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Abstract: The aim of this study is to investigate the role of Delta Radiomics analysis in the prediction
of one-year local control (1yLC) in patients affected by locally advanced pancreatic cancer (LAPC)
and treated using Magnetic Resonance guided Radiotherapy (MRgRT). A total of 35 patients from
two institutions were enrolled: A 0.35 Tesla T2*/T1 MR image was acquired for each case during
simulation and on each treatment fraction. Physical dose was converted in biologically effective dose
(BED) to compensate for different radiotherapy schemes. Delta Radiomics analysis was performed
considering the gross tumour volume (GTV) delineated on MR images acquired at BED of 20, 40,
and 60 Gy. The performance of the delta features in predicting 1yLC was investigated in terms of
Wilcoxon Mann–Whitney test and area under receiver operating characteristic (ROC) curve (AUC).
The most significant feature in predicting 1yLC was the variation of cluster shade calculated at
BED = 40 Gy, with a p-value of 0.005 and an AUC of 0.78 (0.61–0.94). Delta Radiomics analysis on
low-field MR images might play a promising role in 1yLC prediction for LAPC patients: further
studies including an external validation dataset and a larger cohort of patients are recommended to
confirm the validity of this preliminary experience.

Keywords: radiomics; pancreatic cancer; magnetic resonance; MR-guided radiotherapy

1. Introduction

Despite the progress in diagnosis and the development of multimodal therapies,
pancreatic cancer still represents the fourth leading cause of cancer death in the world,
with more than 80% of patients presenting unresectable or metastatic disease at diagnosis
and a 5-year overall survival rate of 10–20% [1,2].

For patients affected by locally advanced pancreatic cancer (LAPC), the first therapeu-
tic approach is to date represented by combined systemic chemotherapy [3–5]. Treatment
intensification with locoregional multimodal therapies such as high-intensity focused ultra-
sound (HIFU), chemoradiotherapy (CRT), or stereotactic body radiation therapy (SBRT) in
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patients showing stable disease or considered not resectable after chemotherapy induction
is still a controversial issue in the oncological community [6–8].

The advantages of subsequent CRT in terms of local control (LC) and overall survival
(OS) were firstly suggested by retrospective studies but not confirmed in perspective trials,
leaving open the question on its real clinical impact [9–12].

In the framework of radiotherapy, the recent introduction of advanced on-board
imaging systems that are able to ensure the delivery of higher doses to the tumour without
compromising the functionality of the radiosensitive organs at risk (OARs) nearby has led
to an increased role of SBRT in the clinical management of LAPC patients, making this
strategy a valuable option in the multimodal treatments [13–19].

In this context, the recent introduction of magnetic resonance guided radiotherapy
(MRgRT) opened a new frontier, offering the possibility to deliver daily online adaptive
treatments, able to effectively compensate inter-fraction variation of the tumour and sur-
rounding OARs. In addition, the on-board MR imaging available on the hybrid units
ensures better anatomical definition of therapy volumes, thanks to the higher soft tissue
contrast and continuous tumour motion monitoring during treatment delivery by means
of a planar MR acquisition in cine modality [20,21].

In particular, the possibility of online adapting the treatment plan appears to be
of crucial importance in the clinical management of LAPC patients to ensure the most
appropriate treatment every day, taking into consideration inter-fraction and intra-fraction
tumour variability [22–24].

In the framework of the modern ‘omics’, radiomics is playing a relevant role, iden-
tifying image-based biomarkers that are able to predict clinical outcomes and showing
significant results since the first years of its application in different treatment sites, such as
the pelvis, abdomen, and thorax [25–29].

In particular, a variant of this approach, called Delta Radiomics, studying the variation
of the radiomics parameters during treatment, seems to be able to model the patient treat-
ment response during therapy, reporting promising results in diseases as gastrointestinal
and pancreatic cancers [30,31].

The aim of this study was to investigate the role of Delta Radiomics in predicting
the one-year local control (1yLC) in patients affected by LAPC and treated using MRgRT,
identifying new image-based biomarkers obtained by the quantitative analysis of the
on-board MR images acquired during treatment.

2. Materials and Methods
2.1. Patients

Patients affected by LAPC who underwent MRgRT using a low-field MR-linear accel-
erator (MRIdian, ViewRay, Mountain View, CA, USA) in two different institutions were
retrospectively enrolled.

Specific informed consent to MRgRT treatment and Magnetic Resonance Imaging
(MRI) safety screening forms were administered to all patients before therapy. Patients
younger than 18 years, with the presence of metastasis at diagnosis, with clinical contraindi-
cation to MRI (e.g., presence of non-MRI-safe implanted devices, claustrophobia, affected
by psychiatric disorders) or denying specific consents, were excluded from this study.

Patients enrolled in centre A (Wisconsin University, Madison, WI, USA) received four
different dose schedules: 35 Gy, 40 Gy, or 50 Gy in 5 fractions and 67.5 Gy in 15 fractions,
based on the clinical situation of the patient at the time of diagnosis and on the distance
between the target and OARs at the simulation.

All the patients enrolled in centre B (Fondazione Policlinico Universitario Agostino
Gemelli IRCCS, Rome, Italy) received 40 Gy in 5 fractions [24,32].

All patients underwent induction chemotherapy regimens that included Gemcitabine,
Gemcitabine plus INN-Paclitaxel, FOLFIRINOX (Oxaliplatin at the first day; Irinotecan
at the first day; Folinic Acid, at the first and second day; 5-Fluorouracil at the first day;
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and 5-Fluorouracil at the first and second day in continuous infusion; each 14 days), and
Capecitabine regimens.

For the MRgRT treatment, a true fast imaging with steady state precession (TrueFISP)
MR sequence was acquired each day of therapy, using a sequence of 25 s in breath hold
inspiration and resulting in MR images characterised by a T2*/T1 weighted image con-
trast, with a field of view (FOV) of 54 × 47 × 43 cm3, an in-plane spatial resolution of
1.5 × 1.5 mm2, and a slice thickness of 3 mm [33]. The MR acquisition protocol adopted
was identical in both the institutions.

2.2. Image Analysis

Gross tumour volume (GTV) and organs at risks were manually delineated during
simulation and propagated on each daily MR image acquired for patient positioning: based
on the daily anatomy, the clinician decided whether to adapt the Radiotherapy (RT) treatment
plan or deliver the original one calculated on the MR image acquired during simulation.

Delta Radiomics analysis was focused on GTV as the region of interest (ROI) and
one-year local control (1yLC) as outcome. In particular, 1yLC was defined in case that the
patient one year after the end of the MRgRT treatment showed a GTV volume less or equal
to the one measured at the simulation.

To adequately compare the radiomics features extracted from MR images acquired at
different times, physical dose values were converted to biologically effective dose (BED)
assuming an alpha/beta value of 10 Gy [34].

The quantitative analysis considered the GTV delineated on the MR images acquired
at the BED levels of 20, 40, and 60 Gy: based on the fractionation scheme chosen for the
MRgRT treatment, the fractions reported in Table 1 were selected for the analysis.

Table 1. Fractions selected to obtain equivalent biologically effective dose (BED) levels to varying of the prescription dose
and fractions.

Prescription Dose and
Fractions (fx) BED = 20 Gy BED = 40 Gy BED = 60 Gy Total BED

35 Gy in 5 fx Fraction 2 (BED = 23.8 Gy) Fraction 3 (BED = 35.7 Gy) Fraction 5 (BED = 59.5 Gy) 59.5 Gy
40 Gy in 5 fx Fraction 1 (BED = 14.4 Gy) Fraction 3 (BED = 43.2 Gy) Fraction 4 (BED = 57.6 Gy) 72 Gy
50 Gy in 5 fx Fraction 1 (BED = 20 Gy) Fraction 2 (BED = 40 Gy) Fraction 3 (BED = 60 Gy) 100 Gy

67.5 Gy in 15 fx Fraction 3 (BED = 19.6 Gy) Fraction 6 (BED = 39.2 Gy) Fraction 9 (BED = 58.7 Gy) 97.9 Gy

GTV delineation was retrospectively checked for anatomical consistency on the MR
images selected for the analysis using the MIM software (version 6.7.6 MIM Software
Inc., Cleveland, OH, USA) by two radiation oncologist experts in the gastrointestinal
malignancies. Figure 1 reports the example of one patient where the GTV was delineated at
simulation and at the treatment fractions selected to have BED levels of 20, 40, and 60 Gy.

The DICOM files containing the MR images and the RT structure file were exported
and processed using MODDICOM, an R package developed for radiomic analysis [35,36]. A
total of 92 radiomics features were extracted from each single MR image, without applying
any kind of image filter or pre-processing on the raw images. The extracted radiomic
features belonged to three families: Intensity-based (19), morphological-based (13), and
textural-based (60).

As regards the textural features, 25 of them are based on grey-level co-occurrence
matrix (GLCM), 15 of them are based on grey-level run length matrix (GLRLM), and 16
are based on the grey-level size zone (GLDZM). All the image features analysed met the
standardisation criteria of the IBSI initiative: the complete list of the features is reported in
Supplementary Materials [37].
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Figure 1. Gross tumour volume (GTV) delineated at the treatment simulation (S) and at the different
treatment fractions selected for the Delta Radiomics analysis, corresponding to BED levels of 20 Gy
(1), 40 Gy (2), and 60 Gy (3). The GTV contours are reported in blue lines

In addition to the original radiomic features extracted by the single MR images,
the variation of each radiomic feature with respect the corresponding value reported in
simulation was calculated and considered as delta radiomic feature.

The Wilcoxon Mann–Whitney (WMW) test was used to investigate the ability of these
features in predicting 1yLC at univariate analysis, and the feature showing the lowest
p-value was considered as the most predictive parameter.

Receiver operating characteristic (ROC) curve analysis was performed on the most
significant feature obtained at the WMW analysis, calculating the area under curve (AUC)
with the corresponding 95% confidence interval (CI) following the Clopper–Pearson
method [38].

In absence of an external validation dataset, the robustness of the delta radiomics
feature identified was evaluated by means of a five folds cross-validation analysis with
tree iterations [39].

In order to provide a general overview of the clinical cohort under investigation,
the correlation between five clinical parameters (age, clinical staging following TNM
classification (cT, cN, cM), and total BED) and 1yLC was also reported using the WMW
test. Such analysis was repeated considering also the overall survival one year after the
end of treatment (1yOS) as outcome.

3. Results

A total of 35 patients were enrolled in this retrospective hypothesis-generating study:
28 patients from Institution A and seven patients from Institution B.

All patients were diagnosed with pancreatic adenocarcinoma, except one who had
a ductal pancreatic adenocarcinoma. Seven patients showed the presence of metastases
at diagnosis: two of them were oligometastatic, one had two metastases, and the others
had three or more metastases. Metastases were mainly located in liver (71%), with one
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patient having a single metastasis in the lung and one with two metastases in the liver and
peritoneum.

On the whole cohort of patients, a total of 18 patients (51.4%) were treated with 67.5 Gy
in 15 fractions, 9 cases (25.7%) were treated with 35 Gy in 5 fractions, 7 cases (20%) were
treated with 40 Gy in 5 fractions, and one case was treated with 50 Gy in 5 fractions (2.8%).

A total of 18 patients received an adaptive treatment, while the others received a
conventional SBRT treatment without daily adaptation. Clinical characteristics of the
patients enrolled are reported in Table 2.

Table 2. Patient characteristics and outcomes distribution for the patients included in the study.
1yLC: Local control after 1 year since the end of the treatment.

Number of Patients

Age (range) 69 (55–88)

Gender
Female 14 (40%)
Male 21 (60%)

Histology
Adenocarcinoma 34 (97%)

Ductal Adenocarcinoma 1 (3%)

Clinical Tumour Staging (T)
cT1 2 (6%)
cT2 12 (34%)
cT3 8 (23%)
cT4 13 (37%)

Clinical Nodal Staging (N)
cNx 2 (6%)
cN0 20 (57%)
cN1 9 (25%)
cN2 2 (6%)
cN3 2 (6%)

Clinical Metastasis Staging (M)
cM0 28 (80%)
cM1 7 (20%)

Structures Involved by Tumour at Diagnosis
None 2 (6%)

Duodenum 1 (3%)
Pancreas 11 (30%)

Liver 2 (6%)
Vessels 13 (37%)

Pancreas and Vessels 2 (6%)
Duodenum and Vessels 2 (6%)

Duodenum, Stomach and Vessels 1 (3%)
Pancreas, Duodenum and Stomach 1 (3%)

1yLC 20 (57%)

1yOS 24 (69%)

Out of a total of 35 patients analysed, 24 of them were alive one year after the end of
treatment (1yOS = 69%), while 20 of them had local control (1yLC = 57%).

A total of 644 features (368 radiomic and 276 delta features) were calculated for each
patient: the univariate analysis performed using the WMW test identified seven features
showing a p-value less than 0.05 in predicting 1yLC. The most significant feature of 1yLC
analysis was the variation of the cluster shade calculated on the co-occurrence matrix when
a BED value of 40 Gy is reached, reporting a p-value of 0.005.
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The ROC curve obtained considering the discriminative performance of this delta
feature is shown in Figure 2: an AUC value of 0.78 was obtained, with a 95% confidence
interval ranging from 0.61 to 0.94.
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Figure 2. Receiver operating characteristic (ROC) curve calculated for the variation of the cluster
shade feature when a BED value of 40 Gy is reached The ROC curve is reported in continue line, the
extremes of the 95% confidence interval are reported in dot lines.

The cross-validation analysis reported an AUC of 0.79 with a confidence interval
ranging from 0.62 to 0.97. As regards the analysis of the clinical variables, no significant
correlation was observed considering 1yLC and 1yOS as outcome: the detailed results in
terms of p-values obtained considering the WMW test are reported in Table 3.

Table 3. Results of the univariate analysis performed using the Wilcoxon Mann–Whitney (WMW)
test between five clinical variables (cT, cN, cM, age, and BED) and two outcomes (one-year local
control, 1yLC; and one-year overall survival, 1yOS).

Clinical Variable
Univariate Analysis (p-Value)

1yLC 1yOS

Clinical Tumor Staging (cT) 0.82 0.74
Clinical Nodes Staging (cN) 0.68 0.57

Clinical Metastasis (cM) 0.10 0.29
Age 0.17 0.28

Biologically Effective Dose (BED) 0.76 0.91

4. Discussion

Outcome prediction through radiomics analysis of on-board MR images is a topic of
great interest in the scientific community due to the very promising clinical results achieved
in the pancreatic cancer care using MRgRT [40,41].

Models able to provide reliable predictions during the RT course can be of great
value to clinicians, allowing timely change of the dose prescription, moving towards dose
escalation, or alternative approaches for patients indicated by the model as not-responders,
in the perspective of response-based treatment adaptation [42].
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The first Delta Radiomics experiences in the pancreatic cancer were reported by Nasief
et al., who developed on 90 patients a machine learning process that was able to early
predict the response to CRT treatment by analysing the temporal variation of radiomic
features extracted by CT images acquired every day during the therapy [31].

Then, the same authors combined the previously described Delta Radiomic model
with a widely used clinical biomarker for pancreatic cancer (CA19-9), demonstrating how
the integration of the two predictors leads to more reliable predictive performance than
considering the individual parameters alone [43].

As regards the use of MR imaging for treatment response prediction, the main expe-
riences were focussed on the radiomic analysis of MR images acquired at a single time
point: Kaissis et al. proposed a model able to predict the overall survival by analysing
the pre-operative diffusion weighted images, while Tang et al. elaborated a model for
early recurrence prediction from the analysis of pre-operative T2 and T1-weighted MR
images [44–46].

As regards the Delta Radiomics MR-based models, the only experience to the best of
our knowledge is represented by the study of Simpson et al., who showed how the delta
approach on 0.35 T MR images may have a promising role in tumour response prediction
of pancreatic cancer patients [47].

On a cohort of 20 patients, Simpson et al. have elaborated a machine learning method
able to identify in advance the patients who will have a complete response to MRgRT
treatment: despite the similar endpoints with respect our analysis, substantial differences
can be recognised.

First of all, in our experience, a larger number of patients was analysed (35), and the
identification of a single feature was preferred to the elaboration of a machine learning
model, with the aim of obtaining a single image-based biomarker that could have a clinical
and biophysical interpretation, reducing the risk of model overfitting. Secondly, the BED
approach was adopted to compensate for different radiotherapy schemes, thus extending
the generalisability of the proposed approach to different dose prescriptions [48,49].

The most significant feature emerged in our analysis was the variation of the cluster
shade when a BED value of 40 Gy was reached, which is an indicator of a textural variation
occurred inside the GTV during the course of MRgRT: further studies including known
biomarkers (such as lab test or markers levels etc.) are needed to determine which biological
substrate this clinical evidence is related to. Such feature showed an AUC of 0.78 (95% CI:
0.61–0.94) on the cohort analysed, which was confirmed by the cross-validation analysis
(AUC = 0.79, 95% CI: 0.62–0.97): the reason of the large CI widths observed are mainly due
to the low numerosity of the sample analysed.

However, the experience reported in this study represents a hypothesis-generating
study, as it was conducted on a limited cohort of patients and does not include an external
validation dataset, which represents a mandatory step to demonstrate the generalisability
of this approach and moving towards the clinical application: the lack of an external dataset
was partially compensated by means of a cross-validation approach, which confirmed the
high discriminative performance of the identified feature.

The whole image analysis was performed on the raw MR images acquired for patient
positioning, without applying any image pre-processing operations: the impact of image
filters will be investigated in future studies, as several MR-based and CT-based radiomic
experiences have demonstrated their utility in the enhancement of feature extraction [50–52].

Another limitation of this experience is represented by the lack of an analysis related
to the reproducibility of the radiomic features, which represents a necessary step for
the clinical implementation in studies based on manual segmentation processes. In this
context, a great evolution is expected from automatic contouring systems that are able
to ensure precise and standardised contours in a very short time: the feasibility of these
approaches on MRI has been recently demonstrated by some experiences, even focused on
the abdominal district [53,54].



Diagnostics 2021, 11, 72 8 of 11

Finally, it is noteworthy that no statistical significance emerged in the analysis between
the clinical variables considered and one-year survival and local control: this could be due
to the short time considered for the outcomes observation and to the low numerosity of the
sample analysed.

Despite the limited number of patients considered, hypothesis-generating studies are
proving to be able to obtain interesting findings, which often represent the starting point
for more structured research. An interest example in this framework is represented by
the experience of Gill et al., who recently observed in 15 melanoma patients a significant
correlation between the radiomic features extracted by CT images and the concentration of
circulating tumour DNA in blood plasma through a dedicated statistical analysis ad hoc
developed for the purpose of the study [55].

The experience described in this paper has to be considered within the context of
these pilot studies, with findings that confirm the potentialities of low-field MR imaging
for Delta Radiomics applications, encouraging to set up a MRgRT consortium to further
explore the predictive role of Delta Radiomics analysis in treatment personalisation using
daily MR acquisitions.

5. Conclusions

Delta Radiomics analysis performed on low-field MR images appeared to be a feasible
and promising image analysis technique for the determination of 1yLC probability in
patients affected by pancreatic cancer. Further studies including a larger cohort of patients,
automatic segmentation procedures, and an external validation set are recommended to
confirm the preliminary results here reported.

Considering the ability of Delta Radiomics approaches to represent the patient’s
treatment response through the variation of the clinical images acquired on a daily basis,
the use of these systems is expected to grow in the future, providing physicians with
increasingly reliable systems to support their clinical decisions and paving the way towards
more precise and personalised cancer approaches.
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