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Photodynamic therapy for
prostate cancer: Recent
advances, challenges
and opportunities

Qin Xue, Jingliang Zhang †, Jianhua Jiao, Weijun Qin*

and Xiaojian Yang*

Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
Over the past two decades, there has been a tendency toward early diagnosis of

prostate cancer due to raised awareness among the general public and

professionals, as well as the promotion of prostate-specific antigen (PSA)

screening. As a result, patients with prostate cancer are detected at an earlier

stage. Due to the risks of urine incontinence, erectile dysfunction, etc., surgery is

not advised because the tumor is so small at this early stage. Doctors typically only

advise active surveillance. However, it will bring negative psychological effects on

patients, such as anxiety. And there is a higher chance of cancer progression. Focal

therapy has received increasing attention as an alternative option between active

monitoring and radical therapy. Due to its minimally invasive, oncological safety,

low toxicity, minimal effects on functional outcomes and support by level 1

evidence from the only RCT within the focal therapy literature, photodynamic

treatment (PDT) holds significant promise as the focal therapy of choice over other

modalities for men with localized prostate cancer. However, there are still

numerous obstacles that prevent further advancement. The review that follows

provides an overview of the preclinical and clinical published research on PDT for

prostate cancer from 1999 to the present. It focuses on clinical applications of PDT

and innovative techniques and technologies that address current problems,

especially the use of nanoparticle photosensitizers in PDT of prostate cancer.
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Introduction

Prostate cancer is the second most common malignancy in

men. In 2020, there will be 1.41 million new cases of prostate

cancer worldwide and roughly 380 thousand fatalities, predicts

the International Agency for Research on Cancer (IARC) of the

World Health Organization (WHO) (1). Additionally, while

there are fewer diagnosed cases of prostate cancer in Asia than

in Europe or the United States, there is still a constant increase in

the incidence of the disease (2, 3). Its biological parameters and

prognosis differ substantially between individuals as a result of

its significant variability. The stages of the disease determine

treatment recommendations. Radical prostatectomy (RP),

external beam radiation therapy (EBRT), together with

androgen deprivation therapy (ADT) are curative alternatives

for patients with locally advanced prostate cancer. However,

adverse effects including erectile dysfunction and persistent

incontinence have a significant impact on patients’ quality of

survival. Such treatments are obviously inappropriate, especially

for low-risk prostate cancer with smaller tumors that only take

up 5-10% of the prostate volume and a higher propensity for

unifocal or unilateral illness (4). Since prostate-specific antigen

(PSA) screening became widely used during the past 20 years,

the number of patients with low-risk prostate cancer has

substantially increased. Patients in this group face a dilemma

in that they can either select radical prostate therapy, which has a

risk of decreased quality of life, or defer treatment (active

surveillance/watchful waiting), which carries a higher chance

of cancer progression (5). Other techniques, like cryotherapy,

high-intensity focused ultrasound (HIFU), photodynamic

therapy (PDT), and electroporation, have come into focus as

potential therapeutic alternatives. These focal therapies have

been developed as minimally invasive procedures. By sparing

the neurovascular bundles, sphincter, and urethra, the goal is to

selectively ablate tumors while minimizing damage (6, 7). PDT is

palliative, repeatable, and low toxicity in comparison to other

focal therapies. Moreover, the equipment is less expensive and

takes up less room. Furthermore, PDT has access to sufficient

information to support some initial conclusions. PDT has been

used to treat cancers in patients for more than 40 years. It has

demonstrated good safety and efficacy in treating a variety of

malignancies, including skin, head, and neck cancers, etc (8).

However, efficiency of PDT is constrained by the physiological

features of prostate cancer. The potential of PDT for prostate

cancer has once more been demonstrated with the introduction

of vascular-targeted Tookad®. In the latest EAU guidelines 2022,

the strength rating for focal treatment in a clinical trial setting

for low- and intermediate-risk prostate cancer is strong (9). PDT

will continue to be rigorously improved to fulfill its full promise

as a prostate cancer treatment, despite its current shortcomings

and uncertainty.
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Photodynamic therapy

The mechanisms of PDT

Since Schell extracted hematoporphyrin from dried blood in

1841 and Lipson and Schwartz used a hematoporphyrin

derivative for fluorescence for tumor localization diagnosis in

1960 (10), PDT has rapidly advanced as a disease treatment

modality. A photosensitizer (PS), light and reactive oxygen

species (ROS) are the three primary components required by

PDT to eliminate tumors (11). As shown in Figure 1, the

photodynamic response involves both photophysical and

photochemical reactions. When exposed to an absorption

spectrum at a particular wavelength, PS absorbs photons and

converted from the ground state (S0) to the excited singlet state

(S1) as 1PS•, It subsequently releases its energy through

illumination or internal conversion to heat. A photophysical

energy emission, such as heat and fluorescence, may also

accompany the excitation of 1PS• to the triplet state (T1) as
3PS•.

Through two different mechanisms, 3PS• instantly produces ROS.

According to the type I mechanism, PS directly interacts with

substrates (such as the polyunsaturated fatty acids in the lipids of

cell membrane) and produces organic radicals by transferring

electrons or protons. Further reactions between the free radicals

and cellular oxygen result in ROS like peroxides (H2O2, ROOH),

superoxide anion (O2-
•), hydroxyl radical (HO•) and hydroxyl

radicals (HOO•). Type II involves the direct transfer of energy

from the 3PS• to triplet state oxygen (3O
2) directly, followed by the

formation of singlet oxygen (1O
2) (12). When 1O

2 interacts with

biomolecules such proteins, lipids, and nucleic acids, its primary

products are hydroperoxides and endocyclic peroxides, which lead

to a series of free radical peroxidation chain reactions (13). 1O
2 is

considered to be the most significant ROS in PDT cytotoxicity.

Both mechanisms can occur simultaneously. The PS type and

concentrations as well as the availability of oxygen are just a few of

the variables that may have an effect on the ratios between them.

The activation of a series of molecular processes by photodynamic

response ultimately leads in various forms of cell death, immune

system impacts, and vascular damage (14, 15).
Photosensitizers

As the most important part of PDT, numerous types of PSs

have been developed. However, as indicated in Table 1, only a small

number of them have received clinical therapeutic approval. The

following qualities should be included in an ideal PS (1): strong

photosensitization ability, i.e., high photochemical quantum yield;

(2) high tumor targeting; (3) minimum dark toxicity and side

effects; (4) biological stability and purity; (5) fast metabolism in

normal tissues; (6) ideal hydrophilic properties. PSs can be
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categorized into first-generation and second-generation PSs based

on when they were created. Generally, first-generation PSs refer to

Porfimer sodium (Photofrin®) and Haematoporphyrin derivative

(HpD, HiPorfin®), which were developed in the early 1980s and

were the first to be approved for PDT of non-cutaneous solid

tumors (16). In 1993, Photofrin®was approved for the treatment of

bladder cancer in Canada (17). Additional health authority

authorization to treat various tumors came after this. The Food

and Drug Administration (FDA) approved Photofrin® for the

treatment of esophageal cancer in 1995 and early non-small cell

lung cancer in 1998, respectively. In 2001, HiPorfin® was approved

by National Medical Products Administration (NMDA, former

China Food and Drug Administration) of China for bladder cancer,

oesophageal cancer and lung cancer (18). Photofrin® and

HiPorfin® have been used for many years by medical institutions

around the world to treat tumors, and their efficacy and safety have

been extensively acknowledged. However, it also has several

significant drawbacks, including dark cytotoxicity, skin

phototoxicity, complicated oligomeric composition, and limited

absorption bands at red wavelengths. However, since the

excitation light wavelength of the drug is 630 nm, a compromise

that neither falls within the PS’s optimal absorption spectrum range

nor within the tissue’s optimal light transmission wavelength range,

the depth of the light penetration is constrained. Additionally, it

stays in the skin for up to a few weeks, which might easily result in

skin photosensitivity side effects. Consequently, since the late 1980s,

second-generation PSs have been developed. Second-generation PSs

are photosensitive compound monomers with high red-spectrum

absorption, which reduces dark phototoxicity and improved

penetration depth. Additionally, second-generation PSs are more

quickly eliminated from healthy tissues than porphyrins, reducing

skin phototoxicity. The majority of second-generation PSs, such as

protoporphyrin IX (PpIX) precursors (e.g. ALA, Levulan®), chlorin

(e.g. temoporfin, Foscan®) (19), bacteriochlorins (e.g. WST11,

TOOKAD®), dye (e.g. phtalocyanine), etc., are derived from
Frontiers in Oncology 03
tetrapyrroles (20). Table 1 lists the second-generation PSs that are

currently approved: Levulan® and its derivatives, methyl-ALA

(Metvix®) and Hexaminolevulinate (Hexvix®), have received

FDA, European Medicines Agency (EMA), NMDA, Sweden and

Australia approval for the treatment of actinic keratoses, basal cell

carcinoma, and bladder cancer detection. In Japan, Talaporfin

(Laserphyrin®) was approved for the treatment of esophagus,

lung, and brain tumors. Belarus has approved the use of Chlorin

e6-PVP (Photolon®) for the diagnosis and treatment of skin and

mucosal tumors. The EU and Mexico recently approved the use of

TOOKAD®, a vascular-targeted padeliporfin, to treat prostate

cancer. As shown in Table 2, a large number of PSs are

undergoing clinical trials, and the commercialization and

application prospects are quite promising. Curcumin, the

hydrophobic polyphenol found in the rhizome of turmeric and

Toluidine blue ortho have also been considered as potential PSs (21,

22). By adhering or introducing certain chemical compounds with

biological properties to the structure of the second-generation PSs at

the end of the 20th century, the third-generation of PSs were

developed. Additionally, different drug delivery systems for PSs,

such as micelles, liposomes, and hydrophilic polymers were

developed. Almost all were still in the stage of animal trails.
Light delivery systems

The first light delivery devices for PDT were simple lamps,

delivering white light (a broad spectrum of wavelengths). For the

maximal photodynamic efficiency to eliminate tumors during PDT,

PSs must be activated by light of a specific wavelength by producing

the most ROS. In order to be easily guided into the body for tumor

irradiation, the light intensity must be sufficient and efficiently

transferred through the optical fiber. Semiconductor lasers, helium-

neon lasers, light-emitting diode (LED) light sources, etc. are a few

examples of the light source emitters (23).
FIGURE 1

A generalized diagram depicting PDT for prostate cancer. PS was administered intravenously to patients at various times before LED excitation
(depending on the type and dose of PS). The optical fibers are placed within plastic catheter needles that are positioned and guided by
transrectal ultrasound and a brachytherapy-type template to the prostate gland via the perineum.
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TABLE 1 Examples of clinically approved PSs.

PSs Chemical
group

Approved
year

Chemical structure lmax Approved applications Approved
countries

Porfimer sodium
(Photofrin®)

Porphyrin 1993-1998 630
nm

Bladder cancer, Endobronchial cancer,
Esophageal cancer, Cervical cancer,
Lung cancer

USA, Canada, Japan,
France, Netherlands,
German, UK

Haematoporphyrin
derivative (HpD,
HiPorfin®)

Porphyrin 2001 635
nm

Bladder cancer, Oesophageal cancer,
Lung cancer

China

5-Aminolevulinic
acid (5-ALA,
Levulan®)

PpIX precursor 2017 635
nm

Actinic keratoses, Basal cell carcinoma,
Non-melanoma skin cancers,
Squamous cell carcinoma

USA, UK

Methyl
aminolevulinic acid
(MAL, Metvix®)

PpIX precursor 2017 635
nm

Actinic keratoses, Basal cell carcinoma,
Brain tumors diagnosis and guided
resection

USA, UK, Australia

Hexaminolevulinate
(HLA, Hexvix®)

PpIX precursor 2006 635
nm

Bladder cancer diagnosis USA, EU, Sweden

Protoporphyrin
IX (PpIX)

Temoprfin
(mTHPC, Foscan®)

Chlorin 2001 652
nm

Oesophageal cancer, Non-small cell
lung cancer, Head and neck squamous
cell carcinoma

EU, Norway, Iceland

Verteporfin (BPD-
MA, Visudyne®)

Chlorin 2000 690
nm

Actinic keratoses USA

(Continued)
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The diode laser, which produces high-energy, single-

wavelength light, is the most widely used PDT since it is practical,

portable, cohesive, and monochromatic, and because its output

power can be precisely controlled. It can be directly passed through

optic fiber cables into hollow organs to irradiate tumors (24). For

prostate cancer, the introduction of opticalfiberswas percutaneous

intervention guided by an imaging system. Following a period of

intravenous administration of PS, as shown in Figure 2, the patient

is usually placed under general anesthesia in a lithotripsy position

and a urethral Foley catheter is placed. As used in brachytherapy, a

template grid is placed on the perineum to aid needle positioning.

Catheter needles within optical fibers are positioned and guided to

the prostate gland through a brachytherapy template in the

perineum by transrectal ultrasound (TRUS) or MRI (25). A light

detection probe is also placed in the rectum to ensure that the light

dose is low enough tominimize energy transfer to areas outside the

prostate. Additional laser radiation is applied to the tumor.
Clinical studies of PDT for
prostate cancer

For a long time, doctors have carried out numerous PDT

clinical trials for prostate cancer. The different PS-mediated PDT

are discussed in the sections below (Table 3).
PDT with various PSs

The Lancet published the first clinical study on PDT for

prostate cancer in 1990 (26). Windahl et al. performed

transurethral PDT with spherical light diffuser after

transurethral radical prostatectomy in 2 patients. One person

was taken with HpD and another was Photofrin®. There were no
Frontiers in Oncology 05
complications and PSA dropped to 2.5 and 0.2 ng/ml,

respectively after five months. Following a random biopsy,

there were no histological evidence of tumor was discovered at

three to six months. To minimize phototoxicity, patients were

advised to avoid direct sunlight for 6 weeks following PDT and

to wait 3 days between intravenous injection and irradiation.

Temoporfin (5,10,15,20-Tetra (m-hydroxyphenyl) chloride,

m-THPC, Foscan®) is a second-generation PS, which was

approved by EMA for advanced head and neck cancer. It can

be activated at 652 nm with a light penetration depth of 1 cm

(45). Many doctors tried to use it to treat prostate cancer. The

first phase I study was reported by Nathan et al. in 2002 (27).

Foscan®-PDT was given to 14 patients (median age 70 years)

with local recurrence of prostate cancer after radiotherapy. The

interval between intravenous injection and irradiation lasted

72 h, meaning the patients spent three days in a dark room. Then

13 of them were given high light dose (50 J) irradiation. At

follow-up after PDT, PSA level decreased in 9 patients and

no tumor was found in biopsies in 5 patients. CT and

MRI showed that 91% necrosis of prostate cross section.

4 patients had stress incontinence, which were remission later.

Sexual function of 4 patients was impaired. Unfortunately,

PSA level of all patients eventually increased and they received

ADT after 3 to 38 months. The researchers believed the reason

may be that the irradiation did not cover the entire gland. In

2006, another phase I/II study of temoporfin-PDT was reported

by doctors in London. Six patients (mean age 66 years, Gleason

score 3 + 3 in all) with prostate cancer received focal or

hemigland PDT treatments (28). Four of them had two

treatments. The mean reduction of PSA value is 48.3% after 8

of 10 PDT treatments. Necrosis and fibrosis were found in

treated areas by biopsies at 1-2 months. One patient developed

mild stress and urge incontinence that resolved spontaneously

within 4 months. All patients had residual cancer in at least
TABLE 1 Continued

PSs Chemical
group

Approved
year

Chemical structure lmax Approved applications Approved
countries

Talaporfin (Npe6,
Laserphyrin®)

Chlorin 2003 660
nm

Lung cancer, Brain tumor, Esophageal
cancer

Japan

Padeliporfin
(WST11,
TOOKAD®)

Bacteriochlorin 2018 753
nm

Prostate cancer Mexico, EU
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TABLE 2 Examples of PSs in cancer clinical trials.

PSs Chemical
group

Chemical structure lmax Ongoing cinical trials

Porfimer sodium (Photofrin®) Porphyrin 630
nm

Malignant mesothelioma, Lung cancer, Head and neck
cancer

5-Aminolevulinic acid (5-ALA,
Levulan®)

Porphyrin
precursor

635
nm

Head and neck cancer guided resection, Brain cancer,
Cutaneous T-cell lymphoma, Basal cell carcinoma, Breast

cancer, Bladder cancer

Temoprfin (mTHPC, Foscan®) Chlorin 652
nm

Nasopharyngeal cxarcinoma, Head and neck cancer, Bile
duct carcinoma

Verteporfin (BPD-MA,
Visudyne®)

Chlorin 690
nm

Glioblastoma, Recurrent prostate cancer, Pancreatic
carcinoma, Breast cancer, Solid tumor

Talaporfin (Npe6,
Laserphyrin®)

Chlorin 660
nm

Hepatocellular carcinoma,
Liver neoplasms, Head and neck cancer

2-(1-Hexyloxyethyl)-2 devinyl
pyropheophorbide-A (HPPH,
Photochlor®)

Chlorin 665
nm

Lung cancer, Head and neck cancer

(Continued)
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one biopsy after PDT. 3 received external beam radiotherapy,

1 received brachytherapy, and 1 received cryotherapy. Only one

remains well 6 years after PDT. This study pointed out that

prolonged period of skin photosensitivity is a serious

disadvantage of temoporfin. Both trails were limited to areas

of cancer as detected by biopsy. With the accuracy of needle

placement and improvements in PS and light dosimetry,

the efficacy will be enhanced without affecting adjacent organs

and normal tissues, such as the bladder, rectum, and

neurovascular bundle.

5-Aminolevulinic acid (ALA) is the precursor of heme and

PpIX. It can produce PpIX with strong photosensitivity through

a series of enzymatic actions. PpIX can be activated at 420-640

nm. There are also two reports about ALA-PDT for prostate

cancer. A few clinical studies in Germany reported the
Frontiers in Oncology 07
localization and efficacy of ALA induced PPIX in prostate

cancer (29). 14 patients with prostate cancer (age 52-70 years,

Gleason score 4-8) took oral ALA (20 mg/kg) and received RP

4 h later. Then surface of organ was investigated for PPIX

fluorescence after violet light (380-440 nm), then frozen

sections of the removed tissue were examined by fluorescence

microscopy. The results showed that fluorescence was only

found in cancer cells. Then 5 patients received PDT

irradiation (633 nm). The PSA value reduced by 20% up to

70% after interstitial PDT 6 weeks later, then increased slowly

one year later. No complications were reported. Adam et al.

reported the feasibility of identifying positive surgical margins

(PSM) by ALA in open retropubic or endoscopic extraperitoneal

RP to improve surgical radicality (30). 39 patients with prostate

cancer (Gleason score 6-10) took oral ALA (20 mg/kg but not ≤
TABLE 2 Continued

PSs Chemical
group

Chemical structure lmax Ongoing cinical trials

Chlorine a6 (Photolon®) Chlorin 660
nm

Hilar cholangiocarcinoma

Silicon phthalocyanine (Pc4) Phthalocyanine 675
nm

Cutaneous T-cell lymphoma, Non-melanomatous skin
cancer

Redaporfin (LUZ11, F2Bmet) Bacteriochlorin 749
nm

Head and neck cancer

RM-1929 Cetuximab-
IR700
conjugate

689
nm

Head and neck cancer
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1.5 g/person) and received RP (24 for endoscopic extraperitoneal

RP and 15 for open retroperitoneal RP). The results showed

there are more false-negative cases but less false-positive in the

open groups than in the endoscopic groups. The sensitivity of

the endoscopic groups was much higher (75%) than that of open

groups. The authors believed that ALA-PDD during RP might

be a feasible and effective method. The significant advantage of

ALA-PDD/PDT is the interval between drug with irradiation

reduced to 4 h.

Motexafin Lutetium (MLu, Lutex®, Lutrin®), is a water-

soluble pentadentate aromatic metallotexaphyrin, which absorbs

strongly at 730-770 nm (46). And it was approved by FDA for

breast cancer and malignant melanomas (47). Doctors in

University of Pennsylvania School of Medicine have performed

a series of MLu-PDT studies on prostate cancer. In 2006, Du et al.

reported a phase I study about MLu-PDT for 16 patients (median

age 69 years, Gleason score 6-9) with recurrent prostate cancer

(31). Since the efficacy of PDT is closely related to the tumor

hypoxic (48), in addition to parameters such as luminous flux,

drug concentration, and drug-irradiation interval, the dose of

blood flow oxygenation is measured for the first time. This study is

also the first to assess PSA value from 1 day to several weeks after

PDT. The results showed PSA increased significantly after PDT in

a short time. The authors suggest that the transient increase in

PSA may result from cellular damage induced by PDT, resulting

in the release of PSA into the circulation. As in other clinical trials,

PSA value of some patients dropped below baseline within 1-2

months after PDT, and then become rise again (32). This article

also mentioned that PSA value may be related to photobleaching

of MLu. They believed photobleaching of PS should be measured

in PDT clinic trails (49).

Tookad® are pa l l ad ium-bacter iopheophorb ide ,

bacteriophorbide derivatives of bacteriochlrorophyll. They can be
Frontiers in Oncology 08
activated by NIR light at 763 nm, which can penetrate tissue to a

depth of 2 cm. Tookad® are co-developed by biologists Yoram

Salomon and plant photochemist Avigdor Scherz from the

Weizmann Institute of Science in Israel. They are a kind of

vascular-targeted PSs, which kill cancer cells by destroying tumor

blood vessels. PDT mediated by Tookad® is known as vascular-

targeted photodynamic therapy (VTP). Padoporfin (WST09,

Tookad®) is hydrophobic and Padeliporfin (WST11, Tookad®) is

hydrophyllic. Trachtenberg et al. reported the first phase I/II a

clinical trial of VTP in patients with recurrent prostate cancer

following external beam radiotherapy (EBRT) (49). In this first trial,

only two treatment fibers were placed in the prostate, with the

primary goal to demonstrate safety (50). The first group of 24

patients (Gleason score > 6) received WST09 (0.1, 0.25, 0.5, 1 and 2

mg/kg) with the light dose at 100 J/cm. The other groups received

WST09 dose of 2 mg/kg with the light dose at 230 J/cm or 360 J/cm.

Next, they reported a phase II trial that 28 patients receivedWST09

with 2 mg/kg (34). The results showed the therapeutic effect is

considerable with safe drug concentration and appropriate light

intensity. Eight of 13 patients with D90 (the minimum light dose

received by 90% of the prostate volume) > 23 J/cm2 had a complete

response, with early MRI showing marked vascular loss of the

prostate, and 6-month biopsy showing no residual cancer. No

incontinence, impaired sexual function and rectal damage were

reported. The VTP was subsequently introduced into Europe by

Mark Emberton at the University College Hospital, London (35). 85

patients (Gleason score 3 + 3) with localized prostate cancer were

given WST11-VTP. WST11 was water soluble, making it easier to

utilize. The study included 2 parts. In the first part, patients with

prostate size < 60 ml received 4 mg/kg WST11 and patients with

prostate size ≥ 60 ml received 6 mg/kg WST11. The light dose was

200 J/cm. In the other part, patients were assigned to received 200 or

300 J/cm light based on predefined criteria. 6-month follow-up data
FIGURE 2

Mechanisms of PDT on tumors. Upon light activation, the 1PS is converted from a ground state (S0) to the excited singlet state (S1) as
1PS•. 1PS• is

excited to the triplet state (T1) as
3PS• via intersystem crossing. Further, 3PS• promotes the generation of ROS through two mechanisms: type I

reactions involve the formation of ROS, such as peroxides (H2O2, ROOH), superoxide anion(O2
-•), hydroxyl radical (HO•) and hydroxyl radicals

(HOO•). Type II, the energy from 3PS• is directly transferred to triplet state oxygen (3O2) to form singlet oxygen (1O2). Ultimately leading to
cellular toxicity, recruitment and activation of immune cells and vascular damage.
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showed that 4 mg/kg WST11 and 200 J/cm light were optimal,

resulting in more than 80% of patients having negative biopsy.

Another phase II trial in France reported that 56 patients (Mean age

63 years, Gleason score ≤ 3 + 3) received VTP. Themean PSA value

after treatment for 6 months was 3.7 ng/ml and histopathological

data confirmed that no residual tumor in the targeted area (36). To

further determine the WST11 concentration and light dose, 40

patients (Gleason score ≤ 3 + 3) with low-risk prostate cancer were

received 2, 4 or 6 mg/kg WST11 and 200 J/cm (37). The results

indicated that 4 mg/kg WST11 and 200 J/cm light at 753 nm was

the best parameters. 95% of treatments were effective of 12 men

used these parameters and 83% had negative biopsy at 6 months

(51). This therapeutic effect was also validated in a clinical study in

the United States (38). VTP treatment with WST11 at 4 mg/kg and

200 J/cm was well tolerated (52). The most famous study was the

European phase III randomized controlled trial comparingWST11-
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VTP with active surveillance, over 400 patients in 10 European

countries were participated in the study (39). 206 patients assigned

to VTP group and 207 patients assigned to active surveillance

group. After a 2 years follow-up, 28% of patients in the VTP group

versus 58% of patients in the active surveillance group experienced

disease progression. 49% of patients in the VTP group versus 14%

of patients in the active surveillance group had negative biopsy at 2

years. The serious adverse event in the VTP group was retention of

urine, which resolved within 2 months. 266 patients were followed

for 4 or more years, including 147 in the VTP group and 119 in the

active surveillance group. Compared with active surveillance, VTP

had a lower rate of conversion to RP at 4 years. But there was little

difference inmetastasis and overall survival rate between two groups

(40). Because of the results of PCM301, the EMA approvedWST11

for patients with previously untreated, unilateral, low-risk prostate

cancer. There are also a number of clinical trials investigating the
TABLE 3 Clinical trials of PDT for prostate cancer.

PSs Time

(Y)

Clinical trial

stage

Mean age (Y) Median PSA (ng/ml)

prior to PDT

Drug dose/Light dose/Drug-

light interval

lmax Fiber Fiber insertion

method

Ref.

Hpd

Photofrin

1999 n.a. n.a. n.a. 1.5 mg kg-1/15 J cm-1/48-72 h

2.5 mg kg-1/15 J cm-1/48-72 h

628 nm Spherical light diffuser transurethral (26)

m-THPC 2002 phase I 68 (58–77) 27.6 (11.8-37.3) 0.15 mg kg-1/20 J cm-1 or 50 J

cm-1/3 d

652 nm bare tip fiber and

1 treatment with

cylindrical diffusers

perineal (27)

2006 phase I 66 (61-71) 5.25 (1.9-15) 0.15 mg kg-1/50-100 J cm-1/2, 3

and 5 d

652 nm bare tip fiber and

cylindrical diffusers

perineal (28)

Oral 5-ALA 2003 phase I 68.6 (58-76) 7 (4.9-10.9) 20 mg kg-1/250 J cm-1/4 h 380-440

nm

633 nm

cylindrical diffusers 3 transurethral (29)

2009 phase II n.a. 10 (2.3-120) 20 mg kg-1 (and ≦ 1.5 g/person)/

3 h

380-420

nm

cylindrical diffusers n.a. (30)

Motexafin Lutetium

(MLu)

2006 phase I median age 69

(57-79)

6.4 (1.8-15.4) 0.5 mg kg-1/25 J cm-1/24 h

1 mg kg-1/25 J cm-1/24 and 6 h

2 mg kg-1/25, 50, 100 and 150 J

cm-1/6 and 3h

732 nm cylindrical diffusers perineal (31)

(32)

Padoporfin (Tookad®

WST09)

2007 phase I n.a. < 20 0.1, 0.25, 0.5 and 1 mg kg-1/100 J

cm-1/10 min

2 mg kg-1/230 and 360 J cm-1/6

min

763 nm cylindrical diffusers perineal (33)

2008 phase II n.a. n.a. 2 mg kg-1/>23 J cm-2/6 min 763 nm cylindrical diffusers perineal (34)

Padeliporfin

(Tookad® WST11)

2013 phase II 62.7 mean PSA 6.38 (0.8-12.9) 4 or 6 mg kg-1/200 J cm-1/0 min

4 mg kg-1/200 and 300 J cm-1/0

min

753 nm cylindrical diffusers perineal (35)

2013 phase II 63 (55-75) mean PSA 6.2 (1.3-9.8) 4 mg kg-1/200 J cm-1/0 min 753 nm cylindrical diffusers perineal (36)

2015 phase II 63.9 ≤ 10 2, 4 and 6 mg kg-1/200 J cm-1/0

min

753 nm cylindrical diffusers perineal (37)

2016 phase I/II 61.6 (47-74) ≤ 10 4 mg kg-1/200 J cm-1/0 min 753 nm cylindrical diffusers perineal (38)

2017 phase III 64.2 (45-85) mean PSA 6.2 (0.1-10) 4 mg kg-1/200 J cm-1/0 min 753 nm cylindrical diffusers perineal (39)

(40)

2017 phase II median age 63

(51-76)

6.1 (1.3-10) 4 mg kg-1/150 and 200 J cm-1/0

min

753 nm cylindrical diffusers perineal (41)

2018 phase II 65,3 ± 7,38 8,69 ± 5,68 4 mg kg-1/150 and 200 J cm-1/0

min

753 nm cylindrical diffusers perineal (42)

2019 phase II 62.6 < 10 4 mg kg-1/200 J cm-1/0 min 753 nm cylindrical diffusers perineal (43)

2022 real-world 63 < 10 4 mg kg-1/200 J cm-1/0 min 753 nm cylindrical diffusers perineal (44)
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effectiveness of WST11 (41). A Latin American trial, PCM304,

evaluated the efficacy of VTP hemiablation in men with low- and

intermediate-risk prostate cancer, including those with bilateral

Gleason 3 + 3 and 3 + 4 disease. 60 (74%) patients had negative

biopsies at 12 months after VTP (42). In 2019, another phase II trial

was to assess the medium-term tumor control in 68 patients with

VTP in a 3.5-year follow-up (43). The results showed similar results

to earlier phase II studies. 25% of patients had positive biopsies at

3.5 years. In addition, 11% of patients increased their Gleason score

by 1 point. However, Eggener et al. reported that the rate of

histopathological upgrade of patients with active surveillance was

just 5.7% (53). The need for VTP should be carefully decided in

patients with low or very low risk. This may be the reason why

Tookad®-VTP was ultimately not approved by the FDA for

prostate cancer despite its many advantages, such as no obvious

side effects, almost no drug-light interval, metabolized easily by

body. Extremely few people feel strong feelings of regret 12 months

after VTP (54). Recently, a Germany real-world study reported

patients initial experience of patients treated with VTP for unilateral

low-risk prostate cancer (44). They compared short term functional

and oncological outcomes with those of a consecutive cohort of

patients undergoing RP. The results showed both low- and

intermediate-risk prostate cancer was detected in 27% of patients

by biopsy at 12 and 24 months after VTP. None of the RP patients

had a prostate cancer recurrence. Erectile function retention: VTP

(71%) and RP (30%), almost all patients with RP have urinary

incontinence, 96% used one and 4% used two ormore pads per day.

This research suggests that VTP for low-risk prostate cancer has a

lower complication than RP. However, recurrence and progression

after VTP are common. Therefore, a rigorous surveillance strategy

is required.

Notably, salvage radical prostatectomy after VTP appears to be

feasible as it is not thermal ablation (55). A recent retrospective

series reported 45 patients who received salvage RP with recurrent

prostate cancer after VTP with a median operative time of 180

minutes and a median blood loss of 200 ml. Surgeons said RP was

“easy” in 29 (69%) patients and “difficult” in 13 (31%). Surgeons

reported that lateral fibrosis made nerve bundle dissection difficult

on the VTP treated side, but no rectal injury or anastomotic

stricture occurred. The nerve-sparing technique was used in 14

(33%) patients, with a positive surgical margin rate of 31%. The

complication rate was 12% (2 patients were grade 1, 2 were grade 2,

and 1 was grade 3) (56). The study suggests that salvage RP after

VTP is feasible and safe without significant issues.
Light delivery devices

The light delivery system consisting of a diode laser and

optical fibers is essential to deliver the appropriate wavelength of

light with minimal loss for PS activation. Early clinical trials for

prostate cancer used “bare-tip” optical fibers, with light coming

out at the end, like a flashlight (26–28). The unit of light dose is
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usually J/cm2 because light is distributed in all directions from

the end of the fiber. But “bare-tip” optical fibers are more

suitable for treating superficial lesions, either on the skin or

within a hollow organ accessible by endoscope. In solid organs

such as the prostate, cylindrical diffusers are more commonly

used to allow light delivery along a given length at the distal end

of the fiber. The unit of light dose is J/cm. It is worth mentioning

that the light dose in PDT is not intended to produce a thermal

effect, but only to activate the PS. Therefore, its light dose is

much lower than that used for other prostate applications, such

as YAG laser for holmium laser enucleation of the prostate

(HoLEP), potassium titanate (KTP) laser for photoselective

vaporization of the prostate (PVP). Only five patients have

received transurethral PDT to date (26, 29). Although no

complications such as incontinence or dysuria have been

reported, other studies have suggested that transurethral PDT

can induce urethral strictures (50). Especially for the larger

prostate, the optical fiber is inserted through the perineum.

Early clinical work employed a freehand transperineal

placement of optical fibers (27–29). With the development of

template-mapping biopsy and brachytherapy, the approach is

now to use a stepper device to secure transrectal ultrasound

(TRUS) and transperineal templates to assist fiber placement.
Monitor system and software

Many studies have shown that light, PS, oxygen, and tissue

optical properties within the prostate intra-patient and inter-

patient vary widely (57). The PS concentration, tissue

oxygenation and light flux are monitored during PDT,

enabling real-time, patient-specific, and optimized light

delivery. The dose of most PSs can only be monitored and

cannot be adjusted during treatment, because drug delivery is

usually hours to days before irradiation (except for Tookad®,

which is injected immediately before irradiation). Additionally,

tissue oxygen content can be monitored but not adjusted during

treatment. Therefore, the only parameter that can really be

adjusted is the light dose. PS monitoring is mainly achieved

through fluorescence spectroscopy-based techniques (58).

Tookad® has negligible fluorescence due to its high triplet

state quantum yield. Therefore, diffuse optical transmittance or

reflectance techniques must be used for PS monitor. The near-

infrared diffuse optical instrument is used to measure

hemodynamic responses to PDT (59). The system combines

diffuse reflectance spectroscopy (DRS), which measures blood

oxygen content, with diffuse correlation spectroscopy, which

measures tissue blood flow. Additional spectral-based

measurements of blood oxygen saturation changes and PS

dose during PDT are under investigation. Light dose

monitoring is achieved by inserting optical detector fibers in

the prostate, rectum and urethra, connected to a continuously

recording light dosimeter.
frontiersin.org

https://doi.org/10.3389/fonc.2022.980239
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue et al. 10.3389/fonc.2022.980239
In current PDT clinical applications, a combination of pre-

treatment planning and online monitoring is used to develop

individual treatment plans, determine the size and shape of the

prostate on MR or ultrasound imaging, and estimate the optimal

number, length, location and power of fibers from average tissue

optical properties. Both the University Health Network and

Steba Biotech company have developed this dosimetric

planning platform software. The software calculates the PDT

dose and necrosis boundaries for multiple delivery fibers using

finite element solution of the diffusion approximation of the

radiative transport equation, and then uses online measurement

of fluence rate at the prostate boundary and/or tissue optical

properties to adjust the light intensity. TOOGUIDE TRUS® is a

software guidance system that is designed to provide VTP

therapy. It uses TRUS images to define the number, position,

and illumination length of the fibers in order to maximize the

dose of light to the target while sparing the surrounding tissues,

such as the rectal wall, prostate apex, and urethra.
Ongoing clinical studies

According to information from ClinicalTrials.gov, there are two

PDT clinical trials for prostate cancer currently in progress,

including drugs and devices. one single-center single-arm open-

label, phase IIb study (NCT03315754/PCM204) at Memorial Sloan

Kettering Cancer Center is currently investigating the efficacy, safety,

and quality of life in patients with intermediate-risk prostate cancer

after VTP. The study includes men with a histological diagnosis of

Gleason 3 + 4 on one half of the prostate in no more than 2 sextants

of the prostate gland and not present in more than 50% of any one

core; cT2a-N0/Nx-M0/Mx; Prostate volume ≥ 25 ml and ≤ 70 ml;

PSA ≤10 ng/ml. Tookad® Soluble VTP treatment consist of the

combination of 10 minute IV infusion of Tookad® Soluble at the

dose of 4 mg/kg, followed by the illumination of the zone to be

treated with a 753 nm laser light delivered through transperineal

interstitial optical fibers at a power of 150 mW/cm and light energy

of 200 J/cm applied over 22 minutes and 15 seconds. After VTP

hemiablation, patients will be followed for 5 years (60 months) with

clinical evaluation, questionnaires on QOL, erectile and urinary

functions, PSA testing, and prostate biopsy at 3, 12, 24, 36, 48 and

60 months. The primary objective is to evaluate for Gleason grade 4

or 5 prostate cancer at 12months by biopsy. The results of this study

will provide meaningful information on medium-term oncologic

outcomes in men with intermediate- risk prostate cancer treated

with VTP.

Another Open-label Clinical Study (NCT03067051) at

Princess Margaret Cancer Centre and University College

London is studying the safety and adequacy of effectiveness of

the SpectraCure P18 system (Interstitial Multiple Diode Lasers

and IDOSE® software) and Verteporfin for Injection (VFI) for

patients with local recurrence after radiotherapy. The study
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includes men with expected survival ≥ 8 months; Eastern

Cooperative Oncology Group (ECOG) performance status of 0

or 1; prostate volume ≤ 50 cm3; sufficient bone marrow reserve

(granulocyte count≥1500/mm3, platelet count ≥ 100,000/mm3),

adequate renal and hepatic function (creatinine ≤ 1.5 mg/dl, a

total bilirubin ≤ 1.5 mg/dl, serum glutamate-oxaloacetate

transaminase (SGOT) ≤ 3 times the upper limit of normal,

alanine transaminase (ALT) ≤ 3 times the upper limit of

normal); Patients with locally advanced (AJCC 7th edition T3/

T4) or metastatic disease, Gleason score≥8 at initial diagnosis,

and seed implantation brachytherapy before are excluded. The

study design for accelerated titration of light dose and VFI.

Potential damage to the periprostatic tissue including the rectal

wall will be evaluated by contrast-enhanced and not-contrast

enhanced MRI at 5-9 days following PDT. Effectivity will be

evaluated by MRI to determine the extent of necrosis in the

prostate within 1 week. Performance of the SpectraCure P18

system will be evaluated by light dose-volume histograms for the

light dose coverage at 12 months.
Preclinical researches of PDT for
prostate cancer

As PDT has been approved in more and more countries, it

has become a new routine treatment option in more and more

hospitals, and preclinical research is also in progress. Here,

preclinical studies of PDT for prostate cancer from 2009 to the

present are discussed here to show what are currently available

to overcome problems in recent clinical trials.
Strategies for targeting improvement

In order to reduce the PS toxicity in normal tissues and enhance

tumor killing effect, many studies have been carried out to improve

the tumor targeting of PS as shown in Table 4, including passive

targeting and active targeting. Passive targeting is generally delivered

through nanoparticle systems, which contains liposomes, micelles,

polydopamine, inorganic nanomaterials, etc (87). Themechanism is

mainly to enhanced permeability and retention (EPR) effect by

adjusting the size of nanoparticles and modifying the surface

chemistry. In solid tumor tissue, there are abundant blood vessels,

wide vascular wall space, poor structural integrity, and lack of

lymphatic return, resulting in selective high permeability and

retention of macromolecules and nanoparticles (88). Duchi et al.

developed 80 nm shell-core fluorescent nanoparticles (FNP), the

shell was made of polymethylmethacrylate, and loaded with the PS

tetrasulfonated aluminum phthalocyanine (Ptl). Ptl@FNP were

concentrated on prostate cancer cells through EPR effect (60).

However, the EPR effect is controversial. In 2020, a study was

reported by Chan et al. that up to 97% of nanoparticles enter the
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tumor through active processes of endothelial cells (89). The results

may influence the development of nanoparticles of PS in the future.

Active targeting to improve tumor selectivity typically

through binding or adhering to specific receptors

overexpressed on cancer cell surface, including proteins (e.g.

antibodies), peptides (e.g. arginine-glycine-aspartate peptide

and epidermal growth factor), aptamers, vitamins (e.g. folic

acid and biotin) (90) and carbohydrates (91). Compared to

antibody or antibody fragments, peptides and aptamers are

rapidly cleared from the body due to their small size. Prostate-

spe c ific membrane an t i g en (PSMA) i s a un ique

transmembrane glycoprotease on the cell surface with

carboxypeptidase and folate hydrolase activities (92). It was

initially discovered in the androgen-dependent LNCaP human

prostate cancer cell line (93). The expression level of PSMA on

prostate cancer cells is 100 times more than that on normal

cells (94). And its expression level increases as the cancer

progresses, making it a highly specific and sensitive marker to

target for therapy (95). Most of the peptides utilized the PSMA

binding moiety Lys-Glu urea to conjugate PS (96, 97). The first

study was reported by Liu et al. in 2009 (98). They designed a

PSMA inhibitor conjugate with PS pyropheophorbide-a (Ppa-

CTT-54) for targeting prostate cancer. After PDT with Ppa-

CTT-54, the apoptosis signaling pathway was activated,

cytoskeletal was destroyed, leading to apoptosis and necrosis

(61). Chen et al. reported another PSMA-targeted Lys-Glu urea

based PS IRDye700DX (IR700) for prostate cancer (62), and

evaluated its PDT efficacy for prostate cancer (99). IR700 is a

NIR s i l i c a -ph tha locyan ine hydroph i l i c dye w i th

photosensitivity. Wang et al. reported a new PSMA peptide-

based ligand (PSMA-1) binding Glu-Glu urea moiety (63).

PSMA-1 was utilized to conjugate PSs, Pc413 and IR700. Pc413

is a kind of second generation phthalocyanine dye Pc4. The

results showed two PSMA-1-PDT conjugates can effectively

inhibit PSMA+ PC3 cells progression (100). Mangadlao et al.

published gold nanoparticles (AuNPs) based on PSMA-1

loaded with Pc4 was synthesized. The theranostic agent also

exhibits promising targeting properties and phototoxicity of

prostate cancer (64). In 2020, this team reported a multiple

targeting nanoparticle delivery system. The core was AuNPs,

which was conjugated to PSMA-1 and silicon phthalocyanine

(Pc158) by a cathepsin-cleavable linker. The nanoparticles were

endocytosed by prostate cancer cells based on PSMA targeting.

Then due to a large amount of cathepsins in the intracellular

lysosomal vesicles, the liker was cleavage and Pc158 was released

over time (65). However, this rapid metabolism of small molecule

peptides often results in insufficient tumor accumulation, requiring

repeated administration of PS. To prolong tumor accumulation,

Zheng et al. reported a 9-amino-acidD-peptide linker to prolonged

plasma circulation. PS was conjugated of targeting ligands via the

liker. Both PSs (Ppa and bacteriochlorophyll) conjugates showed

good tumor tissue accumulation duration and PDT activity

(66, 67).
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The integrin anb3 is overexpressed on tumor vascular

endothelial cells (101). The arginine-glycine-aspartate (RGD)-

containing peptide ligand that exhibits strong binding affinity

and selectivity for integrin anb3 (102). Dai et al. synthesized NPs
combined RGD-4R (a modular peptide) with TTB (a fluorescein

with aggregation-induced emission) for image-guided PDT

treatment (68). Luan et al. synthesized a cyclic RGD peptide (c

(RGDyK)) moiety conjugated with an unsymmetrical

phthalocyanine. The results showed this phthalocyanines

conjugate PS was highly enriched in avb3-positive DU145

prostate cancer cells (69). Recently, a mechanistic study of

phthalocyanines suggests that phthalocyanine derivatives with

imidazole groups can be effectively used against prostate cancer

while differentially effecting metastasis, angiogenesis, cell cycle,

apoptosis and immune system cells’ activities (103). Another c

(RGDyK) conjugate PS ZnPc platform (R-SUZn) was reported.

Hydrophilic chitosan was used for ZnPc delivery and UCNPs

were used to convert NIR light to visible light to increase

illumination depth. To simulate deep tumors, 1 cm of pork

tissue was overlaid on a subcutaneous prostate cancer tumor.

The results showed enhanced photodynamic effects of this

nanoparticle in the deep tumor (70). It has also been reported

to target PDT in prostate cancer by conjugating polyamines

(PA) to PpIX (71). PA was a class of aliphatic nitrogenous bases

that was highly expressed in tumors. In addition, tumor cells

have an up-regulated polyamine transport system (PTS) for the

uptake of exogenous polyamines (104). Folic acid (FA) has been

extensively studied for the targeted delivery of nanomedicines by

recognizing the overexpressed folate receptor-a (FR-a) in many

cancers (105). Choi et al. synthesized two kinds of FA modified

nanoparticles for PDT to treat prostate cancer, HPs-conjugated

multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs)

(72) and Ce6-conjugated mult ifunctional magnetic

nanoparticles (Fe3O4-Ce6-FAs) (73). The results indicated that

Ce6-conjugate had better anticancer activity than HPs-conjugate

after PDT. This may be related to the high yield of 1O
2 in Ce6.

However, Wang et al. suggested that FA functionalization on the

nanoparticle surface did not lead to more nanoparticle

enrichment in FR-a-overexpressing tumors, but rather to

nanoparticle capture by macrophages in tumors, liver, and

spleen, which deprived FR of the ability to recognize and

accelerate complement activation in vivo (106). This study

may have challenges for the development of FA-targeted PSs.

Cation-independent mannose 6-phosphate receptor (CI-M6PR),

which is overexpressed in 84% of prostate cancers, has attracted

the attention and appears to be a target for PDT in prostate

cancer. One of the roles of CI-M6PR is endocytosis of proteins

with mannose 6-phosphate (M6P) ligands. Bouffard et al.

reported a new ligand with a better affinity for CI-M6PR,

dimannoside-carboxylate (M6C-Man) (74). They synthesized

the mesoporous silica nanoparticles (MSNs) loaded M6C-Man

and monosaccharide carboxylate (M6C) for PDT in prostate

cancer (75). The results showed M6C-Man nanoparticles were
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TABLE 4 Different preclinical studies of PDT for prostate cancer.

Molecular
Conjugates
PS/NPs

Target
moiety

lmax Cell model Light dose in vitro Animal model Light dose in vivo Ref.

Ptl@Fluorescent NPs EPR 680 nm PC3 263 J cm-2/876.6 mW cm-2

and 1581 J cm-2/878.3 mW
cm-2

6-week-old SCID
mice

8.04 J cm-2/26.8 mW cm-2 (60)

PSMA-Ppa PSMA 600-800 nm LNCaP 7.5 J cm-2/25 mW cm-2 n.a. n.a. (61)

PSMA-IR700 PSMA 690 ± 20 nm PSMA+ PC3PIP
and PSMA-

PC3flu

2 J cm-2/n.a. 6- to 8-week-old
male NOD-SCID
mice

100 J cm-2/n.a. (62)

PSMA-1-Pc413
PSMA-1-IR700

PSMA 672 nm 690 nm PSMA+ PC3pip
and PSMA-

PC3flu

0.5 J cm-2/8.3 mW cm-2 6- to 8-week-old
male athymic nude
mice

150 J cm-2/33.3 mW cm-2

and 50 J cm-2/31.8 mW
cm-2

(63)

AuNP-5kPEG-
PSMA-1-Pc4

PSMA 672 nm PSMA+ PC3pip
and PSMA-

PC3flu

0.1, 0.5 and 1 J cm-2/1-5 mW
cm-2

6- to 8-week-old
male athymic nude
mice

150 and 300 J cm-2/0.1 W
cm-2

(64)

AuNP-Pc158 PSMA 670 nm PSMA+ PC3pip
and PSMA-

PC3flu

1 and 150 J cm-2/n.a. 6- to 8-week-old
male athymic nude
mice

150 J cm-2/n.a. (65)

64Cu-LC-Pyro PSMA 671 nm PSMA+ PC3pip
and PSMA-

PC3flu

0.5, 1, 2, 3 and 5 J cm-2/n.a. Athymic male nude
mice

100 J cm-2/55 mW cm-2 (66)

BChl-LC-PSMA PSMA 750 nm PSMA+ PC3pip
and PSMA-

PC3flu

1, 2.5, 5, 10 and 15 J cm-2/50
mW cm-2

6- to 8-week-old
male athymic nude
mice

125 J cm-2/70 mW cm-2 (67)

RGD-4R-MPD/TTB integrin anb3 730 nm PC3 n.a./200 mW cm-2 5-week-old male
BALB/c nude mice

n.a./200 mW cm-2 (68)

c(RGDyK)-
Phthalocyanine

integrin anb3 660 nm DU145 12 J cm-2/10 mW cm-2 n.a. n.a. (69)

c(RGDyK)-SOC-
UCNP-ZnPc

integrin anb3 980 nm 660 nm PC3 n.a./10, 22, 34, 49 and 65 mW
cm-2

Athymic nude mice n.a./34 mW cm-2 (70)

PpⅨ-PA PA 630 nm PC3, DU145 and
LNCaP

75 J cm-2/n.a. 5-week-old female
BALB/c nu/nu mice

200 J cm-2/n.a. (71)

CoFe2O4-HP-FA FR 515 nm PC3 3.06, 6.12, 9.18 and 18.36 J
cm-2/n.a.

n.a. n.a. (72)

Fe3O4-Ce6-FA FR 660 nm PC3 36 J cm-2/20 mW cm-2 n.a. n.a. (73)

MSN-M6C-PS M6PR 650 nm LNCaP and
DU145

6.5 J cm-2/n.a. n.a. n.a. (74)

MSN-M6C-Man M6PR 650 nm LNCaP 11.25 J cm-2/3 mW cm-2 n.a. n.a. (75)

Laserphyrin-HVJ-E HN 664 nm castration-
resistant PC3

99 mJ cm-2/150 mW cm-2 n.a. n.a. (76)

ClAlPc-NC
ClAlPc-NE

EPR 650 nm LNCaP 0.5, 4 and 7 J cm-2/20 92 mW
cm-2

n.a. n.a. (77)

Iridium
biscyclometallated Ir
(III) complexes

mitochondria 450 nm PC3 24.1 J cm−2/6.7 mW cm−2 n.a. n.a. (78)

fluorinated
porphyrinoids@PVP

mitochondria 622 nm PC3 10.6 J cm -2/17.6 mW cm-2 n.a. n.a. (79)

MC540/ZnPc-
UCNP@Au

EPR 980 nm PC3 n.a./0.4, 0.6, 0.8, 1, and 1.2 W
cm-2

n.a. n.a. (80)

YPMS@PpⅨ@FA FR UV365 nm Tramp-C1 and
Tramp-C2

0.1, 0.5, 1, 2 and 3 J cm-2/n.a.
and 125, 250 and 500 mJ cm-

2/n.a.

8-week-old male
CD-1 mice

n.a. (81)

PEG-PLGA-LaF3:Ce
3

+/PpⅨ
EPR UV403 nm and X-

rays
PC3 and DU145 10 J cm-2

5, 8 and 10 Gy
6- to 8-week-old
C57bl/6 black mice

n.a. (82)

FA-PpⅨ-AG FR X-rays PC3 and PNT1A 1, 2, 4, 6 and 7 Gy n.a. n.a. (83)

(Continued)
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absorbed more rapidly by cells than monosaccharide carboxylate

(M6C) nanoparticles, which may be related to the stronger

activity of dimannoside derivative than the monosaccharide.

The clinical challenges of treating castration-resistant prostate

cancer (CRPC) are still enormous. PDT may become a new

option for patients who are already hormone-resistant but have

not yet metastasized. Scientists in Japan have tried to use

Hemagglutinating virus of Japan envelope (HVJ-E), which is

specific for prostate cancer, as a PS carrier for PDT in CRPC

(76). Hemagglutinating virus of Japan envelope (HVJ-E) is

oncolytic virus, which can induce CRPC PC3 and DU145 cell

membrane fusion (107). This makes the PS conjugate

(Laserphyrin®-HVJ-E) not only targeted but also cytotoxic of

HVJ-E (108). Mitochondria are organelles closely related to ROS

generation, so targeting mitochondria is a very effective strategy.

Iridium biscyclometallated Ir (III) complexes have been

synthesized to target mitochondria. Photoactivation of the

complex induces mitochondrial membrane depolarization

and DNA damage, which triggers apoptosis (78, 109).

Mesquita MQ et al. reported a three fluorinated porphyrinoid

derivatives and entrapped them into polyvinylpyrrolidone

(PVP). Two of them were localized in mitochondria and

further killed PC3 cells (79).
Light strategies to overcome
depth limitations

A good light source of PDT should have the following

characteristics: a spectral range consistent with the peak

absorption wavelength of the applied PS and sufficient tissue

penetration depth. Most peak absorption wavelength of PSs was

in the visible range. Due to the poor tissue penetration depth of

excitation lights, the penetration depth of green or blue light is only

2 mm, which is not enough for deep tumors. Therefore, there is an

urgent need to find out some new strategies to produce ROS under
Frontiers in Oncology 14
external stimulation with high penetrability (110). Several third-

generation of PSs can respond to external excitations such as NIR

light, ultrasound, X-ray, chemiluminescent, bioluminescent

sources, Cherenkov radiation, and implants (111). And new PSs

aredeveloped that canbeexcitedby the corresponding light sources

(112), such asphthalocyanines canbe excitedby longer-wavelength

NIR light (113). They commonly have strong energy absorption

with large conjugated domains and high fluorescence quantum

yield, which is necessary for PDT (114). However, most

phthalocyanines are hydrophobic (115). Leandro et al. used

nanocarriers, nanoemulsions (ClAlPc-NE) and nanocapsules

(ClAlPc-NC) to improve the solubility and bioavailability of

phthalocyanines (77). However, the energy gaps of NIR-activated

PSs are narrow and the yield of singlet oxygen is reduced (116). In

addition, NIR light can only penetrate 5 mm of tissue and needs to

retain sufficient energy for PS activation (117). Therefore, PDT of

NIR light in prostate cancer is limited. One solution is to utilize

upconversion materials combined with PSs that can be excited by

NIR. So PSs can be excited by low-energy light, such as in the UV-

Vis range (118). Burcu et al. reported Yb/Er (30%: 3%)

upconversion nanoparticles (UCNP) made of Y2O3, Yb2O3, and

Er2O3. The UCNP modified with a shell of mesoporous silica or

gold (Au), then loaded with 2 PSs, merocyanine 540 (MC540) and

zinc phthalocyanine (ZnPc) (80). Besides NIR light, X‐rays has

received a lot of attention due to the infinite penetrating. However,

most PSs do not directly absorb X-ray photonswell and require the

help of scintillator to convert X-rays into photons that can activate

the PSs. Therefore, many studies have reported PSs can be carried

by functionalizing the surface of scintillating nanoparticles (119). A

few studies about scintillatingnanoparticles loadedwithPpIX;were

reported forprostate cancer, suchasananocomposite systemofCe3

+ doped lanthanum (III) fluoride (LaF3:Ce
3+) (82). Prakhar et al.

synthesized core-shell nanoparticles. The core was scintillating

nanoparticles Y2.99Pr0.01Al5O12 (YP), which converted X-ray

photons into UVA photons. The sell was mesoporous silica

loaded with PpIX and FA (81). Chen et al. reported afterglow
TABLE 4 Continued

Molecular
Conjugates
PS/NPs

Target
moiety

lmax Cell model Light dose in vitro Animal model Light dose in vivo Ref.

OH-, Br- and Cl-
Coelenterazine

n.a. chemiluminescence PC3 n.a. n.a. n.a. (84)

SPION/Ce6/Oxygen-
loaded polymer
bubbles

n.a. 660 nm Tramp-C1 n.a./50 mW cm-2 6- to 8-week-old
C57BL/6J Narl male
mice

n.a./100 mW cm-2 (85)

ICG/AIBI/17-AAG/
HA

CD44 808 nm LNCaP n.a./0.5, 1 and 2 W cm-2 n.a. n.a. (86)
frontiersi
NPs, Nanoparticles; Ptl, Tetrasulfonated aluminum phthalocyanine; Ppa, Pyropheophorbide-A; PSMA-1: Glu-CO-Glu′-Amc-Ahx-Glu-Glu-Glu-Lys-NH2; LC-Pyro: Long-circulating
Pyropheophorbide; BChl, Bacteriochlorophyll; PA, Polyamine; MSNs, Mesoporous silica nanoparticles; M6C, Mannose 6-Carboxylate; M6C-Man, dimannoside-carboxylate; HVJ-E,
Hemagglutinating virus of Japan envelope; HN, hemagglutinin-neuraminidase; NE, Nanoemulsions; NC, Nanocapsules; HP, Hematoporphyrin; UCNP, Upconversion nanoparticles;
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(persistent luminescence)nanoparticles, hydrosolubleSr2MgSi2O7:

Eu2+, Dy3+ coating with (aminopropyl) triethoxysilane (APTES)

and conjugate with PpIX and FA (83). Although scintillation

nanoparticles combined with PSs have shown great promise for

PDT of prostate cancer, their biocompatibility, safety, and clinical

feasibility need to be further investigated. In addition, the

scintillation nanoparticles have low luminous efficiency and low

energy transfer to PS, still no substantial results have been achieved.

Another strategy toovercome thedepth limitation is touse photons

generated by enzyme-mediated bioluminescence approaches to

excite the PS instead of an external excitation light source.

Recently, a new system that enables intracellular PDT effects with

no external lightwas reported.Coelenterazine, a chemiluminescent

single molecule that is widely present in marine organisms.

Magalhães et al. utilized the heavy-atom effect to enhance the

efficiency of intersystem crossing, then enable the derivatives of

coelenterazine generated triplet states (T1) by chemiluminescent

reaction triggered by O2
-•. Further studies found that the

intracellular PDT anticancer activity of these coelenterazine

derivatives is more relevant to prostate and breast cancer (84).

The development of new self-activating PSs for prostate cancer

PDT may be a promising approach.
Hypoxic strategies

Oxygen is one of the three elements and is an important

substance involved in photodynamic action, so the

concentration of oxygen in the tissue plays a very important

role in the effect of photodynamic. During PDT, tissue oxygen

concentration is affected by many factors, such as blood flow,

blood oxygenation, etc. The photosensitivity reaction can

induce vascular destruction, vasoconstriction, and blood cell

retention and agglutination. However, the stagnation of blood

flow may also lead to tumor hypoxia during PDT, resulting in

decreased efficacy (120). Therefore, many studies have tried to

enhance the efficacy of PDT by modulate tumor cell-

microenvironment of prostate cancer. One strategy is to

deliver oxygen directly to tumors via nanoparticles. Huang

et al. utilized bone marrow-derived monocytes to escape from

immune cell clearance as a carrier to transfer pure oxygen and

ce6 (85). Besides PS and oxygen, superparamagnetic iron oxide

nanoparticleswere also loaded to induced photothermal therapy

(PTT) in prostate cancer Tramp-C1 cells. Another strategy is to

use an oxygen-independent free radicals to make up the

disadvantages of hypoxia environment. Sun et al. synthesis

nanoparticles containing indocyanine green (ICG) for PTT

and PDT, (2, 2’-azobis[2-(2-imidazolinI-2-yl) propane]

dihydrochloride (AIBI) for radical initiator, heat shock

protein inhibitors (geldanamycin, 17-AAG) for synergizing

PDT. The nanoparticle surface was modification with

hyaluronic acid (HA) to target CD44 receptor overexpressed

on the surface of prostate cancer cell (86). Ludivine Larue et al.
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reported amultifunctional platform combining three units: a PS

(Pyro-a), a peptide to target tumor neovessels, and an

Alkoxyamines (Alks) for an oxygen-independent activity

(121). However, this platform has not been tested on cells and

animals. This nanoparticle system actually enhanced the

efficiency of PDT by synergistic therapy in multiple ways.
Combination with other therapies

Although PDT has a lot of advantages of high specificity,

strong reproducibility, and low invasion (122). It is difficult to

eradicate prostate cancer completely by PDT alone, especially

following a single course of treatment. The combination of

PDT with other therapeutic modalities could provide

opportunities to draw on strong points of other therapeutic

modality to offset one’s own weaknesses, leading to additive

or even synergistic therapeutic effects. Multimodal therapies

combine wi th PDT are promis ing for mul t id rug

resistance (MDR) and hypoxia-related prostate cancer

treatment (Table 5).
Combined PDT with PTT

PTT is another form of phototherapy that converts light

energy into heat energy to kill cancer cells (139). When the

photothermal agent accumulated in tumors is irradiated by an

external light source of a specific wavelength (generally NIR

light) (140). Many studies have reported PTT treatment for

prostate cancer (141). The combination of PTT and PDT has

potential synergistic effects: the thermal effect of PTT is

independent of oxygen, which can improve local blood flow

and increase the oxygen concentration in tumor tissue, thereby

making up for the deficiency of PDT in hypoxic environment

and making PDT more effective. In addition, ROS generated

during PDT can damage heat shock proteins, thereby reducing

their protective effect on tumor cells during PTT. Many studies

reported the combination PSs and photothermal agents in the

treatment of prostate cancer through nanomaterials as carriers

(142). Bhattarai et al. reported self-assembled NPs combined

porphyrin grafted lipid (PGL) with cyanine dye DiR for PDT/

PTT in prostate cancer (123). The results showed that more
1O2 was produced when the PGL-DiR NPs were first irradiated

by 760 nm followed by a 650 nm and significant synergistic

effect on tumor growth inhibition. Ji et al. synthesized a human

serum albumin (HSA)-based nanoparticles loaded with Ce6

and ICG for prostate cancer. The results showed ICG could

quench the fluorescence of Ce6. Only when the nanoparticles

were first received 808 nm light irradiation, ICG degraded and

converted light energy into heat energy to kill cancer cells.

Followed by 660 nm irradiation, Ce6 produce lots of 1O2 for

PDT (124). Besides photothermal drugs, photothermal
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nanomaterials have also been used as carriers to link PS for

synergistic therapy. Melanin-like polydopamine nanoparticles

(PDA) has been used to be a delivery platform due to its

excellent photothermal conversion efficiency, biocompatibility,

and simple functionalization. Dai et al . reported a

multifunctional nanoplatform, PDA loaded with Ce6 and a

small-molecule PSMA inhibitor (DCL) was modified with

perfluoropentane (PFP). PDA for PTT, Ce6 for PDT, DCL

for targeting to prostate cancer and PFP for ultrasound

imaging. The nanoplatform demonstrated ultrasound

contrast signal at the prostate tumor site and synergistic

killing effect on prostate cancer cells (125). The paper does

not mention whether the sequence of laser irradiation at 660

nm or 808 nm affects the killing effect. Since the absorption

spectra of photothermal and photodynamic agents are usually
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different, combined PTT and PDT require sequential

irradiation of the tumor with two different lasers, which

prolongs treatment time and complicates the treatment

process. Cui et al. reported a self-assembled nanoplatform

could be triggered by a single laser to achieve synergistic

PTT and PDT. The inorganic (gold nanorods) and organic

phototherapeutic materials (ICG) were irradiated at 785 nm to

generate ROS and heat for PDT/PTT (126). However, the

excitation of PDT and PTT by the same wavelength light

mainly comes from ICG, the ROS production of ICG is

limited while Au mainly provides the photothermal effect. In

addition, AuNPs can quench some PSs and therefore affect the

yield of 1O2. Therefore, how to maximize the synergistic effect

of PDT and PTT remains a lot of questions due to the low

photoconversion efficiency.
TABLE 5 Different therapies studies combine with PDT for prostate cancer.

Therapies Molecular
conjugates PS/

NPs

Cell model lmax Animal model Light dose Ref.

PDT/PTT PGL-DiR PC3 (PDT) 650 nm
(PTT) 760 nm

Male Balb/C mice n.a./200 mW cm-2

n.a./1 W cm-2
(123)

PDT/PTT HSA-ICG-Ce6 PC3 (PDT) 660nm
(PTT) 808nm

Nude mice n.a./0.2 W cm-2

n.a./1 W cm-2
(124)

PDT/PTT Ce6@PDA-PEG-PFP LNCaP and PC3 660 nm 5-week-old male Balb/c nude mice n.a./0.5, 1.5, 5, 40 and 90
mW cm-2

(125)

PDT/PTT AuNR/ICG vesicle PC3 785 nm Male Balb/c nude mice n.a./1 W/cm2 (126)

PTT/CT SGNS-5-Flouroacil PC3 and DU145 808 nm n.a. n.a./1.8, 2.5 and 3 W
cm-2

(127)

PDT/PTT/
CT

HSA@IR780@DTX 22RV1 808 nm BALB/c nude mice n.a./1 W cm-2 (128)

PDT/PTT/
CT

PTX- Pluronic-PEI
@Au

PC3 808nm Nude mice n.a./1 W cm-2 (129)

PDT/CT Rose Bengal-MNCs
(CTS/PVA/bPEI)

Tramp-C1 532 nm 7-week-old Balb/c mice n.a./15 and 100 W cm-2 (130)

PDT/PTT/
CT

Dox@PAH-cit/PDA PC3, DU145 and LNCaP 808nm Male Balb/c mice n.a./1.5 W cm-2 (131)

PDT/CT IR780-Abiraterone PC3, DU145, C4-2 and LNCaP n.a. Athymic nude mice and
4- to 6-week-old Balb/c mice

n.a. (132)

PDT/CT PSMA-1-MMAE-IR700 PSMA+ PC3pip and PSMA-

PC3flu
690 nm 6- to 8-week-old male athymic nude

mice
1, 3 and 50 J cm-2/n.a. (96)

PDT/CT TPCI/PTX@ liposomes PC3 460 nm Male BALB/c nude mice n.a./1.0 mW cm−2 (133)

PDT/PTT/
CT

J591-ICG PSMA+ PC3pip and PSMA-

PC3flu
785 nm 7- to 8-week-old athymic nu/nu

mice
n.a. (134)

PIT Anti-PSMA mAb/IR700 PSMA+ PC3pip-luc and PSMA-

PC3flu
689 nm 6- to 8-week-old female homozygote

athymic nude mice
50 and 100 J cm-2-50

mW cm-2
(135)

PIT J591 (IgG, Db, Mb)/
IR700

PSMA+ PC3pip and PSMA-

PC3flu
670-10 nm 6- to 8- week-old female

homozygote athymic nude mice
50 and 100 J cm-2-25

mW cm-2
(136)

PTT/PIT 111In-DTPA-D2B-IR700 PSMA+ LS174T and PSMA-

LS174T-wildtype cells
670-710 nm male BALB/c nude mice 2, 5, 10, 30, 50, 100 and

150 J cm-2/n.a.
(137)

PDT/PTT/
CT/PIT

GNS@IR820/DTX-
CD133

PC3 808 nm 4- to 6-week-old male BALB/c
athymic nude mice

n.a./0.8 mW cm-2 (138)
frontiersi
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Combined PDT or PTT with
chemotherapy (CT)

The reproducibility and non-resistance of PDT may provide

a new option for drug-resistant patients, while chemotherapy

can compensate for the limitation of light penetration in PDT,

and may also enhance the sensitivity of cancer cells to ROS or

hyperthermia thereby achieving synergistic treatment. Several

studies have explored the compatibility of PDT or PTT with CT

for prostate cancer. Most of them achieve the delivery of PSs and

chemotherapeutic drugs by using nanoparticles (127). IR780, a

NIR dye with both photodynamic and photothermal properties.

However, the hydrophobicity and toxicity of IR780 limit its

translation in the clinic. Lian et al. encapsulated IR780 into

human serum albumin (HSA) to improve its hydrophobicity.

Docetaxel (DTX), first-line antitumor chemotherapy drug was

also encapsulated into NPs for prostate cancer. HSA@IR780@

DTX NPs were developed for imaging and PTT/PDT/CT of

castration-resistant prostate cancer (128). Wang et al.

synthesized a multifunctional NP for CRPC. The cell cycle

chemotherapeutic drug paclitaxel (PTX) was encapsulated in

the copolymer Pluoronic-PEI (Pluronic-polyethylenimine)

nanoparticles and covered with gold cage for PDT/PTT. When

the NPs were irradiated at 808 nm, they could inhibit TRPV6

channel and generated ROS, high temperature and released PTX

to synergistic killing CRPC PC3 cells (129). In recent years, more

nanoparticle carriers have been synthesized that based on the

tumor microenvironment to achieve precise drug release. Yeh

et al. reported ROS-responsive tripolymer (CTS/PVA/bPEI)

coated magnetic nanoclusters (MNCs) loaded with Rose

Bengal (RB) for PTX delivery (130). The polyethylenimine

(bPEI)-based MNCs encapsulated PTX and RB through

electrostatic interaction. When RB was irradiated and

generated ROS (143), PTX was released through attraction

reduction of ROS-responsive material bPEI to achieve the

effect of combined therapy. The pH-responsive NPs were also

used as chemotherapeutic drugs carriers. Zhang et al.

synthesized core-shell NPs, the core was PDA for PTT, the

shell was a pH-responsive charge-reversal polymer, poly

(allylamine)-citraconic anhydride (PAH-cit) loaded with

doxorubicin (Dox). Dox was released due to the amide

hydrolysis of PAH-cit in the acidic environment of tumor, and

PDA produced heat to kill the prostate cancer when the NPs

were irradiated by 808 nm laser (131). However, the toxicity,

poor metabolizability and batch-to-batch variability of NPs

greatly limit the clinical translation. Small molecule drugs are

more economical and less likely to cause immune reactions than

NPs. Abiraterone is a 17a−hydroxylase/C17, 20−lyase (CYP17)
inhibitor that has been used in patients with prostate cancer after

ADT, which was conjugated with NIR fluorescent dye IR780 for

prostate cancer imaging and therapy (132). Monomethyl

auristatin E (MMAE) was a chemotherapeutic drug widely
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used in antibody drug conjugates (ADCs) (144), which was

conjugated with IR700 and PSMA-1 for prostate cancer targeted

therapy combined with CT and PDT (96). A PS TPCI and PTX

were co-encapsulated in liposomes, which exhibited a superb

synergistic anticancer effect against prostate cancer. The in vivo

study showed TPCI/PTX@Lipo could effectively ablate 200 mm3

tumor and monitor early tumor response (133).
Combined PDT or PTT and
photoimmunotherapy (PIT)

PTT and PDT can induce immunogenic cell death (ICD) and

activate damage-related molecular mechanisms, thereby increasing

tumor immunogenicity. Therefore, many studies using ICDs

generated from PTT and PDT to enhance the efficacy of

immunotherapy have been reported. Monoclonal antibodies are

widely used as therapeutic drugs due to targeting specificity. A large

number of ADCs have been reported. And they have also been used

as carriers of PS to combined with PDT and immunotherapy (134).

To improve the specificity of PDT, PSs are conjugated to tumor-

specific monoclonal antibodies or single-chain antibody fragments

(scFvs), which enables the delivery of PSs to tumor tissues. This

method is called photoimmunotherapy (PIT) and was pioneered by

Levy et al. in 1983 (145). The first antibody-photosensitizer

conjugate (APC) of world is RM-1929, an antibody cetuximab

targeting epidermal growth factor receptor (EGFR)-conjugated PS

IR700, was approved for marketing in Japan in September 2020 for

the treatment of head and neck squamous cell carcinoma. Since

most traditional PSs are hydrophobic, many APCs lose specificity

and produce toxicity, which limits the development of APCs. The

water-soluble PS, silicon phthalocyanine dyes have attracted

attention (146). A fully human anti-PSMA mAb-IR700 conjugate

was reported (135). After APC was irradiated with NIR light,

prostate cancer cells rapidly necrosis, tumor growth was inhibited,

and survival rate was improved. Rira Watanabe et al. report the

photoimmune efficacy of antibody fragments, including anti-PSMA

secondary antibodies (Db) and mini antibodies (Mb), with intact

IgG conjugates with IR700. The results demonstrated that equally

effective PIT could be achieved with both full antibodies and

antibody fragments. However, Db-IR700 conjugate could

minimize the time interval between injection and NIR irradiation

(136). More multimodal therapies for prostate cancer have been

developed. The anti-PSMA mAb D2B labeled with 111In and

conjugated to the IR700 was used to radionuclide and NIR

fluorescence imaging for preoperative and intraoperative

detection of PSMA+ prostate cancer. Furthermore, the

photodynamic response of IR700 was activated to kill the tumor

(137). Tan et al. established a multifunctional nanoplatform, gold

nanostars (GNS) were coated with PEG, functionalized with CD133

antibody, loading IR820 and DTX for synergistic PTT/PDT/CT

treatment of CRPC (138). This multimodal approach integrating
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diagnosis and treatment may become the future development of

APC drugs.
Conclusions

PDT is a potential, minimally invasive treatment for

localized prostate cancer that selectively ablates the disease

with minimal effects on functional outcomes than RP,

particularly on the bladder, rectum, and neurovascular bundle.

Due to oncological safety, low toxicity and support by level 1

evidence from the only RCT within the focal therapy literature,

PDT holds significant promise as the focal therapy of choice

over other modalities for men with localized prostate cancer.

However, there are still a lot of uncertainties and shortcomings.

Although prostate cancer is multilocular, existing imaging

techniques are unable to detect microscopic lesions throughout

the gland. The efficacy of high-risk localized disease is not

sufficient with the existing PDT for prostate cancer because

they do not target the entire prostate gland. However, with the

development of early detection techniques such as liquid

biopsy, more prostate cancers are being detected at an early

stage. A broader target group will be served by minimally

invasive procedures like PDT. Additionally, there are few

treatment options available for CRPC and locally recurrent

prostate cancer. The potential to create new PDT platforms

with enhanced capabilities and more potent therapies for

patients with prostate cancer is enormous. To develop a

straightforward strategy that can serve as a reference for

clinical design by studying the optical characteristics of

different types of prostate cancer and the surrounding normal

tissue. Develop associated detection and monitoring equipment

to control the PDT dose in order to take repeated treatments into

consideration. Explore methods to detect the dose or response

amount of photodynamic action in the illuminated region
Frontiers in Oncology 18
during the treatment process. Novel PSs and supporting lasers

for prostate cancer treatment will continue to be created with

improved photodynamic activity, deeper killing, better

selectivity, and less skin adverse effects. To enable fluorescence

diagnosis, intraoperative imaging, and therapeutic integration,

multimodal PSs and photodiagnostic devices compatible with

various medical endoscope systems or interventional devices

may be developed.
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78. Zafon E, Echevarrıá I, Barrabés S, Manzano BR, Jalón FA, Rodrıǵuez AM,
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Glossary

17-AAG heat shock protein 90 inhibitor geldanamycin

ADT androgen deprivation therapy

ALA aminolaevulinic acid

APC mAb-photoabsorber conjugate

AuNPs gold nanoparticles

AG Sr2MgSi2O7:Eu2+, Dy3+ afterglow

AIBI (2,20-azobis[2-(2-imid- azolinI-2-yl) propane] dihydrochloride

ADC antibody drug conjugate

bPEI polyethylenimine

BChl Bacteriochlorophyll

c(RGDyK) a cyclic RGD peptide

CI-M6PR Cation-independent mannose 6-phosphate receptor

CT chemotherapy

CYP17 17a−hydroxylase/C17, 20−lyase

CT chemotherapy

DTX docetaxel

DiR 1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide

Db diabody

EBRT external beam radiation therapy

EMA European Medicines Agency

FDA U.S. Food and Drug Administration

FNP fluorescent nanoparticles

FA folic acid

FR folate receptor

HA Hyaluronic acid

HVJ-E Hemagglutinating virus of Japan envelope

HAS human serum albumin

HP Hematoporphyrin

HpD Hematoporphyrin derivative

ICD immunogenic cell death

IARC International Agency for Research on Cancer

ICG indocyanine green

LC-Pyro Long-circulating Pyropheophorbide

LED light emitting diode

MSNs Mesoporous silica nanoparticles

M6C Mannose 6-Carboxylate
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MMAE monomethyl auristatin E

M6C-Man dimannoside-carboxylate

mTHPC m-tetra-hydroxyphenyl chloride

Mlu Motexafin Lutetium

MDR multidrug resistance

Mb minibody

MRI Magnetic Resonance Imaging

NMDA National Medical Products Administration

NSCLC non-small cell lung cance

NPs Nanoparticles

NIR-PIT Near-infrared photoimmunotherapy

NE Nanoemulsions

NC Nanocapsules

Ptl Tetrasulfonated aluminum phthalocyanine

Ppa Pyropheophorbide-A

PSMA Prostate-specific membrane antigen

PARP polyADP-ribose polymerase

PSMA-1 PSMA ligand (Glu-CO-Glu′-Amc-Ahx-Glu-Glu-Glu-Lys-NH2)

PA Polyamine

PTT Photothermal therapy

PFP perfluoropentane

PTX Paclitaxel

PIT photoimmunotherapy

PTT photothermal therapy

PGL porphyrin grafted lipid

PTA Polyamine Transport Systems

PIT photoimmunotherapy

PDT Photodynamic Therapy

PS Photosensitizer

PSA prostate-specific antigen

PpIX protoporphyrin IX

ROS reactive oxygen species

RP radical prostatectomy

RGD arginine-glycine-aspartic acid

SGNS Silver gold nanoshell

TRUS transrectal ultrasound

UV ultraviolet

UCNP Upconversion nanoparticles

YPMS Y2.99Pr0.01Al5O12 afterglow

WHO World Health Organization
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