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Abstract: Concerning the triple-frequency ambiguity resolution, in principle there are three different
realizations. The first one is to fix all the ambiguities of the original frequencies together. However,
it is also believed that fixing the combined integer ambiguities with longer wavelength, such as
extra-wide-lane (EWL), wide-lane (WL), should be advantageous. Also, it is demonstrated that fixing
sequentially EWL, WL and one type of original ambiguities provides better results, as the previously
fixed ambiguities increase parameters’ precision for later fixings. In this paper, we undertake a
comparative study of the three fixing approaches by means of experimental validation. In order to
realize the three fixing approaches from the same information in terms of adjustment, we developed
a processing strategy to provide fully consistent normal equations. We first generate the normal
equation with the original undifferentiated carrier phase ambiguities, then map it into that with
the combined and double-differenced ambiguities required by the individual approach for fixing.
Four baselines of 258 m, 22 km, 47 km and 53 km are selected and processed in both static and
kinematic mode using the three ambiguity-fixing approaches. Indicators including time of first fixed
solution (TFFS), the correct fixing rate, positioning accuracy and RATIO are used to evaluate and
investigate results. We also made a preliminary theoretical explanation of the results by looking into
the decorrelation procedure of the ambiguity searching algorithm and the intermediate results. As
conclusions, integrated searching of original ambiguities or combined ambiguities has almost the
same fixing performance, whereas the sequential fixing of EWL, WL and B1 ambiguities overperforms
the integrated searching. By the way, the third-frequency data can shorten the TFFS significantly but
can hardly improve the positioning.

Keywords: BDS; long range RTK; triple-frequency observations; carrier phase ambiguity; LAMBDA;
integer ambiguity resolution

1. Introduction

Along with the development of real-time kinematic (RTK) positioning, the distance
between users and the reference station is always a challenge in order to enlarge its service
coverage. The crucial issue is the Integer Ambiguity Resolution (IAR) which is the key
for fast and precise global navigation satellite system (GNSS) positioning. The phase
observations with fixed ambiguity is equal to ultra-precise range observations and improve
the other parameters remarkably, so that positioning accuracy of centimeter- or even
millimeter-level can be achieved [1]. This challenge still remains a research hotspot in
network RTK or PPP-RTK, since on the one hand, it could be applied to the ambiguity
resolution of reference networks, and on the other hand, there are still a lot of regions with
only very sparse reference stations.

In principle IAR performance depends heavily on the observation noise and modelling
errors, wavelength of the ambiguity parameters and the observing geometry. The smaller
the observation noise or the larger the wavelength, the better is the fixing. A stronger
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observing geometry will provide a better float solution, and consequently a more reliable
fixing. However, several factors which cannot be efficiently removed by between-station
differencing will remain in the observations used in the adjustment. The most significant
ones are the tropospheric and ionospheric delays which are increasing with the inter-station
distance [2]. They can be corrected with a priori correction models [3,4], respectively,
however these corrections are not accurate enough for precise positioning, especially, the
feasibility of ambiguity resolution in precise positioning is still related to the state of the
ionosphere and can be affected by ionospheric disturbances of different scales [5]. Thus,
additional parameters must be introduced and estimated simultaneously with the other
parameters. This degrades the strength of the float solution and makes the instantaneous
ambiguity resolution very difficult.

Thereafter, on the one hand, a number of studies worked on providing possible
accurate ionospheric and tropospheric delay information and imposing proper constraints
on them to retain the strength of the solution and reduced observation residuals and
demonstrated their efficiency via the resulting ambiguity fixing performance [6–8]. On
the other hand, from the processing of short baselines where dual-frequency data can be
applied as independent observations, due to the very strong constraint among ambiguities
of different frequencies, ambiguities can be fixed very quickly and reliably [9]. Fortunately,
the third-frequency observations available in the modernized GPS and the newly emerging
system BDS and Galileo bring obviously additional information on ionospheric delays and
will certainly enhance the constraint among ambiguities at different frequencies [10–12].
The ambiguity resolution of multi-frequency are investigated thoroughly together with the
consideration of multi-constellations, as both sides rely tightly on each other through more
information in ionospheric delays.

Beside strengthening the solution and reducing the errors to increase the fixing op-
portunity as discussed above, to quickly and precisely find out the correct integer solution
is of the same importance, i.e., the fixing approaches. In the past, several approaches
were developed, most of them are based on searching the optimal integer ambiguities
statistically closest to the corresponding float solution [9–17]. The mostly used approach
is the Least-Squares AMBiguity Decorrelation Adjustment (LAMBDA) method [1], for
example, which is also applied in the recent contributions [18–20].

A large number of scholars have studied the long-range RTK positioning using triple-
frequency observations with the concentration of triple-frequency ambiguity resolution
and observation modelling as well, One group of scientists tried to resolve the ambiguities
directly based on a set of optimized combinations of the phase and range observations,
which is referred as triple-frequency carrier-phase ambiguity resolution (TCAR). It is
proved that EWL and WL can be fixed reliably, however the last one with a rather shorter
wavelength can only be fixed using geometrical observations and ambiguity searching
approaches. It is also confirmed TCAR or the later improved method does not have obvious
advantage to some of the searching schemes [21]. For example, [12,22] has studied the
contribution of the third-frequency of GPS and Galileo on long-range RTK ambiguity
resolution, the results of a cascading fixing scheme in the sequence of EWL, WL and L1/E5
ambiguities are very promising although only simulated observations were available and
employed.

Overall, there are also several different schemes for multi-frequency ambiguity res-
olution: (1). to searching all ambiguities of the original frequencies, and (2) to map the
ambiguities to extra-wide lane (EWL), wide-lane (WL) and one original frequency and to
search the integer solution altogether, (3) similar to (2) but search the ambiguities of the
same wavelength in batch with that of the longest wavelength first. Usually the second
one is believed better than the first one as the EWL and WL ambiguities should be easily
fixed due to their longer wavelength. However, there is also the opinion that LAMBDA
should give the same result as the first two schemes are based on the same float solu-
tion information. A comparative study of the three schemes is the major goal of this
contribution.
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The Chinese BeiDou Navigation Satellite System (BDS) should be the first one of the
GNSS which provides triple-frequency data across the constellation. In fact, it can provide
signals at more than triple frequencies since 27 December 2018 [23]. Nowadays, Galileo
and all GPS Block IIF and III satellites are also transmitting signals at third or even more
frequencies. In this contribution, the comparative study on the above-mentioned three
fixing schemes is carried out based on the BDS triple-frequency data. In order to do a fair
comparison, all the fixing will start from exactly the same normal equation information.
We use double-differenced but uncombined observations with undifferenced ambiguities
at the original frequencies, which should be equivalent to that using undifferenced or
single-differenced observations if their covariance matrix is rigorously considered [24].
Before the ambiguity resolutions these ambiguities are mapped to the combination among
frequencies, i.e., EWL, WL etc. and between stations and satellites, i.e., double-differenced
ambiguities for fixing. The time of first fixed solution (TFFS) and the correct fixing rate,
and of course also the derived positioning deviations are employed as fixing performance
indicators for evaluation. The result of the comparison will be further investigated by
examining the theory and algorithm of the ambiguity resolution schemes. The paper is
arranged as follows: the related functional and stochastically models will be introduced
with the handling of atmosphere delays after this introduction. Then, ambiguity mapping
method is presented for both among frequencies and between stations and satellites. Three
ambiguity fixing schemes are defined for comparison based on the ambiguity searching
approach. Afterwards, data processing strategy is presented, and results are compared and
analyzed before conclusions are drawn.

2. Estimating Model

For a better understanding of the ambiguity resolution schemes, we briefly introduce
the observation equations, and the handling of tropospheric and ionospheric delays, as
well as ambiguity mapping for triple-frequency data processing.

2.1. Observation Equation

The observation equation of GNSS multi-frequency undifferenced and uncombined
carrier phase can be expressed as:

φ
p
i,r − ρ

p
r = Hp

r · Xr + c · (dtr − dtp) + Mp
r · Tr − µi · I

p
1,r + λi · B

p
i,r + ε

p
i,r, Pp

i,r (1)

where p, r and i are the indicates of the satellite, receiver and carrier phase frequency,
respectively; Xr is the coordinate parameters vector after first order Taylor expression with
design matrix Hp

r ; φ
p
i,r is the carrier phase observation, ρ

p
r is the geometric distance from

the satellite to the receiver r; dtr and dtp are the clock error of the receiver and satellite,
respectively; c represents the speed of light; Tr is the zenith tropospheric delay; Mp

r is
tropospheric mapping function; µi is the ionospheric coefficient for frequency i, µi = f 2

1 / f 2
i ;

Ip
1,r is the ionospheric delay of the first frequency, and λi is the wavelength of carrier phase;

Bp
i,r is the carrier phase ambiguity, ε

p
i,r is the measurement noise, Pp

i,r is the weight matrix
of the observations and which value is calculated according to the altitude angle of the
satellite.

In the baseline or RTK processing, the single-differenced (SD) observation between
stations can be applied, as it can eliminate the satellite clock biases and reduce the effect
of satellite orbit biases and atmospheric delays. In order to also eliminate the receiver
clock bias, further difference between satellites is usually employed in practice, i.e., double-
differenced (DD) observations are used. Suppose that two stations simultaneously observe
the reference satellite q, and the station coordinate and zenith tropospheric delay at the
reference stations are not estimated, only those at the moving station are estimated, the DD
observation equations read as:

vpq
i,rs = Hpq

r · Xr + Mpq
r · Tr − µi · I

p
1,rs + µi · I
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1,rs + λi · B
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i,rs − λi · B
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i,rs − ρ

pq
i,rs) (2)
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where r, s represent rover station and reference station, respectively, vpq
i,rs represents ob-

servation residual. As is well known, using DD or SD or undifferenced observations are
equivalent if their covariance matrices are considered rigorously [24].

Usually, DD ambiguities should be involved in the DD observation equations, as
they have the nature integer characteristics and can be fixed directly. However, the DD
ambiguities may change along with satellite rises and sets, so the normal equation must be
reformed accordingly. This makes the realization of the algorithm much more inconvenient.
Therefore, SD ambiguity parameters are used in this study and then are mapped into DD
ambiguities before integer ambiguity resolution.

2.2. Atmospheric Delay Estimation

The atmospheric delay is one of the major error sources that limits the accuracy and
reliability of RTK positioning and the impact becomes more serious as the inter-station
distance increases, since both troposphere and ionosphere delays can be neither cancelled
by between stations differencing nor precisely corrected. For tropospheric delays large
height differences between stations can also cause similar inaccurate modelling due to the
different path of the transmitting signals [25].

In practice, the dry component of the tropospheric delay can be corrected by a model,
for example the Saastamoinen model using pressure and temperature from GPT2 [26,27],
whereas the wet component is parameterized as either piece-wise liner function or random-
walk process to be estimated. Regarding to the mapping functions, the mostly used are
GMF and VMF1 and the later one is used in this study [28,29].

Ionosphere delays can be eliminated by forming the ionosphere-free combination from
observations of at least two frequencies. This is very often applied in long-range baseline
data processing and the ambiguity of ionosphere-free observations must be separated into
wide-lane and narrow-lane and fixed sequentially [30,31]. A more advantageous strategy
is to use uncombined observations with slant ionospheric delays as unknown where the
ambiguity of original frequencies can be estimated by imposing constraints on spatial
and/or temporal ionospheric delay variations [32]. The later one is extremely suitable for
triple-frequency data processing to avoid the selection of ionosphere-free combinations to
involved in the data processing. Therefore, the later one is employed in this study with
temporal constraint, i.e., inter-epoch ionospheric delay parameter constraint.

The random walk process for both ionospheric and tropospheric delays can be mathe-
matically expressed as:

d(tk+1) = d(tk) + w(tk)

E(d(t0)) = 0, Cov(d(t0)) = σ2

E(w(tk)) = 0, Cov(w(tk)) = q2(k) · (tk − tk−1)

(3)

where E(·), Cov(·) are the functions for expectation and, variance, respectively, and t is
epoch time. The symbols d, w, σ2, and q denote residual value, change of residual value,
variance and power density of the corresponding atmospheric parameter, respectively. For
RTK positioning, the remaining delay in the SD observations between stations depends
on the inter-station distance, so the power density should be fine-tuned according to the
baseline length. For example, both ionospheric and zenith tropospheric delays are almost
fully eliminated for short baselines, the constraint of the initial state and the power density
should be very close to zero, so that all estimates of state parameter are zero. In practice,
the power density of the random walk processes can be sophistically adjusted in order to
optimize the positioning performance, for example, fine-tuning the power density during
the initial period to shorten the ambiguity convergence time and to improve positioning
accuracy and reliability [33]. It can also be adapted according to the ionospheric variation
calculated from ionosphere combinations of phase observations or the estimated delay
parameters in the previous epochs [34].
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2.3. Parameter Estimation

The DD observation equation system of Equation (3) is abbreviated for the presentation
of parameter estimation and ambiguity resolution as:

v = Ax + Dy + Cb + l, P (4)

where x represent position parameters; y includes the residual zenith tropospheric delay
after applying corrections from VMF1 model and the slant ionospheric delay parameters
each for one satellite, i.e., (Tr, I1

1 , I2
1 , · · · Insat

1 )
T with nsat as the number of satellites observed

at the epoch, and will be estimated as random walk process as described in Section 2.2;
and b represents SD ambiguity parameters; and A, D, C are the corresponding coefficient
matrices for parameters x, y and b, respectively; l is pre-fit observation residuals. It should
be mentioned that for kinematic positioning the position parameters are time-varying
instead of constant parameters all over the time for the static positioning.

According to the least square’s criterion, the normal equation of Equation (5) is
expressed as:  AT PA AT PD AT PC

DT PD DT PC
sym CT PC

 x
y
b

 =

 AT Pl
DT Pl
CT Pl

 (5)

which is abbreviated as:  Nxx Nxy Nxb
Nyy Nyb

sym Nbb

 x
y
b

 =

 Wx
Wy
Wb

 (6)

This normal equation system is estimable even if a loose constraint on the reference
ambiguity parameters is applied.

2.4. Ambiguity Mapping

As is mentioned, the ambiguities in Equations (5)–(7) are SD-ambiguities between the
two stations at the original signal frequencies in order to avoid the complicated reformation
due to satellites rises or sets. Since only DD-ambiguities have integer characteristics because
of the existence of uncalibrated phase delays, the SD ambiguities must be mapped into DD
ambiguities for integer ambiguity resolution. This re-parameterization can be realized by
the normal equation mapping based on a defined parameter transformation proposed by
Blewitt and Dong and Bock [30,31].

From a given set of SD ambiguities, a number of sets of independent DD-ambiguities
can be defined. There are various criteria to select the ones to be fixed the most easily, for
example according to their elevations and length of continuous observations etc. Obviously
from SD to DD the mapping is rank-defect, independent SD ambiguities must be further
added to complete the transformation to full-rank. Assume that a full rank transformation
from SD b to DD b̂ is:

b̂ = Tb (7)

then the corresponding normal equation system can be derived from Equation (6) as: Nxx Nxy Nxb · T−1

Nyy Nyb · T−1

sym T−T · Nbb · T−1

 x
y
b̂

 =

 Wx
Wy

T−T ·Wb

 (8)

Besides the mapping from SD to DD ambiguities, ambiguities combination of various
frequencies can also be implemented with this mapping approach. For the triple-frequency
data processing, the mapping can be generalized defined as:
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T · b =

 i1 · In j1 · In k1 · In
i2 · In j2 · In k2 · In
i3 · In j3 · In k3 · In

 ·
 b1

b2
b3

 =

 b(i1,j1,k1)

b(i2,j2,k2)

b(i3,j3,k3)

 = b′ (9)

where (i1, j1, k1), (i2, j2, k2) and (i3, j3, k3) are the combination coefficients and they must be
integer values, so that the mapped ambiguities also have integer characteristics for fixing.
For example, with (0, 1, −1), (1, −1, 0), and (1, 0, 0). we obtain the EWL, WL and B1 as
mapped ambiguities. The normal equation system with the mapped ambiguities can be
derived in the same way as for the mapping from SD to DD ambiguities.

Usually, it is believed that ambiguities with longer wavelength can be fixed more
easily. It might be true for most of the searching approaches but not for the integrated
searching with LAMBDA method. This will be demonstrated and investigated in this
study.

In principle, the former mapping, from SD to DD ambiguities, is definitely needed for
integer ambiguity resolution, whereas the later one is carried out on demand.

3. Ambiguity Resolution

There are two widely used ambiguity fixing methods: the rounding method and the
searching method. The rounding method, as is named, directly rounds the estimated float
ambiguity to its nearest integer. This is the simplest method to obtain the integer ambiguity,
however it requires the float estimate with a certain accuracy so that the rounding is reliable.
Therefore, it is mostly used in static post processing with long-term observations. The
searching method is to find the integer ambiguities mostly compatible to the float solution
according to the float estimates and their covariance. The most famous one is the LAMBDA
method proposed by Teunissen [1].

3.1. Ambiguity Searching Approaches

Statistically speaking, the float estimates and their covariance matrix of the ambiguities
define the confidence ellipsoid to which the integer solution belongs. However, how to
find out the integer candidate vectors from this confidence ellipsoid has always been a key
issue, especially in the case that the quantity of the observations is rather small, and the
observation geometry is very poor.

Before LAMBDA the searching methods define the search areas according to the STD
of each individual ambiguity [1]. Due to high correlation of ambiguities, the searching area
defined this way can be extremely large than the confidence ellipsoid, so that thousands of
candidates are included and must be checked and results into very long computation time.
Although it was improved by introducing further constraint on ambiguity differences [9],
but it is still not good enough for ambiguity fixing using observations of a single epoch
or few epochs [35]. The key aspect of LAMBDA method is to find out the best integer
linear combination of original ambiguities, so that the correlation among them is at the
lowest. This means the searching region can be rather precisely defined by the STD of each
individual ambiguity, and only few candidates are identified and checked for fixing.

The LAMBDA method is widely used for integer ambiguity searching, especially for
fast ambiguity fixing with short-term observations. It can make full use of the original
observation information, as is proved, it can maximize the success rate of ambiguity
fixing [14]. We use LAMBDA to search the best ambiguity in the study.

Instead of directly searching integer ambiguity, Gaussian integer transformation is
carried out on the ambiguity matrix to reduce the correlation of the ambiguities in the
LAMBDA method. Afterwards, the integer ambiguities are converted to the original to
obtain the parameters of the fixed solution. Since the task of the LAMBDA approach
is to find out the best integer combination among the original ambiguities, therefore it
should reach the same integer combination in principle no matter the searching starts with
ambiguities of the original frequencies or that containing EWL and WL in spite of that
the later ones are usually believed to be fixed more easily. More specifically, transforming
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original ambiguities into them before applying LAMBDA is not necessary which will be
investigated and validated later on.

3.2. Ambiguity Resolution Strategy

For the ambiguity resolution of a special positioning solution, the searching approach
can be applied in two different ways: the first one is to search all ambiguities simultaneously,
whereas the second is to do the searching in sequential batch, also referred as to stepwise
approach or cascading approach. In the second approach, the set of ambiguities which
can be fixed most likely is selected and fixed, and then the solution is updated with the
fixed ambiguities. Obviously, the remaining ambiguities in the updated solution will have
a better quality, so that they can be more easily and reliably fixed now. This procedure
can be repeated until no more ambiguities can be fixed. Usually, taking the advantage of
the long wavelength of EWL and WL ambiguities, they should be fixed firstly to improve
the solution and consequently to assist in resolving the short-wavelength ambiguities.
In fact, the partial fixing can be considered as a special case of this approach, in which
difficultly to be fixed ambiguities, for example, ambiguities of a rising satellites with very
few observations or at a very low elevation, or those with the largest variance, will be
excluded in the first round of searching, and will be fixed after their estimates are improved
by the already fixed ambiguities [36]. From this point of view, this approach is superior to
the first one, especially in the case that the first one does not work properly, i.e., cannot fix
all ambiguities at once.

We adapt the stepwise fixing approach to the ambiguity resolution of triple-frequency
GNSS observations to resolve the integer ambiguities step-by-step according to their
wavelength, and to investigate its fixing efficiency.

After applying the ambiguity mapping from the original ambiguity (b1, b2, b3) to the
EWL, WL and L1 ambiguities (bEW , bW , b1), we obtain the normal equation for fixing. In
order to facilitate the distinction between the DD-ambiguity parameters and other non-DD-
ambiguity parameters, x, y and other non-ambiguity parameters are collectively referred to
as X. The normal equation system for ambiguity fixing reads as

NaX̂ =


NXX NXbEW NXbW NXb1

NbEW bEW NbEW bW NbEW b1
NbW bW NbW b1

sym Nb1b1

 ·


X
bEW
bW
b1

 =


W1
W2
W3
W4

 (10)

Q′NN =


QXX QXbEW QXbW QXb1

QbEW bEW QbEW bW QbEW b1
QbW bW QbW b1

sym Qb1b1

, Q′NN = N−1
a (11)

The ambiguity searching should be carried out at least three times, i.e., for EWL,
WL and B1, respectively, if no partial fixing is required. After each successful fixing, the
solution is updated by inserting the fixed integer values into the normal equations and the
updated ambiguities and their Q matrix are employed in the next searching.

Taking the first step as example, applying LAMBDA searching approach to QbEW bEW
and bEW of the float solution, we obtain the integer EWL ambiguity vector b′EW . Inserting
the integer into the normal equations, the normal equations with WL and B1 ambiguities
can be expressed as:

N′aX̂′ =

 NXX NXbW NXb1
NbW bW NbW b1

sym Nb1b1

 ·
 X

bW
b1

 =

 W1 − NXbEW · b
′
EW

W3 − NbW bEW · b
′
EW

W4 − Nb1bEW · b
′
EW

 (12)

Solve the normal equation system, the updated solution with fixed EWL ambiguities is
derived. Then we can repeat the above process for WL ambiguities by applying LAMBDA
searching to the estimates and their co-variance matrix.
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There is also algorithm for updating the solution with fixed ambiguities without
resolving the normal equations again, which can be find in a number of references, i.e., in
Teunissen [21]. Considering the computer capacity nowadays and for better understanding,
we resolve the normal equations in this study.

3.3. Ambiguity Resolution Scheme

Based on the above discussion, there could be three ambiguity fixing schemes for
triple-frequency data processing: integrated fixing of DD ambiguities of original signal
frequencies, integrated fixing of DD ambiguities of combined frequencies with longer
wavelength, and stepwise/cascading fixing of DD ambiguities of combined frequencies,
referred as to Scheme 1 (S1), Scheme 2 (S2) and Scheme 3 (S3), respectively. Here the
combined frequencies are EWL, WL and one original frequency B1.

As uncombined observations are mostly suggested for multi-frequency data process-
ing for making use of ionosphere constraints and to avoid the selection of ionosphere-free
combinations for triple-frequency data, S1 is the natural way for ambiguity fixing. How-
ever, mapping to EWL, WL and B1 for fixing is believed more efficient because of the
longer wavelength of EWL and WL ambiguities. As already mentioned, the LAMBDA
method tries to reach the best linear integer combination of ambiguities to reduce the
correlation to obtain exactly the confidence ellipsoid containing the best integer candidate.
The combination includes also those among the ambiguities of different frequencies. This
means that LAMBDA method may automatically achieve the same or similar combination
no matter whether original or mapped ambiguities are employed. Therefore, S2 is designed
for a numerical clarification of such a misunderstanding. S3 is actually to improve the
fixability of ambiguities sequentially by fixing the most easily to be fixed ones in advance.
It should be the best strategy if enough satellites are observed.

For all the three fixing schemes, DD observations of the signal frequencies are used
and normal equation with SD ambiguities are formed as in Equation (6). Then the SD
ambiguities are mapped into DD ambiguities using Equation (8). For Schemes 2 and 3 the
DD ambiguities of the signal frequencies are further mapped into EWL, WL and B1 with
Equation (10). In this way, the float solution of the three schemes are exactly the same, so
that we can evaluate the efficiency of the ambiguity fixing.

4. Experimental Validation

In order to validate the implemented algorithm for medium-range RTK positioning,
especially the comparison of the three ambiguity resolution schemes, data of baselines
with various inter-station distances are collected and processed using the three fixing
scheme with dual- and triple-frequency data of GPS and BDS and in static and kinematic
mode, respectively. the atmosphere after double difference can effectively eliminate for
short baseline, so the short baseline cases get conclusion is almost not affected by the
atmospheric. However, atmosphere is the main influence factors for the long baseline.
Whether conclusions change as baseline length raising, this is also one of the research
objects in this paper. In this paper, the conclusions of the above three schemes were first
obtained by statistical analysis of the short baseline data, and then further verified in the
long baseline, and the results are analyzed and investigated.

4.1. Experimental Data

In total four baselines are selected with from different networks with baseline length
of 258 m, 22 km, 47 km and 53 km representing short and middle-range baselines, respec-
tively. Baseline A is the data collected using the receiver, both stations are equipped with
SinoGNSS K708. Baseline B between station CASM and LFSL stations are equipped with
UNICORE UB4B0 receiver. Baseline A and B are measured data. Baseline C1 between
LNSB and LNTL are from the Liaoning CORS network, all with Trimble Net R9. Baseline
C2 of Guangdong CORS network data, the receivers are SinoGNSS K708.
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All the receivers are capable of tracking GPS and BDS triple-frequency data and the
sampling rate is 1 Hz. However, as not all GPS satellites are transmitting L5 signals only
dual-frequency data is utilized for GPS in this study. The information of the baselines
is listed in Table 1. Although baselines C1 and C2 are of similar length, they are in the
north and south of China, respectively, and therefore may have quite different ionosphere
impacts.

Table 1. Information of Baselines Employed in the experiment.

Baseline Length Start Time Duration (min) Receiver Location
Lat. Long. (o)

A 258 m 5 October 2020 02:01:00 240 SinoGNSS K708 Liaoning, China
42.0, 121.4

B 22 km 30 March 2019 00:0019 120 UNICORE UB4B0 Beijing, China
39.5, 116.2

C1 47 km 15 November 2017 18:00:00 140 Trimble NetR9 Liaoning, China
42.0, 123.3

C2 53 km 5 June 202020:00:00 220 SinoGNSS K708 Guangdong, China
22.5, 113.5

Among the four baselines, the average number of GPS observables is about 7. Baseline
B and C1 have almost the same number of BDS and GPS satellites, while Baseline A and
C2 have at least two more BDS satellites on average than GPS.

4.2. Data Processing

The data of each baseline is divided into 10 min sessions and processed independently
in static and kinematic mode, respectively. For each 10-min session, data of dual-frequency
of GPS and both dual- and triple-frequency of BDS are processed with the three ambiguity
fixing schemes. The solutions are named according to the systems (BDS, GPS), frequencies
(TF, DF) and fixing schemes (S1, S2, S3) accordingly. In total, for each session we have
nine solutions for either static or kinematic processing, namely BDS-TF-S1, BDS-TF-S2,
BDS-TF-S2; BDS-DF-S1, BDS-DF-S2, BDS-DF-S3; and GPS-DF-S1, GPS-DF-S2 and GPS-DF-
S3. For all the solutions, the epoch interval is 1 s and cutoff elevation is 15 degree. In the
data preprocessing, outliers are detected according to the posterior phase residuals and
residuals larger than 0.5 cycles is considered as cycle slips which will not be repaired but
modelled with a new ambiguity parameter. For making the fixing decision, RATIO-test
is employed. For the float ambiguity vector b, and ambiguity variance matrix Qbb, two
integer ambiguity candidates with the smallest quadratic form (n− b)TQ−1

bb (n− b) are
selected. The proportion of the value of the second smallest quadratic form with respect
to the smallest one is defined as RATIO. If RATIO is larger than a threshold, the integer
candidate with the smallest quadric form is the fixed integer vector. This threshold is
2.0 in this study. In order to verify the ambiguity resolution performance, RATIO, TFFS
and the rate of correct fixings are used as indices for its convergence and fixing reliability,
respectively. The correct fixing rate is defined as the percentage of the correctly fixed epochs
as:

P =
Nsuc

Nall
(13)

where Nsuc represents the number of epochs where ambiguities are correctly fixed, and
Nall the total number of epochs. The correctness of a fixing is confirmed by full consistence
of the integer ambiguities with that derived from all data of the baseline in static mode
using the high-precision data processing software package PANDA [37].

Atmospheric errors have a significant impact on the success of ambiguity resolution,
especially in the case of long baselines. The influence of atmospheric errors on the short
baseline, for example shorter than 10 km, is negligible due to the strong spatial correlation
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between the two stations. For middle and long baselines, the troposphere and ionospheric
delays are estimated with constraints, the degree of improvement depends on the accuracy
of the imposed tropospheric and ionospheric constraints [8]. The tropospheric zenith delay
is constrained with an initial STD of 2 mm, and a power density of 10 mm/sqrt(hour) for
Baseline B, C1 and C2. For the ionospheric delay parameters, the a priori value for the zenith
direction is selected according to the linear function: σI [cm] = 0.04 · length[km] [34,38],
then the power density of the temporal ionospheric variation is calculated from ionosphere
combinations of phase observations of the previous epochs and a simple mapping function
1/sin(E) is applied to obtain the values for the slant delay parameters of each satellite.

4.3. Statistics of Ambiguity Resolution

We first have a close look at the statistics of ambiguity fixing, namely the TFFS and
the correct fixing rate for both static and kinematic processing. As the statistics for both
processing modes have very similar behavior, we will present them together and more
detailed analysis will be carried out for the kinematic mode since we are more interested in
medium-range RTK positioning.

Table 2 shows the statistics of TFFS and the correct fixing rate of the nine solutions in
both the static and kinematic mode for Baseline A, in which the TFFS are in unit of epochs
and it is consistent with the length of time in seconds as the sampling rate is 1 s.

Table 2. Statistics of ambiguity fixing performance of Baseline A, Sampling rate 1 s.

TFFS(s)
BDS-TF BDS-DF GPS-DF

S1 S2 S3 S1 S2 S3 S1 S2 S3

Static

Median 2.0 2.0 2.0 4.0 4.0 3.0 5.0 5.0 4.0

MAX 5.0 5.0 2.0 8.0 8.0 6.0 10.0 10.0 9.0

MIN 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Rate (%) 99.7 99.7 99.8 99.4 99.4 99.6 99.3 99.3 99.4

Kinematic

Median 4.0 4.0 2.0 7.0 7.0 5.0 11.0 11.0 9.0

MAX 5.0 5.0 4.0 17.0 17.0 12.0 22.0 22.0 18.0

MIN 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0

Rate (%) 99.5 99.5 99.8 98.4 98.4 99.3 98.2 98.2 98.4

From Table 2, for the short baseline, the ambiguity convergence times of the fixing
scheme S1 and S2 are the same for both GPS and BDS, and DF and TF observations.
The stepwise fixing scheme S3 can further improve the fixing by reducing the ambiguity
convergence time for BDS-DF and GPS-DF data, from 4.0 s to 3.0 s and 5.0 s to 4.0 s,
respectively and increasing the correct fixing rates, although the magnitude is rather small.
From the statistics of the kinematic positioning shown on the second half of the table, only
few more epochs are needed for the first fixing and the correct fixing rate is slight decreased,
and the overall behavior of the three processing scheme is almost the same compared with
that of the static mode.

The same statistics for the middle range baseline B are listed in Table 3. From Table 3
we also observed the similar phenomena as for Baseline A that the ambiguity convergence
of S1, S2 are the same and S3 brings additional improvement compared to S1 and S2
BDS. The triple-frequency data shorten the TFFS very significantly for this middle range
baseline which is hardly noticeable for the short baseline. It should be pointed out that the
contribution of S3 is obvious, which is rather small in the short baseline. Compared with
the static mode, the convergence gets clearly slower and the correct fixing rate decreases of
several points in percentage as well for the kinematic mode, except the triple-frequency
BDS data, especially the processing scheme S3 where fixing can be achieved again within a
few epochs on average as for the short baseline.
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Table 3. Statistics of ambiguity fixing performance of Baseline B, Sampling rate 1 s.

TFFS(s)
BDS-TF BDS-DF GPS-DF

S1 S2 S3 S1 S2 S3 S1 S2 S3

Static

Median 7.0 7.0 3.0 30.0 30.0 21.5 20.0 20.0 9.0

MAX 42.0 42.0 9.0 62.0 62.0 30.0 24.0 24.0 20.0

MIN 4.0 4.0 2.0 28.0 28.0 4.0 3.0 3.0 4.0

Rate (%) 99.2 99.2 99.7 96.9 96.9 97.0 98.3 98.3 99.3

Kinematic

Median 10.0 10.0 3.0 40.0 40.0 39.0 30.0 30.0 26.5

MAX 10.0 10.0 10.0 72.0 72.0 40.0 70.0 70.0 30.0

MIN 5.0 5.0 2.0 40.0 40.0 5.0 4.0 4.0 4.0

Rate (%) 98.7 98.7 99.4 94.3 94.3 94.9 96.6 96.6 96.7

Tables 4 and 5 show the same statistics for the two medium-range baselines: Baseline
C1 and C2 where remaining ionospheric and tropospheric delays in differenced observa-
tions get larger and must be handled properly as above described. From Tables 4 and 5
we can again obtain the similar conclusions as that for the medium baseline B that S1 and
S2 have the same fixing performance for both GPS and BDS and for all data types DF and
TF, and the impact of the third-frequency data is even stronger, whereas S3 can reduce
the TFFS for DF data markable and keep the TFFS for TF of few seconds as for the short
baseline.

Table 4. Statistics of ambiguity fixing performance of Baseline C1, Sampling rate 1 s.

TFFS(s)
BDS-TF BDS-DF GPS-DF

S1 S2 S3 S1 S2 S3 S1 S2 S3

Static

Median 8.0 8.0 7.0 121.5 121.5 20.0 31.0 31.0 11.0

MAX 39.0 39.0 9.0 188.0 188.0 82.0 87.0 87.0 29.0

MIN 6.0 6.0 3.0 32.0 32.0 6.0 4.0 4.0 5.0

Rate (%) 99.0 99.0 99.1 93.4 93.4 96.0 96.2 96.2 98.2

Kinematic

Median 10.0 10.0 9.0 173.5 173.5 44.5 53.0 53.0. 17.0

MAX 71.0 71.0 18.0 280.0 280.0 111.0 264.0 264.0 154.0

MIN 7.0 7.0 3.0. 105.0 105.0 6.0 8.0 8.0. 6.0

Rate (%) 98.6 98.6 98.7 89.7 89.7 92.8 92.4 92.4 93.2

Table 5. Statistics of ambiguity fixing performance of Baseline C2, Sampling rate 1 s.

TFFS(s)
BDS-TF BDS-DF GPS-DF

S1 S2 S3 S1 S2 S3 S1 S2 S3

Static

Median 7.0 7.0 3.0 82.0 82.0 12.0 83.0 83.0 11.0

MAX 14.0 14.0 9.0 276.0 276.0 47.0 184.0 184.0 72.0

MIN 6.0 6.0 3.0 4.0 4.0 3.0 5.0 5.0 4.0

Rate (%) 98.9 98.9 99.6 95.5 95.5 96.8 94.7 94.7 97.4

Kinematic

Median 6.0 6.0 3.0 116.0 116.0 16.0 91.0 91.0 23.0

MAX 30.0 30.0 18.0 297.0 297.0 105.0 186.0 186.0 59.0

MIN 7.0 7.0 3.0 12.0 12.0 4.0 7.0 7.0 4.0

Rate (%) 98.7 98.7 99.6 94.9 94.9 95.6 94.6 94.6 95.9
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From the overall statistics of ambiguity resolution, S1 and S2 have the same perfor-
mance in terms of TFFS and the correct fixing rate for all the solutions: DF and TF of BDS
data and DF of GPS, while S3 overperforms S1 and S2 obviously except the short baseline.
When we have a close look at the statistics of the S3 solutions, the performance seems
correlated with the baseline length, the advantage of S3 is better over longer baselines. One
possible reason could be that over short baselines the float solution is already very strong
and precise, so that sequential fixing could not further improve the solution.

To confirm this possible reason, we furthermore calculated the RMS of posterior phase
residuals of the float solutions of the baseline A and C1 and depicted on Figure 1. The RMS
of the residuals of the short Baseline A shown in the top panel is only about 0.003 cycles
which is consistent with the observation noise as most of the biases are well cancelled by
the between-station differencing. The RMS of the two systems are comparable and BDS has
a slight larger RMS. For the medium-range Baseline C1 the RMS increases to 0.02 cycles
because of inaccurately modeled biases, such as atmospheric delays, multi-path and even
satellite orbits. As is well known, larger phase residuals will make the B1 ambiguity fixing
difficult, therefore fixing EWL and WL in advance will improve the solutions for B1 fixing.
That is why the advantage of the stepwise fixing S3 over S1 and S2 can be better reflected
over medium-range baseline.

Figure 1. RMS of the posterior phase residuals for each individual satellite and frequencies of the float solutions of the short
Baseline A (top) and C1 (bottom) processed in static mode.

The atmospheric delay errors could be one of the major factors affecting the ambiguity
resolution, especially in the case of long baselines. Taking Baseline C1 processed in kine-
matic mode and in 10-min sessions as an example, the estimated tropospheric zenith delays
(top-left panel) and the slant ionospheric slant delays of all satellites are illustrated in
Figure 2. The Ionospheric delays derived from the B1 and B2 phase observations, referred
to as “observed” are also shown in the corresponding panels. The estimates before the
ambiguity-fixing are not plotted, as there is usually a big jump in the estimated time series
due to the big change of ambiguities from their float values to the integer ones. Therefore,
there is usually a short gap between two adjacent sessions which is hardly visible due the
high sampling rate.

As can be seen from the Figure 2, the remaining tropospheric zenith delay is rather
stable and fluctuates within (−0.01 m, 0.01 m) with a slight increasing trend. The estimated
ionospheric slant delays are of the similar amplitude, but the temporal changing is much
fast. More important is that both the estimated and observed agree with each other very
well after aligned by a constant. From this example, the ionospheric and tropospheric delays
should be estimated in order to reduce their impact on the other parameters, especially the
ambiguity parameters and their fixing.
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Figure 2. The top-left panel shows the estimated tropospheric zenith delay, and the other panels illustrated the ionospheric
delays derived from B1/B2 phase observations aligned to the and the estimated slant ionospheric delay (red) for all the
satellites over baseline C1 processed in kinematic mode in 10-min sessions. The estimates before ambiguity-fixing are not
plotted.

4.4. Comparison of Fixing Index RATIO

To further compare the three fixing schemes, it is worth to check the fixing index
RATIO at each epoch. Taking the BDS-TF solutions of Baseline A and Baseline C1 as
example, the RATIO time series of S1 and S2 and S3 of Baseline A are depicted in Figure 3,
where S3 has three RATIOs with respect to the fixing of EWL, WL and L1 ambiguities,
in order to express the state of RATIO time series more clearly, we set an upper limit of
1500 for RATIO value. From the top panel of Figure 3, the RATIO time series of S1 and
S2 are almost the same, their differences shown in the middle panel are within ±0.01.
This clearly proves that the preset integer transformation, i.e., from raw to EWL and/or
WL ambiguities, has almost no influence on the ambiguity fixing using LAMBD method.
Theoretically, LAMBDA algorithm can find out the best Z transformation to narrow the
searching space. However, when we compare the transformation matrix, the mapped
ambiguities for S1 and S2 are not exactly the same. The reason is most likely the numerical
calculation and round from real-value to integer value of the z-transformation. However, it
should be further investigated in future.

Figure 3. Time series of ambiguity-fixing indicator RATIO of the fixing scheme S1 and S2 (top), and their differences
(middle), and that of EWL and WL fixing of S3 (bottom), the RATIO of B1 fixing in S3 is also shown at the top panel for the
BDS-TF solutions of Baseline A in static mode.

In the processing with S3, EWL, WL and B1 are fixed sequentially and the solution is
updated after each fixing. The RATIO of EWL and WL fixing of S3 shown in the bottom
panel is on average about 2–3 times larger than that of S1 and S2. This reflects that EWL as
well as WL can be fixed much more easily than fixing all ambiguities together. After both
EWL and WL are fixed, the updated solution with B1 ambiguities is improved, the related
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ambiguities can be fixed with a larger RATIO overall than that of S1 and S2 which can be
seen from the top panel of Figure 3.

Correspondingly, the RATIO time series of S1 and S2 and S3 are depicted in Figure 4
for the BDS-TF solutions of Baseline C1 in static mode. From Figure 4, the RATIO time
series show very similar characteristics except the RATIO values get a little bit smaller due
to estimating more parameters in static mode.

Figure 4. Time series of ambiguity-fixing indicator RATIO of the fixing scheme S1 and S2 (top), and their differences
(middle), and that of EWL and WL fixing of S3 (bottom), the RATIO of B1 fixing in S3 is also shown at the top panel for the
BDS-TF solutions of Baseline C1 in kinematic mode.

The same studying is carried out to the other three baselines and we reveal the same
fact. For the above four baselines, S1 and S2 are equivalent in the ambiguity convergence
measured by the fixing index RATIO in this experiment, and S3 performs usually better than
S1 and S2, regardless of GNSS systems, data types and the positioning modes, especially
for medium-range baselines.

In summary, regardless of the length of baselines and the use of DF or TF observations,
the ambiguity convergence time indicators of S1 and S2 are the same, and the preset Z
transform has almost no effect on the LAMBDA method, while the scheme S3 is superior
to S1 and S2 for multi-frequency data.

4.5. Positioning Accuracy

The position differences of the fixed solutions with respect to the static solution
using all the observations can be used to qualify the positioning accuracy. S3 scheme is
superior to S1 and S2 scheme in terms of ambiguity resolution, in order to more clearly
and intuitively reflect the positioning result accuracy of multi-frequency data, and in view
of the equivalence between S1 and S2 scheme, we use the positioning result of S1 scheme
which is superior to the suboptimal performance to calculate the RMS value. The RMS of
the position differences of the S1 is calculated for the four baselines using BDS-TF, BDS-DF
and GPS-DF observations and listed in Table 6 for static and kinematic processing mode in
unit of m.

It can be seen from the table that in static mode the four baselines are better than 2
cm in the north and east directions, and 3 cm in the up direction; and in the kinematic
mode similar accuracy can be accomplished in N, E direction and better than 5 cm in up
directions.

The positioning results using BDS triple-frequency and dual-frequency data are also
compared on Baseline A and B. They are very similar and comparable with GPS dual-
frequency. That means the advantage of triple-frequency data in positioning accuracy is
hardly visible.
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Table 6. The RMS of each baseline position in static model, unit is m.

Baseline
BDS-TF BDS-DF GPS-DF

N E U N E U N E U

Static

A 0.0009 0.0018 0.0032 0.0018 0.0017 0.0035 0.0014 0.0021 0.0031

B 0.0120 0.0088 0.0236 0.0152 0.0104 0.0254 0.0096 0.0130 0.0229

C1 0.0133 0.0127 0.0253 0.0158 0.0137 0.0262 0.01477 0.0182 0.02498

C2 0.0113 0.0126 0.0200 0.0152 0.0147 0.0283 0.0151 0.0147 0.0260

Kinematic

A 0.0014 0.0021 0.0028 0.0023 0.0027 0.0062 0.0027 0.0032 0.0053

B 0.0155 0.0126 0.0289 0.0163 0.0129 0.0315 0.0102 0.0138 0.0253

C1 0.0254 0.0256 0.0440 0.0250 0.0287 0.0517 0.0215 0.0217 0.0442

C2 0.0158 0.0154 0.0400 0.0159 0.0193 0.0448 0.0154 0.0161 0.0510

4.6. Further Comparison of Ambiguity Resolution Strategies

The core of the LAMBDA method is the reduction process of the correlation of the
ambiguity variance covariance matrix through the Z transformation. The final result of
Z transformation is the diagonalization of the ambiguity factor matrix. Taking the static
processing of BDS triple-frequency positioning of Baseline A as example, the influence of
S1, S2 and S3 schemes on Z transformation is discussed for a better understanding of their
performance.

Figure 5 is the eigenvalue obtained after reducing the correlation. It can be inferred
that S1 and S2 are similar in ellipse flatness from the definition of the condition number after
Z transformation in Figure 5. This indicates that the external preset integer transformation
applied in S2 has little effect on the correlation reduction of the entire ambiguity search
space. However, they are not exactly the same, that means the realization of the best
Z-transformation is not unique although theoretically it should be. One possibility could
be that the numerical computation from a real-valued to an integer-valued transformation
may depends on the starting ambiguity types. This should be further studied in the future.
Of course, the final estimated integer ambiguities of original frequencies must be the same
for all the three strategies, so that the positioning accuracy of the fixing solutions can be
guaranteed.

Figure 5. Example of the Eigenvalues of the covariance matrix after Z transformation of S1 and S2 for Baseline A.

In Figure 6, from left to right are the two-dimensional diagram of the ambiguity
cofactor matrix after Z-transformation of the 33rd epoch obtained from the three schemes:
S1, S2 and S3. For S3, there are three blocks with respect to the EWL, WL and B1 ambiguities,
as they are fixed in three sequential steps, and the cofactor matrices are based on the
updated solution by introducing the integer ambiguities fixed in the previous blocks.
The colors represent the values of the corresponding matrix elements and non-diagonal
elements illustrate the correlations of the ambiguities. Therefore, after Z-transformation,
the smaller the non-diagonal elements, the higher the degree of diagonalization of the
matrix, and the better the effect of correlation reduction.
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Figure 6. Element values of the covariance matrix after Z-transformation for S1 and S2 and S3 from left to right, respectively.
S3 has three blocks for EWL, WL and B1 sequentially.

From Figure 6, although the cofactor matrix elements of the EWL ambiguities are larger
than that of S1 and S2, the element values of the WL ambiguities and the B1 ambiguities
are obviously smaller than those of S1 and S2. This is clearly the contribution of previously
fixed integer ambiguities which enhances the solutions and reduces the correlations among
the parameters. The theoretical principle can be found in [21] in which it is pointed out
that the conditional standard deviations of the optimal combination of ambiguities are very
small, and it is feasible to use this advantage to calculate the correct ambiguity within a few
epochs. That is why in this study we have designed the S3 scheme to verify this conclusion
from the experimental point of view.

The condition number is the ratio of the maximum eigenvalue to the minimum
eigenvalue of the normal equation (≥1). The closer it is to 1, the closer the major and minor
axes of the ellipsoid are, and the more they tend to be a sphere. Figure 7 is the number
of ambiguity resolution conditions for each of S1, S2 and S3. The condition numbers of
the S1 and S2 schemes have a relatively small difference, which means that there is little
difference between the two in the searching ellipsoid. The condition number obtained by
the S3 scheme to solve the ambiguity of the extra-wide lane is the smallest overall. The
search ellipse of the wide lane ambiguity search is still smaller than S1 and S2. For the
search interval of the original ambiguity, after the first two steps of correction, the accuracy
of floating solution of the original ambiguity has been well corrected. Compared with S1
and S2, although the original ambiguity condition number in S3 is larger, it is smaller than
S1 and S2 in the initial stage. It can be seen from Figure 3 that in terms of the Ratio value,
the ambiguity obtained by the S3 scheme is more reliable, and the experimental results
show that this conclusion is valid.

Figure 7. Number of conditions for ambiguity resolution.

Since ambiguities of long wavelength have the advantage to be fixed and integrated
searching of very high dimension of ambiguities could result into computational difficulty,
so S3 should be a better choice to effectively shorten the fixed time of multi-frequency
ambiguity resolution.



Sensors 2021, 21, 2565 17 of 19

5. Conclusions

In the comparative study of the three triple-frequency ambiguity resolution schemes,
medium-range RTK is realized by applying adapted temporal constraint to ionospheric
slant delay parameters and tropospheric zenith delay parameters. Starting from the same
normal equation as the uncombined and undifferenced carrier phase ambiguities, the
normal equation with the desired double-differenced ambiguity parameters are generated
through ambiguity mapping in order to have a fair comparison. Three fixing schemes,
namely S1 fixing all ambiguities of original frequencies simultaneously, S2 fixing all am-
biguities of the EWL, WL and one original frequency together, and S3 fixing the same
ambiguities as S2 but in a cascading way, are applied to four baselines of 258 m, 22 km,
47 km and 53 km for using BDS triple-frequency and dual-frequency data and GPS dual-
frequency data and in both static and kinematic mode. The data is divided into 10 min
pieces or sessions and processed independently in order to obtain the TFFS and the correct
fixing rate as evaluation indicators.

From the statistics of the ambiguity fixing, S1 and S2 have almost the same fixing
performance for all the baselines and sessions and their fixing RATIO time series agree
with each other. That means for the integrated searching mapping to ambiguities of longer
wavelength does not improve the correct fixing rate, as LAMBDA method searches for the
best integer combination for reliable fixing. We also found that the integer transformation
matrices from LAMBDA method are not exactly the same for S1 and S2 which should be
investigated further.

The cascading scheme S3 overperforms S1 and S2 for all baselines and sessions and
its advantage is more significant over longer baselines due to the existence of inaccurately
modelled biases and possibly also large noises caused by station environment. The RATIO
of S3 of EWL and WL are several ten times larger than that of S1 and S2 and even the
RATIO of S3 B1 fixing is also obviously larger than that of S1 and S2 because the float
solution of S3 B1 is already improved by the fixed EWL and WL ambiguities.

The efficiency of BDS triple-frequency carrier phase ambiguity resolution is signif-
icantly better than that using dual-frequency observation data. For the medium-range
baselines in the experiment, the TFFS is always shorter than 10 s on average. This could
further extend inter-station distance of medium-range RTK, so that a single reference
station could cover a larger area.

In terms of positioning results, the positioning accuracy, measured by the RMS of the
position differences of the solutions using dual-frequency data and triple-frequency data is
almost the same and the improvement is hardly visible.

Author Contributions: H.Z. conceived the idea and designed the experiments with A.X., M.G., H.Z.
and Y.L. wrote the main manuscript. A.X., M.G., L.T. and J.L. reviewed the paper. All components of
this research were carried out under the supervision of H.Z. and M.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
42030109, 42074012), The Liaoning Key Research and Development Program (No. 2020JH2/10100044),
and The National Key Research and Development Program (No. 2016YFC0803102).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to official permission is required.

Acknowledgments: The authors gratefully acknowledge the Liaoning and GuangDong CORS net-
work for providing the multi-GNSS data.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 2565 18 of 19

References
1. Temiissen, J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J.

Geod. 1995, 70, 65–82. [CrossRef]
2. Jin, S.G.; Luo, O.; Ren, C. Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates.

Adv. Space Res. 2010, 46, 190–195. [CrossRef]
3. Xu, Y.; Wu, C.; Li, L.; Yan, L.; Liu, M.; Wang, S. GPS/BDS medium/long-range RTK constrained with tropospheric delay

parameters from NWP model. Remote Sens. 2018, 10, 1113. [CrossRef]
4. Shu, B.; Liu, H.; Xu, L.; Qian, C.; Gong, X.; An, X. Performance analysis of BDS medium-long baseline RTK positioning using an

empirical troposphere model. Sensors 2018, 18, 1199. [CrossRef]
5. Wielgosz, P.; Kashani, I.; Grejner-Brzezinska, D. Analysis of long-range network RTK during a severe ionospheric storm. J. Geod.

2005, 79, 524–531. [CrossRef]
6. Dai, L.; Eslinger, D.; Sharpe, T. Innovative algorithms to improve long range RTK reliability and availability. In Proceedings of

the ION National Technical Meeting, San Diego, CA, USA, 28–30 January 2007; pp. 860–872.
7. Li, B.; Feng, Y.; Shen, Y. Three carrier ambiguity resolution: Distance-independent performance demonstrated using semi-

generated triple frequency GPS signals. GPS Solut. 2010, 14, 177–184. [CrossRef]
8. Li, X.; Ge, M.; Zhang, H.; Wickert, J. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in

real-time precise point positioning. J. Geod. 2013, 87, 405–416. [CrossRef]
9. Frei, E. Rapid static positioning based on the fast ambiguity resolution approach FARA’: Theory and first results. Manuscr. Geod.

1990, 15, 325–356.
10. Feng, Y.; Li, B. Wide area real time kinematic decimeter positioning with multiple carrier GNSS signals. Sci. China Earth Sci. 2010,

53, 731–740. [CrossRef]
11. Jin, S.; Su, K. PPP models and performances from single-to quad-frequency BDS observations. Satell. Navig. 2020, 1, 1–13.

[CrossRef]
12. Geng, J.; Guo, J.; Meng, X.; Gao, K. Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS

data. J. Geod. 2020, 94, 1–15. [CrossRef]
13. Forssell, B.; Martin-Neira, M.; Harrisz, R.A. Carrier phase ambiguity resolution in GNSS-2. In Proceedings of the 10th International

Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997), Kansas, MO, USA, 16–19 September
1997; pp. 1727–1736.

14. Teunissen, J. An optimality property of the integer least-squares estimator. J. Geod. 1999, 73, 587–593. [CrossRef]
15. Vollath, U.; Birnbach, S.; Landau, L.; Fraile-Ordonez, J.M.; Martí-Neira, M. Analysis of Three-Carrier Ambiguity Resolution

Technique for Precise Relative Positioning in GNSS-2. Navigation 1999, 46, 13–23. [CrossRef]
16. Hatch, R.; Jung, J.; Enge, P.; Pervan, B. Civilian GPS: The benefits of three frequencies. GPS Solut. 2000, 3, 1–9. [CrossRef]
17. Xu, L. Random simulation and GPS decorrelation. J. Geod. 2001, 75, 408–423. [CrossRef]
18. Li, B.; Feng, Y.; Gao, W.; Li, Z. Real-time kinematic positioning over long baselines using triple-frequency BeiDou signals. IEEE

Trans. Aerosp. Electron. Syst. 2015, 51, 3254–3269. [CrossRef]
19. Li, B.; Li, Z.; Zhang, Z.; Tan, Y.A. ERTK: Extra-wide-lane RTK of triple-frequency GNSS signals. J. Geod. 2017, 91, 1031–1047.

[CrossRef]
20. Miao, W.; Li, B.; Zhang, Z.; Zhang, X. Combined BeiDou-2 and BeiDou-3 instantaneous RTK positioning: Stochastic modeling

and positioning performance assessment. J. Spat. Sci. 2020, 65, 7–24. [CrossRef]
21. Teunissen, J.G.; Joosten, P.; Tiberius, C. A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In Proceedings

of the ION-GPS-2002, Institute of Navigation, Portland, OR, USA, 24–27 September 2002; pp. 2799–2808.
22. Zhang, W.; Cannon, M.E.; Julien, O.; Alves, P. Investigation of combined GPS/GALILEO cascading ambiguity resolution schemes.

Proceedings of ION GPS/GNSS, Portland, OR, USA, 9–12 September 2003; pp. 2599–2610.
23. Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig.

2020, 1, 1–8. [CrossRef]
24. Shen, Y.; Xu, G. Simplified equivalent representation of GPS observation equations. GPS Solut. 2008, 12, 99–108. [CrossRef]
25. Wielgosz, P.; Cellmer, S.; Rzepecka, Z.; Paziewski, J.; Grejner-Brzezinska, D.A. Troposphere modeling for precise GPS rapid static

positioning in mountainous areas. Meas. Sci. Technol. 2011, 22, 91–109. [CrossRef]
26. Qu, W.J.; Zhu, W.Y.; Song, S.L.; Ping, J.S. The evaluation of precision about Hopfield, Saastamoinen and EGNOS tropospheric

delay correction model. Acta Astron. Sin. 2008, 49, 113–122.
27. Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic

techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [CrossRef] [PubMed]
28. Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on

numerical weather model data. Geophys. Res. Lett. 2006, 33. [CrossRef]
29. Böhm, J.; Schuh, H. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett. 2004, 31. [CrossRef]
30. Blewitt, G. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J.

Geophys. Res. Solid Earth 1989, 94, 10187–10203. [CrossRef]
31. Dong, D.N.; Bock, Y. Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation

studies in California. J. Geophys. Res. Solid Earth 1989, 94, 3949–3966. [CrossRef]

http://doi.org/10.1007/BF00863419
http://doi.org/10.1016/j.asr.2010.01.017
http://doi.org/10.3390/rs10071113
http://doi.org/10.3390/s18041199
http://doi.org/10.1007/s00190-005-0003-y
http://doi.org/10.1007/s10291-009-0131-6
http://doi.org/10.1007/s00190-013-0611-x
http://doi.org/10.1007/s11430-010-0032-0
http://doi.org/10.1186/s43020-020-00014-y
http://doi.org/10.1007/s00190-019-01330-1
http://doi.org/10.1007/s001900050269
http://doi.org/10.1002/j.2161-4296.1999.tb02392.x
http://doi.org/10.1007/PL00012810
http://doi.org/10.1007/s001900100192
http://doi.org/10.1109/TAES.2015.140643
http://doi.org/10.1007/s00190-017-1006-1
http://doi.org/10.1080/14498596.2019.1642250
http://doi.org/10.1186/s43020-019-0006-0
http://doi.org/10.1007/s10291-007-0070-z
http://doi.org/10.1088/0957-0233/22/4/045101
http://doi.org/10.1002/grl.50288
http://www.ncbi.nlm.nih.gov/pubmed/25821263
http://doi.org/10.1029/2005GL025546
http://doi.org/10.1029/2003GL018984
http://doi.org/10.1029/JB094iB08p10187
http://doi.org/10.1029/JB094iB04p03949


Sensors 2021, 21, 2565 19 of 19

32. Zhao, Q.; Wang, Y.; Gu, S.; Zheng, F.; Shi, C.; Ge, M.; Schuh, H. Refining ionospheric delay modeling for undifferenced and
uncombined GNSS data processing. J. Geod. 2019, 93, 545–560. [CrossRef]

33. Gao, W.; Gao, C.; Pan, S.; Meng, X.; Xia, Y. Inter-system differencing between GPS and BDS for medium-baseline RTK positioning.
Remote Sens. 2017, 9, 948. [CrossRef]

34. Tang, W.; Liu, W.; Zou, X.; Li, Z.; Chen, L.; Deng, C.; Shi, C. Improved ambiguity resolution for URTK with dynamic atmosphere
constraints. J. Geod. 2016, 90, 1359–1369. [CrossRef]

35. Iz, H.B.; Ge, M.; Chen, Y.Q. Grid point search algorithm for fast integer ambiguity resolution. J. Geod. 1998, 72, 639–643. [CrossRef]
36. Dai, L.L.; Eslinger, D.J.; Sharpe, R.T.; Hatch, R.R. NavCorn Technology Inc. Partial Search Carrier-Phase Integer Ambiguity

Resolution. U.S. Patent 7,961,143, 14 June 2011.
37. Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8,

603–609.
38. Odijk, D. Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances. In Proceedings of the

13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT,
USA, 19–22 September 2000.

http://doi.org/10.1007/s00190-018-1180-9
http://doi.org/10.3390/rs9090948
http://doi.org/10.1007/s00190-016-0928-3
http://doi.org/10.1007/s001900050203

	Introduction 
	Estimating Model 
	Observation Equation 
	Atmospheric Delay Estimation 
	Parameter Estimation 
	Ambiguity Mapping 

	Ambiguity Resolution 
	Ambiguity Searching Approaches 
	Ambiguity Resolution Strategy 
	Ambiguity Resolution Scheme 

	Experimental Validation 
	Experimental Data 
	Data Processing 
	Statistics of Ambiguity Resolution 
	Comparison of Fixing Index RATIO 
	Positioning Accuracy 
	Further Comparison of Ambiguity Resolution Strategies 

	Conclusions 
	References

