes results obtained in experiments with a total of 60 mice. Female BALB/c
mice were randomized into five groups, immunized with subcutaneous vaccines as follows: group 1:
HBs-AG (Abcam Limited, United Kingdom) with fucoidan (F1); group 2: HBs-AG with fucoidan (F2);
group 3: HBs-AG with the production of enzymatic hydrolysis of fucoidan (F3); group 4: HBs-AG
with aluminum hydroxide gel (Sigma, A8222); group 5: HBs-AG with phosphate buffer solution (PBS).
Mice were immunized with 1 µg/mouse HBs-AG alone or together with 50 mg/kg body weight of
fucoidans (F1, F2, F3) on day 0 and 14. A suspension of HBs-AG with fucoidans or with aluminum
hydroxide gel was prepared by mixing or adsorbing aluminum gel for 1 h. Blood serum was obtained
4 weeks after immunization of mice. The total IgG antibodies were detected by a Mouse Hepatitis B
surface Antibody (HBsAb) ELISA kit (Blue Gene Biotech, China). The serum levels of TNF-α and IFN-γ
were measured by ELISA kits (BD Biosciences OptEIATM Set Mouse; USA), and IL-4 by an ELISA
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kit (BioLegend, London, UK). Each bar represents mean ± SD (a pool of 2 mice; n = 6). Levels of
significance of groups 1–4 versus the control group (5): * p < 0.05, Student’s t-test.
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Figure 3. The level of serum IgG antibodies (A) and cytokines (TNF-α, IFN-γ, IL-4) (B) after mice
BALB/c immunization with HBs-AG.

3. Discussion

Vaccine adjuvants are necessary for successful immunization. Numerous experimental data
indicate that sulfated polysaccharides from brown algae (fucoidans) demonstrate properties of vaccine
adjuvants for enhancement of anti-infective and antitumor immune responses. Over the last years,
there were a number works devoted to the ability of fucoidans to enhance the production of specific
antibodies, both to model and to various bacterial and viral antigens as well as to stimulate the
T-cell response in vivo. Fucoidan from F. vesiculosus increased the level of specific antibodies to
ovalbumin (OVA) and the T-cell response in experimental animals and also stimulated the maturation
of DC. In mice receiving an anticancer vaccine together with fucoidan, considerable strengthening of
functional activity of spleen lymphocytes in comparison with the animals receiving the same vaccine
without fucoidan was observed. Animals of the experimental group were protected from development
of the tumor induced by B16-OVA melanoma cells. Authors noted more active proliferation of
T-lymphocytes participating in the destruction of tumors, enhancement of number of T-cells in the
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spleen producing IFN-γ and TNF-α-signaling cytokines of Th1, and an increase in serum levels of these
cytokines under the influence of fucoidan [8]. The injection of mice with fucoidans from brown algae
Ascophyllum nodosum, Macrocystis pyrifera, Undaria pinnatifida, and F. vesiculosus led to strengthening
of the production of IgG1 and IgG2a OVA-specific immunoglobulins and also the T-cell response and
generation of T-memory cells [9]. Fucoidans from algae Grateloupia filicina, Ulva pertusa, and Sargassum
qingdaoense differing in chemical structure showed antiviral activity towards avian influenza virus
H9N2 subtype and immunomodulatory activity both in vitro and in vivo [10], and fucoidan from
Sargassum pallidum strengthened specific humoral and cellular immune responses in vaccine antigens
of the combined vaccine against Newcastle disease, infectious bronchitis, and avian influenza in
experiments on chickens [11]. The adjuvant activity of fucoidan from F. vesiculosus towards a vaccine
strain of Mycoplasma hyopneumoniae was revealed [12]. This polysaccharide promoted strengthening of
the production of specific antibodies to the studied antigen and also an expression of the molecules
MHC II, CD25, and CD69 on spleen cells and CD19 on B-lymphocytes. Treatment of mice BALB/c
spleen cells with fucoidan together with a vaccine of the Bordetella bronchiseptica antigen led to increased
TNF-α production at lower doses of the antigen, which can be the mechanism providing the stimulating
influence on the functional activity of effector cells of innate and adaptive immunity, strengthening the
vaccination efficiency [12]. Based on the results, the authors conclude that fucoidans can function as
adjuvants in various type of preventive and therapeutic vaccines.

The defining property of vaccines adjuvants is their ability to stimulate (modulate) the innate and
adaptive immunity system.

Research on the immunostimulatory (immunomodulatory) properties of fucoidans in various
experimental models showed that the main target for fucoidans are effector cells of innate immunity:
monocytes/macrophages [13,14], neutrophilis [15], and NK-cells [9,16–18]. Due to the ability of
fucoidans to stimulate cytotoxic effects of NK, the potential effect of fucoidans as adjuvants in the
anticancer immune response is under intensive study [18]. It has been reported that fucoidans promote
DC maturation [8,16,19,20].

Understanding the mechanisms of adjuvant action provides important information on how innate
immunity influences the development of adaptive immunity, helping in the rational selection of vaccine
adjuvants. In this regard, the processes of activation and differentiation of cells of innate and adaptive
immunity require special attention when studying the adjuvant activity of fucoidans.

The objects of our study were fucoidans (native, highly purified products of fucoidan enzymatic
hydrolysis) from brown alga F. evanescens, belonging to the family Fucaceae, genus Fucus. As a result of
the research, the activating effects (F1-3) on the innate and adaptive immunity cells were detected,
as evidenced by the increased expression of activation markers. In particular, fucoidans induce the
maturation of DCs, enhance the ability of neutrophils to migrate and adhere, activate monocytes and
enhance their antigen-presenting functions, and increase the cytotoxic potential of NK cells in vitro.

Mature DCs are characterized by an increase in the expression of molecules involved in antigen
presentation and promote the formation of an immune synapse for signal transmission from antigen
presenting cells to T lymphocytes and differentiation of activated T cells into T-effector cells [19–22].
Some studies have shown that TLR activation in the DC presenting the antigen is critical for CD4+ T
cell activation and Th1 cell differentiation [23,24].

A significant increase in monocytes expressing CD83, the main marker of mature DCs, after
treatment by fucoidans, indicates the readiness of these cells for differentiation into DCs. The increase
in the expression of the activation marker (CD38) and adhesion molecule (CD11c) indicates the
ability of matured DCs to interact with T-lymphocytes and increase costimulatory (CD80 and CD86),
antigen-presenting molecules (MHC class II), indicating the ability of DCs to further activate naive
T-cells [24,25].

The effect of fucoidans on neutrophils leads to a change in their expression levels: an increase in
activation markers CD69, CD14, and adhesion molecules CD11b, which is evidence of the activation of
neutrophils, and enhances their ability to migrate and adhere.
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All studied fucoidans increased the expression of CD69 and the number of NK-cells expressing
CD25, which characterizes cell activation and enhanced proliferation [26,27]. In addition, F2 enhanced
the expression of HLA-DR. Fucoidans also increased the expressions of CD8 and CD107a. Increased
expression of markers CD8 and CD107a indicates degranulation and, consequently, an increase in the
cytotoxic (killer) activity of NK cells after treatment by the studied fucoidans.

Also, the studied fucoidans (F1-3) enhanced the expression of activation markers on T-cells and
on B-cells. The increase in the expression of CD69, CD25, HLA-DR, and CD71 molecules on T-cells
facilitates the initiation of signaling events that regulate the entry of dormant cells into the cell cycle
and has an effect on the formation of specialized T-lymphocytes for memory that effectively form the
late phase humoral immune response.

The increased activation molecule expression on T- and B-lymphocytes under the fucoidans
influence contributed to the enhancement of humoral immunity, providing various stages of activation
of B-lymphocytes.

The immune response to various AG requires the participation of different types of immune
responses [28]. Thus, the Th1 response correlates with the induction of cellular immunity, which is
necessary to protect against intracellular infectious agents (bacteria, protozoa) and is characterized
by the production of cytokines IFN-γ, TNF-β, and IL-2 and enhanced production of IgG2a, IgG2b,
and IgG3 in mice [29]. Th2, which controls humoral immunity, is effective for protection against most
bacterial and several viral infections and is characterized by the formation of cytokines IL-4 and IL-10
and enhanced production of IgG1 [28,30–32]. The adjuvant determines the direction of the response
generated by antigens along the Th1 or Th2 pathway [30].

Fucoidans (F1-3) in the vaccine with HBs-AG induced a more pronounced immune response and
cytokine Th1- (IFN-γ, TNF-α) and Th2- (IL-4) production compared to the control (HBs-AG without
fucoidan as an adjuvant). Thus, fucoidans stimulated a specific humoral immune response and had
a regulatory effect on cytokine production (Th1 and Th2) in vivo. As known, the IFN-γ/IL-4 ratio is
a valuable indicator of the deviation or amplification of the Th1 response. In the case of hepatitis
B vaccine, the best model of the immune response is a mixture of Th1/Th2 responses [33], but alum
adjuvants shift the immune responses towards Th2 immunity, which is responsible for antibody
production [34]. Our findings demonstrated that the IFN-γ/IL-4 ratio in the vaccine with HBs-AG and
fucoidan (F1-3) was higher (1,6; 1,7; 1,5 respectively) than that measured for HBs-AG with aluminum
hydroxide gel (1,1). The results of the IFN-γ/IL-4 ratio of fucoidan-based vaccines were considerable
and will improve the efficacy of hepatitis B vaccines.

These findings positively characterize fucoidans from F. evanescens as potential adjuvants, which
will promote the activation of innate and adaptive immunity cells and enhance antigen-specific B-cell
reactions, increasing the immunogenicity of vaccines.

Among the studied polysaccharides of particular interest is the product of fucoidan enzymatic
hydrolysis (F3), which has standard structural characteristics: regular 1→3;1→4-α-L-fucans, sulphated
mainly at C2 and acetylated at C4 of the fucose residue. The activating effects of F3 on the effector
functions of innate and adaptive immunity cells are comparable to those of the native fucoidan (F1).
However, unlike the latter, the product of fucoidan enzymatic hydrolysis has a lower molecular
weight and is characterized by a regular reproducible structure. Along with high biocompatibility
and a lack of toxicity, it can be considered an effective and safe candidate adjuvant to improve the
efficacy of prophylactic and therapeutic vaccines. However, the pathways of immune regulation and
the mechanisms of adjuvant effects require further clarification.

4. Materials and Methods

4.1. Chemical Characteristics of the Fucoidans

Fucoidans from the brown alga Fucus evanescens were studied (Table 1): F1, native (crude) fucoidan
in complex with polyphenols [35]; F2, highly purified fucoidan [36]; F3, the product of enzymatic
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hydrolysis of fucoidan [6] (Table 4). According to the results of nuclear magnetic resonance analysis,
this fraction represents regular polysaccharides, with the following structure of repeating units:
[→3)-α-L-Fucp(2,4-SO−3)-(1→4)-α-L-Fucp(2-SO−3)-(1→]n. The polysaccharide is sulfated mainly at
C2 and to a lesser degree at C4. The acetyl groups occupy the free position at C4 [6].

Table 4. Compositions of fucoidans from the brown alga Fucus evanescens.

№ Characteristic of
Fucoidans

Molecular
Weight (kDa)

SO3Na*

(%)
Monosaccharide Composition (% mol)

Fuc Gal Xyl Man Glc

F1 Native fucoidan [35] 130–430 27.0 94.1 3.8 2.1 0 0

F2 Highly purified
fucoidan [36] 130–400 28.1 94.4 3.5 2.1 0 0

F3
Product of enzymatic

hydrolysis of
fucoidan [6]

50.8 29.7 97.8 2.2 0 0 0

* % (Molecular weight) of the polysaccharide.

The table summarizes the data of fucoidans from the brown alga Fucus evanescens: F1, native
(crude) fucoidan in complex with polyphenols; F2, highly purified fucoidan; F3, the product of
enzymatic hydrolysis of fucoidan. According to the results of nuclear magnetic resonance analysis,
this fraction represents a regular polysaccharide, with the following structure of repeating units:
[→3)-α-L-Fucp(2,4-SO−3)-(1→4)-α-L-Fucp(2-SO−3)-(1→]n. The polysaccharide is sulfated mainly at
C2 and to a lesser degree at C4. The acetyl groups occupy the free position at C4.

The endotoxin levels in fucoidans were evaluated using a Limulus amebocyte lysate (LAL) assay
kit Kinetic QCL-1000 (Cambrex Bio Science, CIIIA) with methods of gas-liquid chromatography (GLC)
and GLC-mass spectrometry (chromatograph: Agilent 6850 Serients GL Sistems, Germany, mass
spectrometer: Hewlett Packard 5973, USA). The test results indicate the absence of endotoxin in the
composition of fucoidans.

4.2. Peripheral Blood Cells

The study was performed with peripheral blood of healthy volunteers (n = 5) (Protocol №
1 approved Research Ethics Committee of G.P. Somov Research Institute of Epidemiology and
Microbiology 14.05.2018) in blood collection tubes with heparin. The blood was cultured in Roswell
Park Memorial Institute medium1640 (RPMI-1640 medium) with 10% bovine serum albumin (BSA), 2
mmoL of L-glutamine, and 20 mg of gentamicin in a CO2 incubator at 37 ◦C for 24 h. Fucoidans (F1-3)
were added at a concentration 100 µg/mL.

4.3. Flow Cytometry Analysis

The surface expression of CD69, CD25, CD14, HLA DR, CD8, CD62L, CD11b, CD56, CD107a,
CD71, CD83, CD86, CD3, CD20, and TLR-2 on human cells (neutrophils, monocytes, NK-cells, T-
and B-lymphocytes) was assessed in whole blood samples using immunofluorescent staining with
appropriate monoclonal antibodies (MAbs) and the appropriate isotypic controls. Stained cells were
analyzed using a BD FACS Calibur flow cytometer and CellQuest software (Becton Dickinson, USA).
Lymphocyte, granulocyte, and monocyte subpopulations were first gated according to forward and
side scatter. B-cells were then identified as CD20-expressing cells, and T-cells were then identified as
CD3-expressing cells. Monocyte analyses were carried out using forward and side scatter parameters
combined with CD14-positively stained cells. NK-cell gating was carried out using CD56-fluorescence
in the CD3-negative lymphocyte area. To exclude non-living cells from gates, cell staining with
7-AAD (7-aminoactinomycin D) was used. A minimum of 10000 cells were analyzed for each sample.
The results are shown as the average percentage (%) of cells expressing corresponding markers or mean
fluorescence intensity (MFI), which reflects the number of molecules expressed on the cell membrane.
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Monoclonal antibodies (MAbs): CD69–PC7 (A80710); CD69–PE (IM1943U), CD25–PE (AO
7774); CD14–FITC (6604110); HLA DR–PE (IM1639); CD8–FITC (AO 7756); CD62L–FITC (IM 1231U);
CD11b–PE (IM 2581U); CD56–APC (IM 2474); CD71–PE (IM2001U); CD83–PE (IM 2218U); CD86–PE
(IM2729U); CD3–PC5 (A66327); CD20–FITC (AO7772) were obtained from Beckman Coulter, USA;
CD107a–PE (12-1079-42) and TLR-2–APC (17-9922-42) (CD282) were obtained from eBioscience, Austria.

4.4. Mice and Ethics Statement

Female BALB/c mice (6–8 weeks old) were obtained from the nursery of the Scientific and Research
Center for Biomedical Technologies “Andreyevka” (Moscow region) and kept under pathogen-free
conditions. All experiments were carried out under the guidelines of the European Convention for
Protection of Vertebrate Animals used in Experimental and other Studies. Cets No.: 123 Strasbourg,
18.03.1986. Mice were sacrificed by ether euthanasia. All animal procedures were approved by the
Research Ethics Committee of G.P. Somov Research Institute of Epidemiology and Microbiology
(Protocol Number 1 approved 14.05.2018). Cervical dislocation was adopted to provide mice with
a fast and painless death.

4.5. DC Generation

DC was obtained from bone marrow cells of 24 BALB/c mice. Animal bone marrow was
homogenized in RPMI-1640 medium (Sigma, USA), precipitated three times by centrifugation (250 g
× 5 min), and transferred to enriched culture medium (106 cell /mL in RPMI–1640 medium with the
addition of 100 µg/mL gentamicin sulfate and 10% thermally activated fetal calf serum, containing
recombinant growth factors GM-CSF and IL-4 (80 and 20 ng/mL) (eBioscience, USA). Cells were
cultured at 37 ◦C in a 5% CO2 incubator. On the third day, cytokine re-stimulation was performed.
The medium was changed on the sixth day, adding to the experimental vials of the population of
immature DC maturation inducers: fucoidan samples (100 µg / mL), and as the second positive control,
the classical maturation inducer-TNF-α (20 ng/mL) (eBioscience, USA). The control was immature DC
(n–DK). Cells were cultured for 48 h at 37 ◦C in a 5% CO2 incubator.

Flow cytometry analysis DC was evaluated using a Cytomix FC–500 (Beckman Coulter, USA)
with MAbs (eBiosciences, USA) labeled with a fluorochrome for the designated markers: CD34–FITC,
CD83–FITC, CD14–PE, CD11c–FITC, CD38–PE, CD80–FITC, CD86–FITC, MHC II–FITC (eBioscience,
USA).

MAbs: CD34–FITC (clone RAM 34,№. 11-0341-82), CD38–FITS (clone 90,№ 11-0381-82), CD14–PE
(clone Sa2-8,№ 12-0141-82), CD11c–FITS (clone 418,№ 11-0114-81), CD38–PE (clone Michel-17,№
12-0831-80), CD80–FITS (clone 16-10A1,№ 11-0801-82), CD86–PE (GL-1,№ 120862-81), MHCII–FITS
(clone NIMR-4,№ 11-5322-82), (eBioscience, CIIIA).

4.6. Immunization of Mice with Recombinant Hepatitis B Virus Surface Antigen (Hbs-AG) (Abcam Limited,
United Kingdom) and Blood Sampling

Female BALB/c mice were randomized into 5 groups (12 mice in each), immunized subcutaneously
with the vaccine as follows: group 1: HBs-AG with fucoidan (F1); group 2: HBs-AG with fucoidan
(F2); group 3: HBs-AG with the product of enzymatic hydrolysis of fucoidan (F3); group 4: HBs-AG
with aluminum hydroxide gel (Sigma, A8222); group 5: HBs-AG with phosphate buffer solution (PBS).
BALB/c mice were immunized with 1 µg/mouse HBs-AG alone or together with 50 mg/kg fucoidans
(F1-3) on day 0 and 14. A suspension of HBs-AG with fucoidans or with aluminum hydroxide gel was
prepared by mixing or adsorbing on aluminum gel for 1 h. A phosphate buffer solution, pH 7.2 (PBS)
was used as a solvent. Blood serum was obtained from each mouse 4 weeks after immunization and
stored at −70 ◦C until tested.
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4.7. ELISA, Antibody Titration

The total IgG antibodies were detected by a Mouse Hepatitis B surface Antibody (HBsAb) ELISA
kit (Blue Gene Biotech, China) using the manufacturer’s instructions. The results were measured
on a Multiscan RC microplate reader (Labsystems, Finland) at 450 nm. Serum antibody titres were
calculated in ng/mL and expressed as the mean ± SD of triplicate determinations.

4.8. Quantitative Detection of Cytokines in the Serum of Mice

The serum levels of TNF-α, IFN-γ were measured by ELISA kits (BD Biosciences OptEIATM
Set Mouse; USA), IL-4 by ELISA kit (BioLegend, London, UK) using the manufacturer’s instructions.
The results were measured on a Multiscan RC microplate reader (Labsystems, Finland) at 450 nm.
The conversion of measured absorbance values to pg/mL was performed from the calibration curve
generated using standards included in each kit.

4.9. Statistical Analysis

Statistical analysis was performed using Statistica 10.0 software package (StatSoft, Tulsa, OK,
USA). The data of flow cytometry of peripheral blood human immunity cells (non-parametric analysis)
are expressed as Me (median) and min-max; results were confirmed for at least five healthy volunteers
in independent experiments. The significant differences in the data were analysed by a Wilcoxon-test;
p-values < 0.05 were considered statistically significant compared to the control. Analysis of intergroup
differences was performed using ANOVA.

The data of ELISA (antibody titration and detection of cytokines) are expressed as means ±
SD. The experimental group of mice (1–4) was compared with the control (5) group by performing
an unpaired Student t-test. Differences were considered significant where * p < 0.05, ** p < 0.01.

5. Conclusions

Fucoidans from the brown alga Fucus evanescens (native, highly purified products of fucoidan
enzymatic hydrolysis) activate effector functions of innate and adaptive immunity cells in vitro and
function as adjuvants to enhance HBs-specific immune responses (IgG) and cytokine Th1 (IFN-γ,
TNF-α) and Th2 (IL-4) profiles in vivo.
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