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Abstract 

Background:  Bio-based aromatic compounds are of great interest to the industry, as commercial production of aro-
matic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. 
γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics.

Results:  Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI 
genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The 
specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher 
under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 
3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. 
Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid 
metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were ration-
ally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold 
higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 
3,4-AHBA in a glucose fed-batch culture.

Conclusions:  Our results revealed changes in the metabolic state in response to DO concentration and provided 
insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved produc-
tion of related amino acids and their derivatives.

Keywords:  Corynebacterium glutamicum, Dissolved oxygen, Metabolic engineering, Metabolome analysis, Amino 
acid
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Background
Bio-based aromatic compounds are of great interest to 
the industry as commercial production of aromatic com-
pounds depends exclusively on the unsustainable use 
of fossil resources or extraction from plant resources 
[1]. Because aromatic compounds are essential precur-
sors for the synthesis of strong, thermostable plastics [2, 

3], metabolic engineering of the shikimate pathway for 
microbial production of aromatic compounds, such as 
caffeic acid [4], (S)-reticuline [5], salicylate [6], and sty-
rene [7], has been studied since the 2000s. More recently, 
3-amino-4-hydroxybenzoic acid (3,4-AHBA), which 
serves as a precursor for ultra-thermoresistant bioplas-
tics, has been produced from lignocellulosic biomass [8].

Cit

isoCit

2OG

OXA

Mal

Fum

Suc SucCoA

Glucose

G6P

F6P

FBP

LAPEP

6PG Rib5P

DHAP

2PG+3PG

R5P

X5PE4P

S7P

GAP
Shk Phe

Tyr

Trp

Glu

Ile

GAP

Pyr

AcCoA

AA

Ala

Asp

Lys

3,4-AHBA

OH

O

NH2

HO

Thr

Met

Val

Leu

Gln

NADH

NADPH

NADP+

CoA

GTP GDP
CoA

FAD

FADH2

NADH

NADPHNADPH

ATP

ADP

NADH

ATP

ADP

CoA

NADH
CoA

NAD+NADH

Glu 2OG

Qox Qred

SucCoA
Suc

ATP

ADP

PiGlu

2OG

NADPH ATP
ADP

PEP
Pi

Glu 2OG

Glu 2OG

NADPH

Gln Glu

NADPH

ATP
ADP

NADPH

ATP
ADP

Glu2OG

Glu2OG

Glu2OG

NADH

AcCoA

CoA

NADPH

NADPH

Thr

NADH

NADPHGlu

2OG

NADPH

ADP
ATP

NH3
NAD+

NADPH

NADP+

NADP+ NADP+

NAD+

NADP+

NADP+

NADP+ NADP+

NAD+

NAD+

NADP+

NADP+

NADP+ NADP+

NAD+

NAD+

Qred

Qox

Pyr

PEP
Pyr

mdh

ldh

alaT avtA

cat

pqo

pta

ackA

Fig. 1  Metabolic pathway for the production of 3-amino-4-hydroxybenzoic acid (3,4-AHBA) and related metabolites. Genes deleted from the 
chromosome of C. glutamicum strain KT01 are indicated in rounded rectangles
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The synthetic pathway of γ-amino acid 3,4-AHBA dif-
fers entirely from the well-known shikimate pathway, 
which is essential for synthesizing aromatic amino acids, 
l-phenylalanine (Phe), l-tyrosine (Tyr), and l-tryp-
tophan (Trp) [9]. In a simple two-step reaction (aldol 
condensation followed by cyclization and aromatiza-
tion), an aromatic ring of 3,4-AHBA is formed from C4 
(l-aspartate-4-semialdehyde) and C3 (dihydroxyacetone 
phosphate [DHAP]) primary metabolites. In Streptomy-
ces griseus, the enzymes GriI and GriH, encoded by two 
genes, griI and griH, respectively, catalyze 3,4-AHBA syn-
thesis [10]. A recombinant Corynebacterium glutamicum 

strain expressing the griH and griI genes successfully 
produced 3,4-AHBA from sugars [11] (Fig. 1). However, 
strategies to improve 3,4-AHBA production, including 
metabolic engineering and bioengineering, need to be 
identified.

Dissolved oxygen (DO) concentration is one of the 
most important factors determining the performance of 
the fermentation process [12]. Unlike anaerobic fermen-
tation of organic acids, the formation of aromatic com-
pounds and amino acids requires oxygen, as reduced 
nicotinamide adenine dinucleotide phosphate (NADPH) 
required for the synthesis is primarily supplied through 
the oxidative pentose phosphate pathway (PPP; Fig.  1) 
[13, 14]. For example, the production of aspartate deriv-
atives of l-lysine (Lys) and 1,5-diaminopentane was 
implemented at a DO level of ≥ 20% saturated oxygen to 
regenerate NADPH [15–17]. In addition, aromatic com-
pounds of shikimate and its derivatives have been pro-
duced at a DO of ≥ 10% saturated oxygen level in culture 
using E. coli and C. glutamicum [18, 19].

3,4-AHBA production competes with Lys biosynthesis 
for the availability of the common precursor l-aspar-
tate-4-semialdehyde derived from aspartate. In glucose 
metabolism, 2 mol of NADPH is required to synthesize 
1 mol of 3,4-AHBA, while 4 mol of NADPH is required to 
synthesize 1 mol of Lys [16]. In C. glutamicum, NADPH 
supply predominantly depends on oxidative PPP, and the 
increased flux improves Lys yield (Fig. 1) [15, 20]. These 
suggest that a diminished NAPDH supply under oxy-
gen restriction can direct more carbon from Lys to 3,4-
AHBA. However, metabolic profiles, including amino 
acid synthesis under oxygen-limited conditions, have not 
been extensively studied, although the transcriptome of 
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Fig. 2  Effect of dissolved oxygen (DO) concentration on the specific 
productivity of 3-amino-4-hydroxybenzoic acid (3,4-AHBA). The 
specific productivity of 3,4-AHBA in recombinant C. glutamicum strain 
KT01 after 72 h of cultivation is indicated. The DO-stat method was 
started after 24 h of cultivation, and five DO levels (0, 1.3, 2.6, 5.3, 
and 8.0 ppm) were implemented and controlled by the speed of 
agitation. The data are presented as averages ± standard deviation 
calculated from the results of duplicate independent experiments
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Fig. 3  Dissolved oxygen (DO)-stat cultivation for 3-amino-4-hydroxybenzoic acid (3,4-AHBA) production by recombinant C. glutamicum strain 
KT01. a The concentrations of glucose (squares), 3,4-AHBA (circles), b dry cell weight (DCW) (triangles), and DO concentration (continuous lines) 
are indicated. The DO-stat method was started after 24 h of cultivation, and two DO levels (0 [reds] and 2.6 ppm [blues]) were implemented and 
controlled by the speed of agitation. The data are presented as averages ± standard deviation calculated from the results of duplicate independent 
experiments
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C. glutamicum has been extensively studied under differ-
ent DO conditions [12, 21–23].

The present study demonstrated enhanced 3,4-AHBA 
production by recombinant C. glutamicum under oxy-
gen limitation in a jar fermentor using the DO-stat pro-
gram. Using the DO-stat method, metabolic profiles 
at three different levels of DO were compared, and the 
metabolome analysis revealed metabolic shifts in both 

the central metabolic pathway and amino acid metab-
olism at a threshold DO level. Based on the metabo-
lome analysis results, the metabolic pathway of C. 
glutamicum was rationally designed to tailor to oxygen 
limitation and thus significantly improve the specific 
productivity of 3,4-AHBA.
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Fig. 4  Effect of dissolved oxygen (DO) concentration on the production of amino acids and organic acids. The DO-stat method was started 
after 24 h of cultivation, and five DO levels (0, 1.3, 2.6, 5.3, and 8.0 ppm) were implemented and controlled by the speed of agitation during 
3-amino-4-hydroxybenzoic acid (3,4-AHBA) production by recombinant C. glutamicum strain KT01. The data are presented as averages calculated 
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Table 1  Effect of dissolved oxygen (DO) on fermentation products and cell growth

a Each value was determined after 122 h of cultivation during 3-amino-4-hydroxybenzoic acid (3,4-AHBA) production by recombinant C. glutamicum strain KT01. Data 
are presented as the mean ± standard deviation calculated from the results of duplicate independent experiments. Strain KT01 was grown under aerobic conditions 
until the late log phase in brain heart infusion medium, and the cultures were then inoculated at an initial OD600 of 0.2 into modified mineral salt CGX II medium 
containing glucose (40 g/L) as the sole carbon source
b Dry cell weight (DCW) was determined by the following equation: an OD600 of 1.0 corresponded to 0.39 mg dry weight cell per milliliter
c Values in parenthesis indicate the total amounts of the produced metabolites

DO (ppm)

0 1.3 2.6 5.3 8.0

3,4-AHBA (g/L)a 1.30 ± 0.04 0.61 ± 0.03 0.30 ± 0.02 0.37 ± 0.01 0.30 ± 0.01

Total amino acids (g/L)a 3.86 ± 0.12 7.03 ± 0.08 7.47 ± 0.01 6.56 ± 0.11 7.14 ± 0.01

Acetate (g/L)a 4.85 ± 0.14 1.14 ± 0.01 1.04 ± 0.01 1.13 ± 0.01 1.31 ± 0.09

Lactate (g/L)a 1.50 ± 0.11 0.10 ± 0.01 0 ± 0 0.07 ± 0.01 0.06 ± 0.01

Succinate (g/L)a 4.38 ± 0.36 0 ± 0 0 ± 0 0 ± 0 0 ± 0

DCW (g/L)a,b 3.59 ± 0.11 5.83 ± 0.08 7.63 ± 0.02 7.59 ± 0.20 7.10 ± 0.35

Total (g/L)c 19.48 (15.98) 14.71 (8.88) 16.44 (8.81) 15.72 (8.18) 15.91 (8.81)



Page 6 of 17Kawaguchi et al. Microbial Cell Factories          (2021) 20:228 

Results
Enhanced 3,4‑AHBA production under low 
DO concentration
To examine the effect of DO on 3,4-AHBA production 
from glucose by recombinant C. glutamicum, the DO-
stat method was implemented to control DO levels in 
culture medium at 1.3, 2.6, 5.3, and 8.0 ppm (represent-
ing the range from 17 to 100% saturated oxygen con-
centration) after 24 h of cultivation. In culture at a DO 
level of 0 ppm (representing 0% saturated oxygen con-
centration), the agitation speed was fixed at 200  rpm 
to ensure that the oxygen supply was the rate-limiting 
step for C. glutamicum cells to produce 3,4-AHBA. 
After 72  h of cultivation, the specific productivity of 
3,4-AHBA showed a negative correlation with the DO 
level (Fig.  2). The specific productivity of 3,4-AHBA 
was comparable (0.4 mg 3,4-AHBA/h/g dry cell weight 
[DCW]) at high DO levels (≥ 2.6 ppm), while it sharply 
increased with reduced DO levels ≤ 1.3  ppm, reaching 
3.5 mg /h/g DCW at a DO level of 0 ppm.

Compared to a high DO level (2.6 ppm), cell growth 
was reduced by 44% after 72  h of cultivation under a 
low DO level of 0 ppm, whereas the glucose consump-
tion rate was comparable throughout the period of 
122 h of cultivation (Fig. 3). Conversely, 3,4-AHBA con-
centration after 122 h of cultivation was 4.4-fold higher 
at a DO level of 0 ppm than at 2.6 ppm. These results 
suggest that oxygen limitation enhances 3,4-AHBA 
production, probably by directing more carbon and 
nitrogen from cell growth to 3,4-AHBA production.

Metabolic shift from amino acids to organic acids 
under low DO conditions
To investigate enhanced 3,4-AHBA production under 
oxygen limitation, extracellular concentrations of amino 
acids and organic acids during 3,4-AHBA production 
were determined. At DO levels ≥ 1.3  ppm, the compo-
sition and concentration of external amino acids were 
comparable (Fig. 4). After 122 h of cultivation, the total 
amino acid content was approximately 8.5 g/L, with Lys 
predominating (from 6.8 to 7.2 g/L), followed by glycine 
(Gly ≤ 0.2 g/L). In contrast, at the low DO level of 0 ppm, 
the concentration of total amino acid reduced to 3.9 g/L 
(Table 1), with alanine (Ala) predominating, followed by 
Lys and valine (Val) (1.5, 1.3, and 0.9  g/L, respectively). 
Under oxygen limitation, a significant amount of organic 
acid was accumulated. After 122  h of cultivation, the 
concentrations of succinate, acetate, and lactate were 
4.4, 4.9, and 1.5 g/L, respectively (Fig. 4). In contrast, at 
DO levels ≥ 1.3  ppm, the concentration of acetate was 
reduced by 73% (≤ 1.3  g/L), and succinate and lactate 
were scarcely observed. The total amount of metabolites 
produced was comparable in the range of 8.18–8.88 g/L 

at DO levels ≥ 1.3 ppm, while the total amount increased 
by about two-fold (15.98  g/L) at DO = 1  ppm (Table  1). 
These results suggest that glucose metabolism drastically 
shifted at DO levels < 1.3  ppm to produce organic acids 
instead of amino acids, and that reduced formation of Lys 
can increase the usage of carbon available for 3,4-AHBA 
formation.

Metabolic profiles at three different DO concentrations
To investigate the change in the metabolic state under 
oxygen limitation, the metabolic profiles of C. glutami-
cum cells during 3,4-AHBA production were compared 
at three different DO levels (0, 2.6, and 5.3 ppm). In the 
central metabolic pathway, most metabolic intermediates 
showed similar profiles at DO levels of 2.6 and 5.3 ppm, 
while some exhibited specific profiles under oxygen lim-
itation (DO = 0  ppm) (Fig.  5a). For instance, in the gly-
colytic pathway, reduced levels of fructose-6-phosphate 
and significantly increased levels of fructose-1,6-bis-
phosphate (FBP), glyceraldehyde-3-phosphate (GAP), 
and pyruvate were observed at a DO level of 0 ppm, as 
compared to DO ≥ 2.6  ppm (Fig.  5a). In addition, the 
level of DHAP, a precursor for 3,4-AHBA synthesis, was 
markedly increased under oxygen limitation. Acetyl-CoA 
(AcCoA) levels were reduced with decreasing DO lev-
els, while significantly increased levels of pyruvate, and 
its derivative of lactate, were observed under oxygen 
limitation (DO = 0 ppm). In the TCA cycle, levels of five 
sequential metabolic intermediates (iso-citrate, 2-oxoglu-
tarate, succinate, fumarate, and malate) were significantly 
increased under oxygen limitation (DO = 0 ppm). In oxi-
dative PPP, the levels of most metabolic intermediates 
gradually reduced with time, and the level of 6-phospho-
d-glucono-1,5-lactone (6PG) was significantly reduced 
at lower DO levels (Fig.  5a). In cofactor metabolism, 
levels of both NAD+ and NADP+ were significantly 
lower under oxygen limitation (DO = 0  ppm) compared 
to those at DO levels ≥ 2.6  ppm. Conversely, the lev-
els of adenosine 5ʹ-triphosphate (ATP) and adenosine 
5ʹ-diphosphate (ADP) were not significantly different.

In contrast to the central metabolic pathway, DO lev-
els had limited effects on the intracellular levels of amino 
acids (Fig. 5b). However, markedly reduced levels of glu-
tamine were observed, whereas glutamate levels were rel-
atively high at a DO of 0 ppm, resulting in a significantly 
increased ratio of glutamate/glutamine under oxygen 
limitation, as compared to DO levels ≥ 2.6  ppm. Under 
oxygen limitation (DO = 0  ppm), significantly increased 
levels of alanine and lactate, both pyruvate derivatives, 
were observed. For amino acids derived from aspartate 
(Asp), which serves as a precursor for 3,4-AHBA synthe-
sis, levels of Asp were increased markedly and those of 
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threonine were significantly increased at DO = 0  ppm, 
while Lys levels were comparable at the three DO levels 
(Fig. 5b). Under all conditions, leucine levels monotoni-
cally decreased as time progressed due to the auxotrophy 
for leucine of the host strain ATCC 21799 [24]. These 
results suggest that glucose metabolism, including amino 
acid synthesis, drastically changes under oxygen limita-
tion at DO levels < 2.6 ppm during 3,4-AHBA production.

Metabolic engineering for enhanced 3,4‑AHBA production
The host strain ATCC 21799 was metabolically engi-
neered to design a metabolic pathway tailored for oxygen 
limitation during 3,4-AHBA production. To use excess 
pyruvate under oxygen limitation for 3,4-AHBA produc-
tion, four biosynthetic pathways of by-products were 
selected for analysis based on metabolome data (Fig. 5). 
To eliminate or reduce by-products of acetate, lactate, 
succinate, or alanine, the following were individually or 
collectively inactivated in the wild-type strain by gene 
disruption (Fig. 1): pyruvate dehydrogenase (encoded by 
pqo), succinyl-CoA:acetate CoA-transferase (encoded 
by cat), phosphate acetyltransferase (encoded by pta), 

and acetate kinase (encoded by ackA) for acetate syn-
thesis, lactate dehydrogenase (encoded by ldh) for lac-
tate synthesis, malate dehydrogenase (encoded by mdh) 
for succinate synthesis, and two aminotransferases 
(encoded by alaT and avtA) for alanine synthesis. A sin-
gle Δldh mutant (HKC5021) and a double ΔalaTΔavtA 
mutant (HKC5044) were developed to inactivate the 
formation of lactate and alanine, respectively (Table  2). 
To reduce the formation of acetate and succinate, a tri-
ple ΔpqoΔcatΔpta-ackA mutant (HKC5050) and single 
Δmdh mutant (HKC5053) were also developed. These 
mutants were transformed by introducing the plas-
mid pCAC​griHI, and the resulting transformants were 
selected based on chloramphenicol resistance and 3,4-
AHBA from glucose (Table 2).

Using metabolically engineered strains of C. glu-
tamicum, the specific productivity of 3,4-AHBA was 
compared to that of the parent strain. Compared to 
the parent strain KT01, the specific productivity of 3,4-
AHBA was more than double in the Δldh (HKC5037) 
and ΔpqoΔcatΔpta-ackA (HKC5052) mutants, whereas 
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the cell growth of these strains was significantly reduced 
(Table  3). A double ΔalaTΔavtA mutant (HKC5051), 
which had the auxotrophy for alanine, showed a 1.2-fold 
higher specific productivity of 3,4-AHBA than the parent 
strain with reduced cell growth. In contrast, the specific 
productivity of 3,4-AHBA was reduced by 90% in the 
Δmdh mutant (HKC5057), with significantly reduced cell 
growth, as compared to the parent strain KT01. During 
3,4-AHBA production, the total amount of by-products 
formed was significantly lower in all of the metabolically 
engineered strains than in the parent strain KT01; in par-
ticular, the accumulation of organic acids (acetate, lac-
tate, and succinate) was significantly reduced (Table  3). 
In addition, Lys formation was comparable in Δldh 
(HKC5037) but significantly increased in the remain-
ing three mutants, ΔpqoΔcatΔpta-ackA (HKC5052), 

ΔalaTΔavtA (HKC5051), and Δmdh (HKC5057), as com-
pared to that in the parent strain.

Improved 3,4‑AHBA production by a rationally designed 
strain of C. glutamicum
Based on the comparative results shown in Table 3, the 
Δldh mutant (HKC5037) was selected for improved 
3,4-AHBA production with the highest specific pro-
ductivity, and the 3,4-AHBA production was com-
pared with the parent strain KT01 in glucose fed-batch 
fermentation. The fed-batch fermentation was con-
ducted with constant agitation at 200 rpm to maintain 
the DO level at 0  ppm after 24  h of cultivation. After 
228  h of cultivation, 5.6  g/L of 3,4-AHBA was pro-
duced by the metabolically engineered C. glutamicum 
HKC5037 strain (Δldh mutant), whereas the parent 

Table 2  Strains and plasmids used in this study

Name Relevant characteristics Reference or source

Strain

Escherichia coli JM109 recA1 endA1 gyrA96 thi hsdR17(rK
– mK

+) e14– (mcrA) supE44 relA1 Δ(lac-proAB)/F’ 
[traD36 proAB+ lacIq lacZΔM15]

Takara Bio

Corynebacterium glutamicum ATCC 21799 l-Lysine producer resistant to S-2-aminoethyl-l-cysteine, a lysine analog ATCC​

C. glutamicum strain KT01 C. glutamicum ATCC 21799 bearing pCAC​griHI Kawaguchi et al. [11]

C. glutamicum strain HKC5021 Markerless mutant, Δldh (KaCgl_14550) of strain ATCC 21799 This study

C. glutamicum strain HKC5044 Markerless double mutant, ΔalaT ΔavtA (KaCgl_13940 and KaCgl_11440, 
respectively) of strain ATCC 21799

This study

C. glutamicum strain HKC5050 Markerless triple mutant, ΔpqoΔcat Δpta_ackA (KaCgl_11560, KaCgl_11130, 
KaCgl_13020 and KaCgl_13010, respectively) of strain ATCC 21799

This study

C. glutamicum strain HKC5053 Markerless mutant of Δmdh (KaCgl_08800) of strain ATCC 21799 This study

C. glutamicum strain HKC5037 HKC5021 bearing pCAC​griHI This study

C. glutamicum strain HKC5051 HKC5044 bearing pCAC​griHI This study

C. glutamicum strain HKC5052 HKC5050 bearing pCAC​griHI This study

C. glutamicum strain HKC5057 HKC5053 bearing pCAC​griHI This study

Plasmid

pCAC​griHI Cmr; E. coli–Corynebacterium sp. shuttle vector harboring griH and griI genes 
derived from Streptomyces griseus for 3,4-AHBA biosynthesis

Kawaguchi et al. [11]

pK19mobsacB Kanr, mobilizable E. coli vector for the construction of insertion and deletion 
mutants of C. glutamicum (oriV, sacB, lacZα)

ATCC​

pK19mobsac-Δpta-ackAldh Kanr, pK19mobsacB with the deletion construct for pta-ackA (KaCgl_13010 
and KaCgl_13020) of C. glutamicum ATCC 21799

This study

pK19mobsac-ΔalaT Kanr, pK19mobsacB with the deletion construct for alaT (KaCgl_13940) of C. 
glutamicum ATCC 21799

This study

pK19mobsac-ΔavtA Kanr, pK19mobsacB with the deletion construct for avtA (KaCgl_11440) of C. 
glutamicum ATCC 21799

This study

pK19mobsac-Δcat Kanr, pK19mobsacB with the deletion construct for cat (KaCgl_11130) of C. 
glutamicum ATCC 21799

This study

pK19mobsac-Δldh Kanr, pK19mobsacB with the deletion construct for ldh (KaCgl_14550) of C. 
glutamicum ATCC 21799

This study

pK19mobsac-Δmdh Kanr, pK19mobsacB with the deletion construct for mdh (KaCgl_08800) of C. 
glutamicum ATCC 21799

This study

pK19mobsac-Δpqo Kanr, pK19mobsacB with the deletion construct for pqo (KaCgl_29450) of C. 
glutamicum ATCC 21799

This study
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strain KT01 produced 4.2  g/L of 3,4-AHBA (Fig.  6a, 
b). Within the first feed of glucose (75  h of cultiva-
tion), the glucose consumption rate and cell growth of 
the HKC5037 strain were comparable with that of the 
parent strain. This was attained by including urea as 
the nitrogen source in the CGXII medium to improve 
the poor growth of the HKC5037 strain under oxygen 
limitation, as shown in Table  3 and Additional file  1: 
Fig. S1. The ldh HKC5037 mutant completely lost its 
ability to produce lactate, while the transient accumu-
lation of succinate after 168  h of cultivation increased 
by more than two folds than that in the parent strain 
(10.8 and 5.1 g/L, respectively) (Fig. 6c, d). In addition, 
the acetate concentration after 216 h of cultivation was 
1.5-fold higher in the culture with the HKC5037 strain 
than the parent strain (8.7 and 5.8  g/L, respectively), 
although the production rate was comparable. Con-
sequently, 3,4-AHBA yield after 288  h of cultivation 
was 1.4-fold higher by the rationally designed strain 
HKC5037 than that in the parent strain (0.070 and 
0.053 g of 3,4-AHBA/g of glucose, respectively).

Discussion
The pathway of 3,4-AHBA synthesis is specific to the 
actinomycete Streptomyces griseus. In this strain, the 
aromatic ring is formed through a two-step reaction 
from primary metabolites of DHAP in glycolysis and 
l-aspartate-4-semialdehyde as the Asp metabolite by the 
aldol condensation reaction [10], whereas most aromatic 

compounds in bacteria are predominantly synthesized in 
a multistep reaction via the shikimate pathway, which is 
subjected to multiple feedback regulations [1, 9, 25]. C. 
glutamicum strain ATCC 21799 has a gene for a feed-
back-resistant aspartate kinase in its chromosome [26], 
and produces a large amount of Lys under aerobic condi-
tions (50% DO saturation) [27]. In contrast, the present 
study demonstrated that the carbon flux of l-aspartate-
4-semialdehyde shifted toward 3,4-AHBA instead of Lys 
under oxygen limitation at a DO level of 0%.

Oxygen limitation changes the redox state of microbial 
cells [12, 28]. For the production of aromatic compounds, 
the DO level is generally controlled at ≥ 20% of saturated 
oxygen, such as the production of phenylalanine (Phe) 
[29] by C. glutamicum and the production of tryptophan 
(Trp) [30], shikimate [19], and Tyr [31] by E. coli. In con-
trast, the specific productivity of 3,4-AHBA increased 
with reduced DO levels, reaching a maximum concentra-
tion at a DO concentration of 0 ppm (Fig. 2). Apparently, 
glucose metabolism was shifted at a threshold of DO level 
between 0 and 1.3 ppm (corresponding to 17% O2 satura-
tion). Consequently, the concentration of Lys, a predomi-
nant amino acid, was reduced by 81%, and the amount 
of organic acids conversely increased 8.3-fold under 
DO = 0  ppm, as compared to the aerobic conditions 
(Fig.  4). In contrast, the composition and concentration 
of extracellular amino acids and organic acids were com-
parable at DO levels ≥ 1.3 ppm. Even at a DO concentra-
tion of 1.3  ppm, the specific productivity of 3,4-AHBA 

Table 3  3-amino-4-hydroxybenzoic acid (3,4-AHBA) production from glucose by metabolically engineered strains of C. glutamicum 

N.D. not detected
a Values were determined after 100 h of cultivation. Data are presented as the mean ± standard deviation calculated from the results of duplicate independent 
experiments. Specific productivity was determined based on dry cell weight (DCW) after 100 h of cultivation. All strains were grown under aerobic conditions until 
the late log phase in brain heart infusion medium, and the cultures were then inoculated at an initial OD600 of 0.2 into modified mineral salt CGX II medium containing 
glucose (40 g/L) as the sole carbon source
b Relative productivity was determined based on the specific productivity of 3,4-AHBA
c For 3,4-AHBA production, alanine (final 100 mg/L) was added to CGX II medium because this mutant required alanine for cell growth

Parent
(KT01)

Δldh
(HKC5037)

ΔpqoΔcatΔpta-ackA 
(HKC5052)

ΔalaTΔavtAc

(HKC5051)
Δmdh
(HKC5057)

3,4-AHBA (g/L)a 1.140 ± 0.085 1.950 ± 0.283 0.906 ± 0.199 1.190 ± 0.046 0.030 ± 0.017

Cell growth (g DCW/L)a 7.2 ± 0.3 3.5 ± 0.5 2.9 ± 0.6 6.6 ± 0.9 2.8 ± 1.1

Specific productivity
(mg/h/g DCW)a

157.9 ± 5.7 561.7 ± 1.2 314.8 ± 31.5 183.3 ± 24.0 14.6 ± 15.1

Relative productivity (%)b 100 ± 4 365 ± 1 205 ± 20 119 ± 16 10 ± 10

By-product

Lactate (g/L)a 1.12 ± 0.35 N.D. N.D. 0.54 ± 0.10 0.02 ± 0.01

Acetate (g/L)a 2.88 ± 0.81 0.90 ± 0.49 0.81 ± 0.01 1.63 ± 0.22 N.D.

Succinate (g/L)a 3.39 ± 0.28 N.D. N.D. 0.39 ± 0.39 N.D.

Ala (g/L)a 1.51 ± 0.07 0.54 ± 0.02 0.63 ± 0.02 0.21 ± 0.04 N.D.

Val (g/L)a 0.92 ± 0.01 0.69 ± 0.07 0.66 ± 0.00 0.60 ± 0.11 N.D.

Lys (g/L)a 1.30 ± 0.06 1.60 ± 0.18 2.86 ± 0.07 4.06 ± 0.08 2.55 ± 0.49

Total amounts of by-product (g/L) 11.12 3.73 4.96 7.43 2.57
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was reduced by 49% as compared to DO = 0 ppm (Fig. 2). 
Compared to 3,4-AHBA biosynthesis, Lys biosynthesis 
requires more NADPH (4  mol of NADPH for 1  mol of 
Lys) [16], which is predominantly supplied from the oxi-
dative PPP by aerobic metabolism [15, 20, 32] (Fig. 1).

In the present study, intracellular levels of both 6PG 
in PPP and NADP+, as the cofactor for Lys biosynthe-
sis, were significantly lower at a DO level of 0 ppm than 
at ≥ 2.6 ppm (Fig. 5a). The reduced 6PG level under oxy-
gen limitation conditions implies reduced flux through 
the oxidative PPP at a DO level of 0  ppm. This is sup-
ported by a previous study that showed that the flux from 
glycolysis to PPP decreased with reduced DO levels [33]. 
However, the NADPH levels were comparable between 
high and low DO levels, while the NADP+ levels were 
reduced under low DO levels (Fig.  5a). In C. glutami-
cum, malic enzyme, which reduces NADP+ to NADPH 
coupled with the oxidative decarboxylation of malate to 

pyruvate (Fig.  1), was induced under oxygen limitation 
[23]. The enhanced malic enzyme activity can compen-
sate NADPH supply for reduced PPP flux under oxygen 
limitation [34]. Nevertheless, NADPH supply under oxy-
gen limitation was likely to be limited for amino acid bio-
synthesis (Table 1), which requires NADPH as a cofactor 
[15] (Fig.  1). In addition, oxygen limitation induces the 
expression of genes responsible for organic acid pro-
duction, which in turn oxidizes NADH to regenerate 
NAD+, instead of aerobic respiration, for ATP generation 
[22, 23]. However, NAD+ generation was also limited 
under oxygen limitation (Fig.  5a), resulting in reduced 
cell growth (Table  1). Consequently, oxygen limitation 
(DO = 0 ppm) increased the total amounts of metabolites 
produced while reducing cell growth and shifted glucose 
metabolism to produce organic acids instead of amino 
acids, as compared to DO ≥ 1.3  ppm (Table  1). These 
results suggest that a strict rate-limiting oxygen supply 
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Fig. 6  3-Amino-4-hydroxybenzoic acid (3,4-AHBA) production in glucose fed-batch cultures using two metabolically engineered C. glutamicum 
strains. For the profiling experiment, either parent strain KT01 (a and c) or strain HKC5037 (Δldh mutant) (b and d) was grown under aerobic 
conditions until the late log phase in brain heart infusion medium, and the culture was then inoculated to an initial OD600 of 0.2 into CGX II medium 
containing glucose (40 g/L) as the sole carbon sources. Glucose was fed twice as indicated in arrows to increase glucose concentration of 20 g/L. 
The concentrations of 3,4-AHBA (red circles), glucose (squares), acetate (crosses), lactate (diamonds), succinate (green circles), and cells (triangles) 
are shown. Data are presented as average ± standard deviation calculated from the results of duplicate individual experiments
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is critical for the enhanced production of 3,4-AHBA by 
recombinant C. glutamicum to control the redox state.

In addition to the enhanced 3,4-AHBA metabolism, 
oxygen limitation has another advantage for increased 
3,4-AHBA titer. A previous study reported that 3,4-
AHBA was non-enzymatically oxidized to form a yellow 
pigment under aerobic conditions [10]. This suggests that 
oxygen limitation (DO = 0 ppm) can attenuate the oxida-
tion of the 3,4-AHBA produced, occurring under aerobic 
conditions (DO ≧ 2.6  ppm). To the best of our knowl-
edge, this is the first report on the enhanced production 
of aromatic compounds under strictly oxygen-limited 
conditions at a DO concentration of 0 ppm.

Controlling the oxygen supply and thereby recycling 
cofactor NAD(P)+ is one strategy to optimize the perfor-
mance of fermentation. However, knowledge regarding 
the comparative profiles between aerobic and oxygen-
limited conditions remains limited [12]. Comparable 
metabolome analysis would provide insights into the 
change in metabolic status in response to DO concentra-
tion in both sugar and amino acid metabolism. Besides 
3,4-AHBA production, metabolic profiles were altered at 
a DO threshold level between 0 ppm and 2.6 ppm. At a 
DO level of 0 ppm, intracellular concentrations of NAD+ 
and NADP+ were significantly lower than those under 
aerobic conditions (Fig. 5a). Under oxygen limitation, the 
intracellular concentration of NAD+ was significantly 
reduced due to the shortage of NAD+ recycling coupled 
with aerobic respiration [35], although some NAD+ can 
be regenerated by lactate dehydrogenase and malate 
dehydrogenase under oxygen limitation [36]. Moreover, 
the limited NAD+ recycling blocked all redox reactions 
requiring NAD+ as a cofactor and consequently accumu-
lated pyruvate and GAP (Fig. 5a). At a DO level of 0 ppm, 
a reduced NAD+/NADH ratio, associated with the down-
regulation of the NADH dehydrogenase gene, was also 
observed in C. glutamicum cells in a previous study [21].

The accumulation of pyruvate resulted in increased 
intracellular and extracellular lactate levels and alanine at 
a DO level of 0 ppm (Figs. 4, 5a, b). Under oxygen limita-
tions, intracellular levels of Asp was markedly increased, 
and that of threonine (Thr) was significantly increased, 
while Lys levels were unaffected (Fig. 5b), suggesting that 
the synthesis of amino acids, including Lys, is suppressed 
due to limited NADPH supply [37] and that the surplus 
l-aspartate-4-semialdehyde can be used for 3,4-AHBA 
synthesis. Under oxygen limitation, upregulation of tri-
osephosphate isomerase, which catalyzes the reversible 
conversion of GAP and DHAP, was observed in previ-
ous studies [21, 23], which allows an increase in DHAP 
supply for 3,4-AHBA biosynthesis (Fig.  5a). In previous 
studies, genome-based flux balance analysis was adopted 
to predict and measure the operation and regulation of 

metabolic networks [38]. In contrast, the present metab-
olomics analysis revealed metabolic shifts in both the 
central metabolic pathway and amino acid metabolism, 
particularly in pyruvate-derived amino acids under strict 
oxygen limitation (DO = 0  ppm), although intracellular 
concentrations of amino acids were comparable between 
high and low DO levels [22].

Comparative analysis of both extracellular and intracel-
lular concentrations of metabolites between aerobic and 
oxygen-limited conditions pointed to a metabolic shift in 
response to DO concentration (Figs. 4, 5a, b). Based on 
these results, the metabolic pathway of the 3,4-AHBA-
producing strain KT01 was rationally engineered to per-
form at its full potential under oxygen limitation (Fig. 1, 
Table 3). The mdh mutant showed poor cell growth and 
produced negligible levels of 3,4-AHBA under oxygen 
limitation (Table  3). The mdh gene encoding malate 
dehydrogenase plays an important role in NAD+ recy-
cling under anaerobic conditions [36], and the mdh 
mutant showed a significantly reduced glucose consump-
tion rate [32]. These results suggest that mdh disruption 
remarkably diminishes the capability of NAD+ recycling 
at a DO concentration of 0 ppm. In addition, the inability 
to convert oxaloacetate (OXA) into malate blocked suc-
cinate production, but the excess OXA was likely to be 
used for enhanced Lys production (Table  3). In C. glu-
tamicum, two aminotransferases encoded by alaT and 
avtA are exclusively responsible for alanine synthesis 
[39]. The specific productivity of 3,4-AHBA in the dou-
ble mutant ΔalaTΔavtA was comparable to that of the 
parent strain (Table 3). If the alanine biosynthetic path-
way is blocked, the precursors of pyruvate and glutamate 
can be used for the synthesis of other pyruvate-derived 
metabolites [40]. Consequently, this mutant showed the 
highest productivity for total by-products, especially Lys, 
among the four metabolically engineered strains (Fig. 4), 
suggesting a limited effect of the ΔalaTΔavtA mutant on 
enhanced 3,4-AHBA production. The Δldh mutant and 
ΔpqoΔcatΔpta-ackA triple mutant were designed to lose 
lactate productivity [41] or reduce acetate productivity 
[42], respectively. These two strains showed more than 
two times increased specific productivity of 3,4-AHBA 
compared to that of the parent strain KT01 (Table  3). 
Compared to the Δldh mutant, the ΔpqoΔcatΔpta-ackA 
triple mutant showed 1.8-fold higher Lys productivity, 
while other metabolites were produced at comparable 
levels. In contrast, the Δldh mutant showed the lowest 
productivity of Lys, while the levels of other pyruvate-
derived metabolites, such as acetate, Ala, and Val, were 
comparable to that of the ΔpqoΔcatΔpta-ackA triple 
mutant. These results suggest that the lower production 
of other by-products allows the Δldh mutant to improve 
its specific productivity of 3,4-AHBA.
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Conclusions
In the present study, we demonstrated that both extra-
cellular and intracellular metabolic profiles were con-
stant at DO ≥ 2.6 ppm, corresponding to ≥ 33% saturated 
oxygen at 26  °C; however, this profile changed remark-
ably under oxygen limitation (DO = 0  ppm). Conse-
quently, we revealed that 3,4-AHBA production reached 
the maximum level at a DO of 0  ppm, whereas the fer-
mentation of other aromatic compounds was optimized 
at a DO of ≥ 10% saturated oxygen. To the best of our 
knowledge, this is the first study to report a compara-
tive measurement of metabolic intermediates instead of 
a conventional approach using genome-based flux bal-
ance analysis to optimize DO conditions for microbial 
production. The metabolomics analysis revealed the 
points at which the metabolism shifted in response to 
DO concentration, particularly under oxygen limitation 
(DO = 0 ppm). Under oxygen limitation, we observed sig-
nificantly reduced NAD(P)+ levels and altered levels of 

relevant metabolic intermediates requiring NAD(P)+ as 
cofactors. These comprehensive data regarding metabolic 
states in response to DO provide insights into the oxygen 
supply during fermentation and the rational design of 
metabolic pathways for improved production of related 
amino acids and their derivatives.

Methods
Bacterial strains and media
The bacterial strains and plasmids used in this study 
are listed in Table  2. For genetic manipulations, E. coli 
strains were grown at 37  °C in Luria–Bertani medium 
[43]. For the aerobic growth of C. glutamicum, the wild-
type and recombinant strains were grown at 30 °C to the 
late log phase in brain heart infusion (BHI) broth (BD 
Biosciences, Franklin Lakes, NJ, USA), unless indicated 
otherwise. For AHBA production, modified mineral salt 
CGXII medium [44] containing glucose as the carbon 

Table 4  Oligonucleotides used in this study

a The restriction site overhangs used in the cloning procedure are underlined

Name Target gene Sequence (5′–3′) Cohesive endsa

Primer 1 pta-ackA ACG​GCC​AGTG​GAA​TTC​TGC​GTG​AGA​TGA​AGT​AAG​GC EcoRI

Primer 2 pta-ackA GGT​GTT​GGT​GAA​AAT​GCC​CA

Primer 3 pta-ackA ATT​TTC​ACC​AAC​ACC​ACG​TGT​TTC​CTA​CAC​CGATG​

Primer 4 pta-ackA ATG​ATT​ACCC​AAG​CTT​GTC​CGT​GTC​GGA​TTT​CAT​CA HindIII

Primer 5 alaT ACG​GCC​AGTG​GAA​TTC​CTA​GTC​CGT​TTT​CGA​CGA​TG EcoRI

Primer 6 alaT ACA​GCA​CGT​CCT​TCA​TCT​TC

Primer 7 alaT TGA​AGG​ACG​TGC​TGT​ACC​CCA​ACG​TGT​ACG​AAATC​

Primer 8 alaT ATG​ATT​ACCC​AAG​CTT​AAG​TTT​CAG​GCA​TAG​GCA​GG HindIII

Primer 9 avtA ACG​GCC​AGTG​GAA​TTC​TCC​ATG​AGG​TCA​AGC​ATG​TC EcoRI

Primer 10 avtA CCG​ATG​ATT​CAG​AGG​AAT​GG

Primer 11 avtA CCT​CTG​AAT​CAT​CGG​AGA​GCG​ATC​TCT​GCT​TCTTC​

Primer 12 avtA ATG​ATT​ACCC​AAG​CTT​TTG​ATG​GGG​AGA​CTG​TGG​TT HindIII

Primer 13 cat ACG​GCC​AGTG​GAA​TTC​CGT​AAA​GCG​GAG​TTT​TAG​GC EcoRI

Primer 14 cat ATC​TCT​GAG​TAC​GGT​TAC​GC

Primer 15 cat ACC​GTA​CTC​AGA​GAT​AAC​AGG​TCG​ATT​GCG​TAGTC​

Primer 16 cat ATG​ATT​ACCC​AAG​CTT​AGC​AAC​GTT​GGT​TAC​ACC​AG HindIII

Primer 17 ldh ACG​GCC​AGTG​GAA​TTC​TGG​GTT​AAT​TCG​CCG​GTG​ATCAG​ EcoRI

Primer 18 ldh GGT​TGA​TCA​GTG​CAG​TAT​GCG​TAT​G

Primer 19 ldh CTG​CAC​TGA​TCA​ACC​CAC​TGC​TCC​ACG​GTG​AAT​ACG​

Primer 20 ldh ATG​ATT​ACCC​AAG​CTT​GGC​AAG​GTC​CAT​GCT​GAC​G HindIII

Primer 21 mdh ACG​GCC​AGTG​GAA​TTC​AAT​GAC​AAC​GGC​GTG​GCT​TC EcoRI

Primer 22 mdh TCT​GCG​GCA​ATT​CCT​TCC​AC

Primer 23 mdh AGG​AAT​TGC​CGC​AGA​GGG​ATC​TCC​AGA​AGT​TTCAG​

Primer 24 mdh ATG​ATT​ACCC​AAG​CTT​TTT​CCA​TCA​ATA​GCA​GGC​GC HindIII

Primer 25 pqo ACG​GCC​AGTG​GAA​TTC​TGG​TCG​CAT​CTC​ATC​GAT​TG EcoRI

Primer 26 pqo GCA​TAT​CCT​GGA​CCT​GTA​CT

Primer 27 pqo CAG​GAT​ATG​CTT​TCC​AGG​ACC​ACA​AGA​AGC​

Primer 28 pqo ATG​ATT​ACCC​AAG​CTT​CTT​GCG​CCT​GCA​AAG​TTT​CT HindIII
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source supplemented with leucine (100 mg·L−1) and pan-
tothenic acid (100 mg·L−1) without urea was used. When 
appropriate, media were supplemented with 5  µg·mL−1 
and 50 µg·mL−1 chloramphenicol for C. glutamicum and 
E. coli, respectively.

DNA manipulation
All restriction endonucleases were purchased from 
New England Biolabs (Ipswich, MA, USA). PrimeSTAR 
Max DNA Polymerase (Takara Bio, Kusatsu, Japan) was 
used for PCR to amplify DNA fragments, according to 
the manufacturer’s instructions. PCR fragments were 
purified using a QIAquick PCR Purification Kit (Qia-
gen, Hilden, Germany). Plasmids were developed using 
an In-Fusion HD Cloning Kit (Takara Bio) for seamless 
ligation-independent cloning of PCR fragments, accord-
ing to the manufacturer’s instructions. Electroporation 
was used to transform C. glutamicum, as previously 
described [45], whereas E. coli was transformed using the 
CaCl2 procedure [43]. Plasmid DNA was isolated from E. 
coli as previously described [46].

Construction of metabolically engineered C. glutamicum 
strains
C. glutamicum strain ATCC 21799 was metabolically 
engineered to improve 3,4-AHBA production based on 
its whole genome sequence (DDBJ/ENA/GenBank acces-
sion number AP022856.1) [47]. Deletion mutants of C. 
glutamicum ATCC 21799 were developed using a suicide 
vector system followed by a two-step homologous recom-
bination procedure, as previously described [48]. For pta-
ackA, plasmid pK19mobsac-Δpta-ackA was constructed 
by PCR amplification of the gene with both flanking 
regions using the C. glutamicum ATCC 21799 genome as 
the template and oligonucleotide primer pairs 1, 2, 3, and 
4 (Table  4), respectively. The PCR-amplified upstream 
and downstream fragments were integrated into PstI-
and EcoRI-digested plasmid pK19mobsacB (American 
Type Culture Collection, Manassas, VA, USA) by multi-
ple-fragment cloning using In-Fusion, yielding the con-
struct pK19mobsac-Δpta-ackA (Table  2). Gene deletion 
was confirmed by PCR using oligonucleotide primers 1 
and 4. Analysis of C. glutamicum transformants, selected 
on the basis of kanamycin sensitivity and sucrose resist-
ance, ultimately yielded a markerless pta-ackA dele-
tion mutant (21799Δpta-ackA) (Table  2). Likewise, 
plasmids pK19mobsac-ΔalaT, pK19mobsac-ΔavtAT, 
pK19mobsac-Δldh, pK19mobsac-Δpqo, pK19mobsac-
Δcat, and pK19mobsac-Δmdh were generated (Table 2), 
for the transformation of E. coli JM109. Using the result-
ing plasmids, deletion mutants of 21799ΔalaTΔavtA 
(strain HKC5044), 21799Δldh (strain HKC5021), 
21799Δmdh (strain HKC5053), and 21799ΔpqoΔcat 

Δpta-ackA (strain HKC5050) were constructed (Table 2). 
The deletion mutant was transformed by electropora-
tion with the plasmid pCAC​griHI to express griH and griI 
derived from Streptomyces griseus, which is responsible 
for 3,4-AHBA synthesis (Table  4) [11]. Transformants 
were selected by chloramphenicol resistance and were 
subsequently screened for their ability to produce 3,4-
AHBA from glucose as the sole carbon source. A positive 
transformant was selected for further characterization 
(Table 2).

3,4‑AHBA production by recombinant C. glutamicum
Recombinant C. glutamicum strains were grown aerobi-
cally to the late log phase in a 50 mL test tube contain-
ing BHI broth with constant agitation (180  rpm) for 
18 h at 26 °C. The pre-culture was transferred to 90 mL 
of modified mineral salt CGXII medium containing glu-
cose (40 g L−1 glucose) in a 200 mL jar fermentor Bio Jr.8 
BJR-25NA1S-8 M (ABLE Co. & Biott Co., Tokyo, Japan) 
to obtain a cell concentration corresponding to an opti-
cal density at 600  nm (OD600) of 0.2. The cultivation 
conditions were as follows: temperature, 26  °C; pH, 7.0, 
maintained by the addition of ammonia; stirrer speed, 
200  rpm; aeration with compressed air, 0.5 vvm, unless 
indicated otherwise. For dissolved oxygen (DO)-stat cul-
tivation of 3,4-AHBA production, the DO-stat method 
was started after 24 h of cultivation to control DO levels 
(0, 1.3, 2.6, 5.3, and 8.0  ppm) by changing the agitation 
speed.

Analytical procedures
Culture samples were centrifuged (15,000 × g, 4  °C, 
10  min), and the concentrations of 3,4-AHBA, organic 
acids (acetate, lactate, and succinate), and glucose in 
the resulting supernatants were measured by high-per-
formance liquid chromatography (HPLC), as previously 
described [11]. The concentrations of free amino acids 
in the resulting supernatants were determined with an 
ultra-high-performance liquid chromatograph (Nexera 
X2; Shimadzu, Kyoto, Japan) using an AccQ Tag Ultra 
Chemistry Kit for amino acid analysis (Waters, Milford, 
MA, USA), as previously described [49]. Cell mass was 
estimated by measuring the OD600 using a spectropho-
tometer (U-3010; Hitachi, Tokyo, Japan). An OD600 of 
1.0 corresponded to 0.39 mg dry weight cell per milliliter 
[46].

Metabolome analysis of C. glutamicum cells was con-
ducted as previously described [50]. Major metabolites 
of the central metabolic pathways (e.g., glycolysis, PPP, 
and tricarboxylic acid [TCA] cycle) were analyzed using 
an ion-pairing LC–MS/MS method [51]. Dried cell 
extracts were dissolved in 50 µL of MilliQ water for LC–
MS/MS profiling and quantitation of 30 intracellular C. 
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glutamicum metabolites. The following metabolites were 
analyzed: sugar phosphates (glucose-6-phosphate [G6P], 
fructose-6-phosphate [F6P], frucotose-1,6-bisphosphate 
[FBP], DHAP, glyceraldehyde-3-phosphate [GAP], 2- and 
3-phosphoglycerate [2PG + 3PG], phosphoenolpyru-
vate [PEP], 6-Phospho-d-glucono-1,5-lactone [6PG], 
ribulose-5-phosphate [Rib5P], ribose-5-phosphate [R5P], 
X5P, erythrose-4-phosphate [E4P], and sedoheptulose-
7-phosphate [S7P]); organic acids (aconitate, citrate 
[Cit], fumarate [Fum], isocitrate [IsoCit], malate [Mal], 
oxaloacetate [OXA], 2-oxoglutarate [AKG], pyruvate, and 
succinate [Suc]); nucleotides (adenosine di- [ADP] and 
triphosphate [ATP]); coenzymes (acetyl-CoA [AcCoA], 
oxidized and reduced nicotinamide adenine dinucleotide 
[NAD+ and NADH, respectively], oxidized and reduced 
nicotinamide adenine dinucleotide phosphate [NADP+ 
and NADPH, respectively]); and amino acids (alanine, 
[Ala], arginine [Arg], asparagine [Asn], aspartate [Asp], 
cysteine [Cys], glycine [Gly], glutamate [Glu], glutamine 
[Gln], histidine [His], isoleucine [Ile], leucine [Leu], 
lysine [Lys], methionine [Met], phenylalanine [Phe], 
proline [Pro], serine [Ser], threonine [Thr], tryptophan 
[Trp], tyrosine [Tyr], and valine [Val]). Metabolites were 
quantified as described previously [52] using an Agilent 
1200 series MS and Agilent 6460 with Jet Stream Tech-
nology LC–MS/MS system (Agilent Technologies, Wald-
bronn, Germany) equipped with a Maestro C18 column 
(2.1 × 150  mm, 3-µm particle size; Shimadzu, Kyoto, 
Japan).

Extraction of metabolic intermediates
For quantitative metabolomics, C. glutamicum cells were 
subjected to cold methanol quenching, as described pre-
viously [53], with slight modifications. A total of 15 mL of 
liquid culture at an OD600 of 2.0 was withdrawn from the 
medium and immediately sprayed into a 50  mL centrifu-
gal tube (LMS Co., Ltd., Tokyo, Japan) containing double 
the volume of 40% (v/v) aqueous methanol at − 25 °C. After 
sampling, the content of each tube was immediately mixed 
by vortexing for 5 s to quench cellular metabolism and sub-
sequently centrifuged (4000 × g, 5 min, − 9 °C). After decant-
ing the supernatant, cell pellets were washed with 8 mL of 
0.8% (w/v) NaCl at 4  °C and centrifuged again (4000 × g, 
5  min, − 9  °C). After decanting the supernatant, the tubes 
containing the cell pellets were submerged directly into liq-
uid nitrogen and stored at − 80 °C until metabolite extraction. 
For metabolite extraction, 3.0 mL of cold methanol (− 25 °C) 
containing ( +)-camphor-10-sulfonic acid (18  µg·L−1) was 
added to each tube as an internal standard for quantitative 
LC-MC/MS analysis. The tubes were vortexed for 30 s, and 
the resulting cell suspensions were incubated at − 30 °C for 
1 h, after which 1.5 mL of the suspensions were transferred 
to 15 mL centrifuge tubes (LMS Co., Ltd.) containing 2.1 mL 

of chloroform and 1.5 mL of distilled water. These were then 
mixed by vortexing for 5 s. After centrifuging the resulting 
suspensions at 15,000 × g for 5 min at 4 °C, the upper phases 
were transferred to new tubes and dried under vacuum. The 
dried samples were stored at − 80  °C until the metabolite 
analysis was performed.

Statistical analysis
Differences in sugar and metabolic intermediate con-
centrations and differences in cell density between the 
fermentation media were compared using the paired Stu-
dent’s t-test. Statistical significance was set at p < 0.05.
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