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Abstract

We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis
of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and
binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy
calculations. To test the effectiveness of MolGridCal, we screened potential ligands for b2 adrenergic receptor (b2AR) from a
database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also
can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of
b2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results.
To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are
used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and
inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free
energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and b2AR. The
results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to
perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and
free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com.
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Introduction

Grid computing can collect computer resources from different

locations to deal with data more effectively and rapidly [1]. This

advantage of grid computing has led to its wide and successful

applications in many different fields, such as Hadron Collider [2],

nuclear magnetic resonance (NMR) [3], image analysis [4] and so

on. Especially, grid computing was successfully used in huge

microbial sequence analysis [5–7] and biology medicine research

[8–12]. Grid computing also played an important role in

molecular simulations and computer aided drug discovery [13].

For example, the grid computing framework of folding@home

[14] was used to simulate protein folding process by using the idle

computer resources. Furthermore, the successful applications of

grid computing in molecular docking suggested that virtual

screening could also be integrated into grid computing environ-

ment [15] due to the fact that many molecular docking programs

[16–21], and small molecule databases [22–24] are available. The

screensaver project of grid computing could supply enough

computing resource to perform effective virtual screening [25].

The use of virtual screening [26–28] based on molecular docking

could improve the efficiency and save the cost of drug discovery.

There have been several successful cases that use grid computing

technology to perform virtual screening [29–35].

Molecular docking can only provide static interaction between

the ligand and protein. It cannot provide enough information

about the details of dynamic interaction process of protein and

ligand. Molecular dynamics (MD) simulations have been proved to

be very useful to explore the dynamical interaction between

protein and ligand. MD simulations have been successfully used to

study the interaction mechanism of the active and inactive states of

b2 adrenergic receptor (b2AR) in complex with different ligands

[36]. Based on MD simulations and anisotropic network model,

the ligands were considered as ‘‘computational probe’’ to

distinguish the different conformations of b2AR [37]. Free energy

calculations of agonist, antagonist and inverse agonist of b2AR

indicated that different ligands had significant difference of

binding affinity and free energy [38]. MD simulations also proved

that the crystal waters in the pocket of b2AR could form hydrogen

bonds network to stabilize the agonist-receptor interaction [39].
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The long unbiased MD simulations showed that there were two

energetic barriers when the ligands entered into the pocket of

b2AR [40]. At the same time, the dissociation pathway between

ligands and b2AR was identified in the two secondary binding

pockets in the extracellular part of b2AR [41]. MD simulations of

b2AR in complex with Gs protein, which showed the interaction

between the agonist BI-167107 and b2AR, supplied an activation

mechanism of b2AR [42]. b2AR in complex with the inverse

agonist, antagonist and agonist showed only the inverse agonist

could induce the motion of Gas and Gbc domain by changing the

conformation of b2AR [43].

In this work, we developed a new virtual screening program

called MolGridCal based on grid computing. Furthermore,

binding modes of possible ligands were further studied by

combining molecular docking, MD simulations and free energy

calculations. To test the use of the developed program and

strategy, b2AR was selected as the model target. b2AR is

distributed in the smooth muscle round the human body and

plays an important role on the asthma and Alzheimer’s disease

(AD) [44–46]. The ligands of b2AR could regulate the smooth

muscle relaxation, the vasodilation of muscle and liver, the dilation

of bronchial passages, the relaxation of uterine muscle, insulin

release and treat asthma and pulmonary disease [47–54]. In this

work, MolGridCal was used to screen the ligands of b2AR from

small molecule database. The screened ligands were refined by

more accurate docking and scoring methods. The dynamic

interaction mechanism between ligands and b2AR was further

investigated by MD simulations and free energy calculations. Our

strategy of virtual screening could not only extract the confirmed

ligands from the small-database successfully, but also provided a

more useful and accurate way to screen a large number of small

molecule database.

Materials and Methods

Protein and Ligand Preparation
To screen the ligands of b2AR, the active conformation of b2AR

was extracted from PDB database (PDB code: 3SN6 [55]). The Gs

protein and ligand were removed in molecular docking. Auto-

DockTools [18,56] was employed to add the Gasteiger charges

and polar hydrogen on b2AR. The grid box in the pocket of b2AR

was set to 30 Å630 Å630 Å around the position of ligand of

b2AR. Autodock VINA [16] was chosen to screen the ligands of

b2AR.

Here, 50,000 drug-like molecules with ionization states at pH 7

were selected from ZINC database [22,57]. These 50,000 drug

like molecules together with the agonist BI-167107 [55], neutral

antagonist alprenolol [58] and inverse agonist ICI 118,551 [58]

formed a small molecule database for virtual screening in grid

computing environment.

Grid Computing
To perform virtual screening in the grid computing environ-

ment, a program MolGridCal on basis of JPPF environment was

designed in this work. The source codes of MolGridCal were freely

available at http://molgridcal.codeplex.com. In the MolGridCal

environment, we could use two modes of load-balancing of JPPF

(http://www.jppf.org): one was ‘‘manual’’ mode which sent the

fixed number of tasks to the each node; the other was ‘‘autotuned’’

algorithm which used the adaptive heuristic algorithm of Monte

Carlo algorithm to transfer tasks to the calculation nodes. The

total running time of MolGridCal was calculated as equation 1:

t~
X

i

(AizBizCi) i~1,2,3::: ð1Þ

Ai was the time of initial program to download ligand files from

Figure 1. The flowchart of virtual screening based on grid
computing. MolGridCal can firstly submit the works into the server.
Then the server distributed works into different nodes. The finished
works would be gathered to find the candidate compounds.
doi:10.1371/journal.pone.0107837.g001

Figure 2. The implementation process about of MolGridCal.
doi:10.1371/journal.pone.0107837.g002
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the FTP server. Bi represented the time to run molecular docking.

Ci was the time of current tasks to end to upload the docking

results.

The parameters of MolGridCal can be set easily. Firstly, it

needs to know the IP address of FTP server, the small molecule

database and uploading directory on FTP server. Secondly, it

needs to specify which program of molecular docking will be

called. In order to save the memory of computers, we recommend

about 50,000 molecules per virtual screening in one folder. Of

course, if the computers have enough memory for the cache store,

the number of molecules for per virtual screening can be raised in

one folder. If more than ten million small molecules are needed for

virtual screening, we can use a program called VSBath in

MolGridCal software package. VSBath can read the folder name

to carry out the grid computing task one by one. The memory of

computers will be able to release in time. The final network in our

experiment contained 40 computers as computation nodes and 1

computer as the server node.

Refinement by Accurate Molecular Docking
The virtual screening was carried out based on the crystal

structure of b2AR using MolGridCal and Autodock VINA. In

order to obtain more reliable and accurate virtual screening

results, several other docking software including LibDock [59],

CDOCKER [60] and Flexible Docking modules of Discovery

Studio 2.5 (DS2.5) were employed. In Libdock, the ligands were

docked into the protein based on the polar and nonpolar hotspot

of the features of protein active sites. In this experiment, 100 grids

were generated in the region of radius of 8 Å around the agonist-

bound sites of b2AR. CHARMM force field [61] was employed for

energy minimization. CDOCKER was a semi-flexible docking

program on basis of molecular dynamics. High temperature

molecular dynamics simulation was used to search the flexible

conformation of ligands. Simulated annealing method was

employed to optimize the conformation on the active site of

receptor. The heating target temperature was set to 700 K, and

the heating steps were assigned to 2000. In DS Flexible Docking,

Figure 3. Total running time versus number of tasks. (A) Running time using autotuned algorithm. (B) Running time using manual algorithm.
The size represented the number of tasks.
doi:10.1371/journal.pone.0107837.g003
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the side chain clusters were generated using ChiFlex method. DS

Flexible Docking based on CDOCKER method was used in

simulated annealing and energy minimization. In the DS Flexible

Docking, the residues of radius of 4 Å around BI-167107 in the

b2AR were chosen as the flexible residues. The same parameters

with CDOCKER method was used in the energy minimization

and simulated annealing.

Molecular Dynamics Simulations
The crystal structure of b2AR was obtained from PDB database

(PDB code: 3SN6 [55]). The T4 lysozyme, nanobody (Nb35) and

BI-167107 were deleted from the crystal structure of b2AR. The

lack loop sequence (FHVQNLSQVEQDGRTGHGLRRSSKF)

of TM5 and TM6 was built by MODELLER program [62]. The

obtained loop region was further optimized by loop model

algorithm [62]. b2AR was then modeled in complex with the

agonist BI-167107, antagonist alprenolol and inverse agonist ICI

118,551, respectively. The explicit membrane around the trans-

membrane region was constructed using the 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) lipids. The sizes of mem-

brane were 120 Å6120 Å. The complex of b2AR and Gs (b2AR-

Gs) protein was immersed into TIP3P water [63] box along Z

direction. To get the neutral system, seven sodium ions were

added into the water box. The entire system, whose dimension was

120 Å6120 Å6150 Å, contained the lipids, water, ions, ligands,

a-helix domain, Gas, Gbc and b2AR. The atomic number of final

system was about 200,010 per periodic cell. The CHARMM force

field parameters of BI-167107, alprenolol and ICI 118,551 were

modeled using VMD Paratool Plugin v1.2 [64,65] and Gaussian

98 Revision A.9 [66]. The geometry optimization and single point

calculation were both performed at the theory of RHF/6–31G*

level and tight SCF convergence criteria.

MD simulations were performed on the b2AR in complex with

different ligands. The lipid tail was minimized for 100 ps and

equilibrated for 1000 ps at the constant temperature of 300 K and

constant pressure of 1 bar firstly. By constraining the protein and

ligand, the studied systems were further minimized for 100 ps

based on the conjugate gradient method and equilibrated for

Figure 4. The GUI of MolGridCal and the binding pocket of b2AR. (A) The displayed information of GUI for monitoring MolGridCal. (B) The top
three compounds, agonist, antagonist, inverse agonist bound to the pockets of b2AR. Different ligands were represented by different colors.
TOP1,2,3, agonist BI-167107, antagonist alprenolol and inverse agonist ICI 118,551 were colored in blue, red, gray, orange, yellow and green,
respectively.
doi:10.1371/journal.pone.0107837.g004

Table 1. The docking scores of different ligands using Autodock VINA, LibDock, CDOCKER and Flexible Docking.

AutoDock VINA (kcal/mol) LibDock Score CDOCKER (kcal/mol) Flexible Docking (kcal/mol)

BI-167107 210.6 155.846 250.842 251.008

Alprenolol 27.2 111.429 234.728 238.276

ICI 118,551 28.3 110.088 221.709 228.418

Top 1 212.0 129.346 217.769 223.556

Top 2 211.8 125.073 210.599 214.274

Top 3 211.6 128.991 29.783 214.167

doi:10.1371/journal.pone.0107837.t001
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1000 ps. Then the whole systems were equilibrated freely for 5 ns.

At last, 10 ns MD simulations were run. All MD simulations were

performed using NAMD (version 2.9b3) [67] with CHARMM 27

force field [61] in the periodically infinite lipid and explicit solvent.

The particle-mesh Ewald (PME) [68] method was used to

calculate the electrostatics with a 12 Å nonbonded cutoff. The

constant temperature of 300 K and pressure of 1 bar employed the

langevin thermostat and langevin barostat [69] method, respec-

tively. Time step was set to 2 fs. The trajectory frames were save

every 1 ps for analysis. All MD simulations were carried out on 12

cores of an array of two 2.66-GHz Intel Xeon 5650 processors and

4 pieces of NVDIA Tesla C 2050 GPU computing processors. To

study the antagonist and inverse agonist in their native crystal

receptor, we built two MD simulation systems based on the crystal

structures of b2AR in complex with antagonist alprenolol (PDB

ID: 3NY8) and inverse agonist ICI 118,551 (PDB ID: 3NYA). The

size of POPC membrane was set to 80 Å680 Å. The final

dimension of system boxes were 80 Å680 Å6100 Å. MD

simulations on these two complexes were ran using the same

parameters with above agonist-bound b2AR.

Free Energy Calculations
Adaptive biasing force (ABF) method [70–72] can provide

details about the free energy of dissociation between the ligand and

protein using the biasing force which could offset the local barriers

effectively. Here, the reaction coordinate (RC) was projected onto

the Z direction. The free energy DG along the Z axis was defined

as equation 2:

DGa?b~{

ðjb

ja

Fjdj ð2Þ

Fj represented the biasing force. The center of A119, F208, T283

and N318 was selected as the reference point. Because the length

of Z direction between the ligand and water box was about 25 Å,

the ligand had enough space to get out of the pocket of b2AR with

respect to reference point. Two no-overlapping widows were

divided for free energy calculation. 10 ns ABF simulations were

performed on each window. The bin width of ABF simulation was

0.2 Å. The boundary potentials were set to a force constant of

50 kcal/mol/Å2. The biasing force carried out every 500 samples

in a bin. All the ABF simulations were realized by NAMD (version

2.9b3) [67].

Results and Discussion

The Algorithm of MolGridCal
The MolGridCal program was designed by using grid

computing based on the framework of JPPF. MolGridCal could

package small molecule database, IP address of FTP server,

docking program and corresponding folder automatically (Fig-

ure 1). The server node would distribute these tasks to idle

connected nodes. The nodes could adopt the flexible options for

virtual screening. The number of used cores of computers could be

set in the configure file of Autodock VINA. If there was any action

of mouse and keyboard, the tasks of MolGridCal would be

terminated until the action stopped. At the same time, the

terminated work was sent to the idle computers. MolGridCal

would send all the docking results to the FTP server automatically.

The collected results could be ranked according to the docked

binding affinity.

The flowchart of MolGridCal was shown in Figure 2. Firstly,

the docking program should be chosen for grid computing. At the

same time, the messages of IP address, username, password,

download and upload directory were bundled as a package.

MolGridCal would guide the nodes to connect the FTP severer

using the bundle of verified message and to download the ligands

into the local machine automatically. To make sure the

transferring security of the message, Secure Socket Layer (SSL)

was employed. All the process of connection, upload and

download need certificate validation. To guarantee the authority

of submission in the grid computing network, MolGirdCal used

the unique certificate to connect the server. Only the corrected

request certificate could exchange the message. The symmetric

algorithm was used for server, nodes and MolGridCal. When the

message was closed, the SSL finished the ‘‘handshake’’ between

the server and clients (Figure S1). The SSL could make sure the

exchange message to be secure and reliable. Once the tasks were

sent to the nodes, the nodes would create threads to perform

molecular docking. To save the memory of computer, the thread

was ended instantly once the molecular docking task was finished.

The final docking results would be uploaded to the FTP server

automatically. MolGridCal would execute the grid computing

until all tasks were finished (see Figure 2).

Virtual Screening Based on MolGridCal
Many factors might affect the efficiency of grid computing. The

network delay, time of re-allocated tasks and configure of

computers were the main factors to postpone the tasks of

MolGridCal. The manual and autotuned modes provided by

JPPF, were used for tasks allocation. These two modes could send

Figure 5. Analysis of conformation of different ligands.
Delineating conformational differences between (A) TOP1-TOP3, (B)
TOP1-TOP2, (C) TOP2-TOP3, (D) TOP1-BI-167107 in the pocket of b2AR.
The black oval showed the key atoms for the binding pocket of b2AR.
doi:10.1371/journal.pone.0107837.g005
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the defined number of docking tasks to the nodes by modifying the

size parameter of server. If manual algorithm was applied, the

tasks would be sent to nodes batch by batch regularly. If the

autotuned mode was chosen for MolGridCal, the tasks would pick

the suitable way to send the tasks to the nodes using the adaptive

heuristic algorithm of Monte Carlo method.

As shown in equation 1, the differences of total running time

were mainly determined by the download, upload and molecular

docking time. If the network was slow, the bottleneck of time was

due to the process of download and upload. In contrast, if the

computers of nodes ran slowly, a bulk of tasks would be postponed

on these computers. On basis of these factors, a grid computing

network composed by 40 computers as computation nodes and 1

computer as server was used in virtual screening. The number of

test tasks was set 1, 3, 5, 10, 20, 30, 40 and 50 to test the speed of

this grid computing network, respectively (Figure 3). Figure 3A

and 3B illustrated the total time with respect to the numbers of

tasks which were sent to the nodes using the manual and

autotuned modes, respectively. In the autotuned mode, the total

running time would keep stable with the increased task size. The

tasks were distributed into the nodes using adaptive heuristic

algorithm randomly, so the entire running time had no large

fluctuation. For the manual mode, it had the same situation. The

final running time was mainly determined by the computer speed

in the nodes. The whole virtual screening time for the 50,000

molecules was about 22 hours in the above grid computing

environment (Figure 3). JPPF also can supply Graphical User

Interface (GUI) to operate the computation nodes (Figure 4A).

The GUI can not only give the information about the tasks states

of MolGridCal, but also can restart, suspend and terminate the

tasks easily.

Refinement of Results from Virtual Screening
The virtual screening results from MolGridCal and Autodock

VINA were collected from FTP server, and ranked according to

the docking score. The agonist BI-167107 fell into top 2% of

virtual screening results, while the antagonist alprenolol and

inverse agonist ICI 118,551 were ranked out of top 42% and 33%

of virtual screening results. To further refine the screened results,

LibDock and CDOCKER were chosen to perform accurate

molecular docking. The above agonist, antagonist and inverse

agonist as well as molecules of TOP1 (ZINC ID: 00155747),

TOP2 (ZINC ID: 00298339) and TOP3 (ZINC ID: 00155744)

ranked in the top 3 from the small molecule database were chosen

for further analysis (Table 1). The structures of TOP1-3 were

shown in Figure S2. LibDock score gave different ranking from

AutoDock Vina. The agonist BI-167107 gave the highest docking

score and was ranked in top 1.The ranking order of TOP2, TOP3

and alprenolol was changed. When CDOCKER was employed,

the ranking results changed again. The agonist BI-167107,

antagonist alprenolol and inverse agonist ICI 118,551 were

Figure 6. RMSD and interactions between ligands and residues of b2AR. (A) RMSD of the backbone atoms of b2AR in complex with BI-
167107, alprenolol and ICI 118,551 during MD simulations. (B–D) The hydrogen bonds interaction between the residues of b2AR and three ligands: BI-
167107, alprenolol, ICI 118,551, respectively.
doi:10.1371/journal.pone.0107837.g006
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ranked in top 3, while the TOP1, TOP2 and TOP3 (TOP1,2,3)

were ranked behind the inverse agonist ICI 118,551. It indicated

that the CDOCKER could find the potential ligands (agonist,

antagonist and inverse agonist). The results of DS Flexible

Docking had the same order of docking results with CDOCKER.

It showed that the agonist BI-167107 was ranked as the best one.

According to the experiment results in the references [73–75], the

pKi(s) of ICI 118,551 and alprenolol were 9.2 and 9.0,

respectively. The agonist had higher binding affinity than inverse

agonist in the pocket of b2AR [76,77].

Figure 4B illustrated the binding mode of agonist, antagonist

and inverse agonist in b2AR. All the ligands were surrounded by

D113, S203, S207, N293, Y308 and N312 in the binding pocket of

b2AR. To further study the binding mode of different ligands, the

top three small molecules and agonist BI-167107 were chosen (see

Figure 5). Molecule TOP1 had the similar structure with the

TOP3. Molecules TOP1 and TOP3 could overlap each other well

in the binding pocket of b2AR. Molecule TOP1 had a higher

binding affinity than TOP3. The difference was that TOP1 had a

quinoxaline group. At the same position, TOP3 contained a

benzothiadiazole group (black oval of Figure 5A). By comparing

the structures of TOP1 and TOP2, it could be seen that there was

a phenyl group in TOP2 at the position of quinoxaline group of

TOP1 (Figure 5B). In Figure 5C, it could be seen obviously that

the benzothiadiazole group of TOP3 superimposed with the

phenyl group of TOP2. According to the binding mode, it could

be inferred that the quinoxaline group had more favorable binding

with b2AR. By comparing TOP1 and BI-167107 (Figure 5D), it

could be seen that the benzoxazine group of BI-167107 had

different position with the quinoxaline group of TOP1. The

position of benzoxazine group of BI-16710 could form hydrogen

bonds with ASN293 (Figure 6B). The pharmacophore model of

b2AR agonists was also built by Schrödinger Suite 2009 software

(Table S1 and Figure S3). It also showed that the benzoxazine

group of BI-167107 had the common hydrogen bond donor with

other agonists.

Molecular Dynamics Simulations and Free Energy
Calculations

Although molecular docking could provide information about

the interaction of ligand with the key residues in the active site of

Figure 7. Free energy of ligands and hydrogen bonds percentage. (A–C) Free energy profiles were delineated when the BI-167107,
alprenolol and ICI 118,551 got out of the pocket of b2AR along the Z axis direction, respectively. (D) The hydrogen bonds percentages of BI-167107,
alprenolol and ICI 118,551.
doi:10.1371/journal.pone.0107837.g007
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the protein, it could not give the fully dynamical interaction

between the ligand and target. Molecular dynamics (MD)

simulations could provide more information about the dynamical

interaction between the active sites of protein and ligands along

the simulation time. Besides, free energy calculation could give

more accurate evaluation of the binding ability of ligands based on

the MD simulations. MD simulations combined with binding free

energy calculation were used to refine the results of virtual

screening and to give more deeply understanding of interaction

mechanism between the obtained candidate ligands and protein.

ABF method was used to calculate the binding free energy of the

ligands to b2AR. The agonist BI-167107, antagonist alprenolol

and inverse agonist ICI 118,551 were chosen for the further MD

simulations and free energy calculations. b2AR in complex with

agonist, antagonist and inverse agonist reached equilibrium over

10 ns MD simulations (see Figure 6A). To make sure whether the

membrane keeps stable, MEMBPLUGIN [78] was employed to

measure membrane thickness during MD simulations. The results

showed the membrane also reached equilibrium phase over 10 ns

MD simulations (see Figure S7). MD simulation results showed

that water molecules could form dynamical hydrogen bond

networks to interact with the residues of b2AR (see Figure S4).

This hydrogen bond network played an important role to stabilize

conformation of b2AR during the MD simulations [79–81].

Figure 6B showed the formed hydrogen bonds between the

agonist BI-167107 and residues Asp113, Ser203, Ser207, Asn293

and Asn312 of b2AR. Figure 6C illustrated Asp113, Tyr308 and

Asn312 formed three hydrogen bonds with antagonist alprenolol.

Figure 6D showed only Asp113 and Asn312 formed hydrogen

bonds with inverse agonist ICI 118,551. To investigate the

interaction between the residues of b2AR and different ligands, the

number of hydrogen bonds of different ligands and b2AR were

monitored during MD simulations [82,83]. In addition, to validate

the binding modes of the antagonist alprenolol and inverse agonist

ICI 118,551 in their native crystal structures of b2AR, MD

simulations were performed on two built inactive states of b2AR,

respectively. As shown in Figure S5, two systems reached

equilibrium phase over 10 ns MD simulations. Figure S6 showed

that the inverse agonist ICI 118,551 mainly formed the hydrogen

bonds with Asp113 and Asn312 except Tyr308, while the

antagonist alprenolol had high hydrogen bonds occupancy with

Asp113 and Asn312.

By stretching the ligands out of the binding pocket, ABF

simulations could give information about the interaction energy

change during this process (Figure 7). Figure 7A and Movie S1

was the free energy corresponding to dynamically stretching

process of the agonist BI-167107. The agonist BI-167107 needed

to overcome about 105 kcal/mol energy barriers to get out of

b2AR. Figure 7B and Movie S2 showed the free energy along Z

axis and the animation about the interaction between alprenolol

and b2AR. The antagonist alprenolol needed to overcome about

65 kcal/mol energy barriers to get out of the pocket of b2AR.

Figure 7C and Movie S3 illustrated the free energy and stretching

process of the inverse agonist ICI 118,551. ICI 118,551 needed to

overcome about 49 kcal/mol energy along Z axis. The difference

of free energy along Z axis direction further proved the agonist

had the strongest binding affinity to b2AR. Furthermore, the

binding mode analysis based on the complexes obtained from MD

simulations showed the hydrogen bonds interaction might

contribute to the different binding ability of three ligands.

Figure 7D illustrated the hydrogen bonds percentage of different

ligands. The result further indicated that the BI-167107 could bind

to the pocket of b2AR better than other ligands since the BI-

167107 could form more hydrogen bonds along dissociation

pathway of ligands. MD simulations and free energy calculations

could provide more information about the dynamical interaction

between ligands and protein.

Conclusions

In this work, we designed MolGridCal program for virtual

screening of ligands of b2AR using grid computing by combination

use of molecular docking, MD simulations and free energy

calculations. MolGridCal could send a serial of works into the

nodes for computing automatically. The nodes could implement

grid computing easily by using idle computer resource. The virtual

screening strategy was further tested by using b2AR as a model

target and 50,000 ligands as small molecule database. The results

indicated that our virtual screening strategy could successfully find

the agonist BI-167107 from the small molecule database. To

further detail the interaction difference between the ligands and

b2AR, MD simulations and free energy calculations were

performed on the b2AR in complex with BI-167107, alprenolol

and ICI 118,551. The MD simulations and free energy indicated

the agonist BI-167107 had the highest free energy along reaction

coordinate. This virtual screening strategy could also be applied to

screen drug for other targets.
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Figure S1 The principle of message exchange by SSL.
(TIF)

Figure S2 The molecular structures of TOP1 (ZINC ID:
00155747), TOP2 (ZINC ID: 00298339) and TOP3 (ZINC
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(TIF)

Figure S3 The pharmacophore model of agonists of
b2AR. The pharmacophore model was generated by the agonists
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(TIF)

Figure S4 The hydrogen bonds networks of water
molecules in the pocket of b2AR-bound to BI-167107,
alprenolol and ICI 118,551. The orange color part represent-

ed the residues of b2AR. The blue and red lines were the hydrogen

bonds.
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Figure S5 RMSD of the backbone atoms of b2AR in
complex with alprenolol and ICI 118,551 versus simula-
tion time.
(TIF)

Figure S6 The hydrogen bonds occupancy between b2AR
and ICI 118,551, alprenolol.
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Figure S7 The membrane thickness versus simulation
time.
(TIF)

Table S1 The structures of b2AR agonists.
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