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Abstract 19 

Aspergillus fungi are key producers of pharmaceuticals, enzymes, and food products and exhibit 20 

diverse lifestyles, ranging from saprophytes to opportunistic pathogens. To improve 21 

understanding of Aspergillus species diversity, identify key environmental factors influencing 22 

their geographic distributions, and estimate the impact of future climate change, we trained a 23 

random forest machine learning classifier on 30,542 terrestrial occurrence records for 176 24 

species (~40% of known species in the genus) and 96 environmental variables. We found that 25 

regions with high species diversity are concentrated in temperate forests, which suggests that 26 

areas with mild seasonal variation may serve as diversity hotspots. Species range estimates 27 

revealed extensive variability, both within and across taxonomic sections; while some species are 28 

cosmopolitan, others have more restricted ranges. Furthermore, range overlap between species is 29 

generally low. The top predictors of mean species richness were the index of cumulative human 30 

impact and five bioclimatic factors, such as temperature and temperate vs non-temperate 31 

ecoregions. Our future climate analyses revealed considerable variation in species range 32 

estimates in response to changing climates; some species ranges are predicted to expand (e.g., 33 

the food spoilage and mycotoxin-producing Aspergillus versicolor), and others are predicted to 34 

contract or remain stable. Notably, the predicted range of the major pathogen Aspergillus 35 

fumigatus was predicted to decrease in response to climate change, whereas the range of the 36 

major pathogen Aspergillus flavus was predicted to increase and gradually decrease. Our 37 

findings reveal how both natural and human factors influence Aspergillus species ranges and 38 

highlight their ecological diversity, including the diversity of their responses to changing 39 

climates, which is of relevance to pathogen and mycotoxin risk assessment. 40 

  41 
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Introduction 42 

The genus Aspergillus is a highly diverse clade of filamentous fungi comprising around 43 

450 described species distributed across 28 taxonomic sections (1,2). Aspergillus have been 44 

typically regarded as cosmopolitan since they have been isolated from various habitats across the 45 

globe—including soil, air, aquatic environments, Arctic regions, and living organisms (3). 46 

Aspergillus species have established their importance, particularly in the pharmaceutical, food 47 

science, agricultural, and cosmetic industries, thereby playing critical roles in human society (4). 48 

Examples of these bioeconomically important species include the industrial workhorse 49 

Aspergillus terreus, which produces the cholesterol-lowering pharmaceutical lovastatin (5), 50 

Aspergillus niger, a well-established cell factory for enzyme production (6), and Aspergillus 51 

oryzae, which is widely used in food manufacturing for fermented food products (7).  52 

 53 

Aspergillus species occupy a wide array of ecological niches and exhibit diverse 54 

lifestyles. They can exist as saprophytes thriving on dead or decaying organic matter, 55 

endophytes, plant pests, and pathogens of humans and animals (8,9). Multiple species have been 56 

implicated in disorders in plants and plant products, but Aspergillus niger and Aspergillus flavus 57 

are the most common species identified in contaminated and spoiled agricultural products like 58 

fruits, vegetables, and nuts (10). Species in the genus also produce mycotoxins with adverse 59 

effects on health, like aflatoxins and ochratoxin A, both of which are known carcinogens (11,12). 60 

Some Aspergillus species are opportunistic pathogens that cause a range of diseases collectively 61 

known as aspergillosis (13). These infections can manifest in numerous locations, such as the 62 

lungs, skin, brain, and eyes (13,14), and affect over a million individuals globally each year. 63 

Invasive aspergillosis, one of the most severe forms of aspergillosis, results in very high 64 
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mortality (14,15) and is primarily caused by the major pathogens Aspergillus fumigatus (15) and 65 

A. flavus, as well as approximately a dozen other minor pathogens (16). Aspergillus infections 66 

can also afflict a wide variety of animals, including mammals, birds, honey bees, fish, reptiles, 67 

and sea fan corals (17).  68 

 69 

The diversity of lifestyles and ability of Aspergillus species to thrive in a range of 70 

environments suggests that species in the genus are ecologically highly diverse (18). A few 71 

reviews have summarized the isolation environments of Aspergillus species (4,9), but they focus 72 

on specific locations or regions with few species. In addition, global studies of fungal 73 

distributions have revealed climate-driven patterns, such as temperature and precipitation 74 

(19,20). However, these studies collapse the diversity and variation seen at lower taxonomic 75 

levels, such as genus-specific patterns in distributions and drivers of their distributions. Overall, 76 

species from the genus have seemingly been isolated across the globe in relatively stable to more 77 

extreme environments. Still, the general global patterns of the distributions of species genus-78 

wide are largely unknown. 79 

 80 

 In recent years, numerous databases have been established to enhance fungal community 81 

sampling, such as the Global Biodiversity Information Facility (21) and the GlobalFungi 82 

database (22). Since comprehensive global sampling efforts are still in their infancy, one can 83 

utilize predictive algorithms to estimate species distributions. Traditionally, these algorithms 84 

have included generalized linear models and habitat suitability analyses, which use climate-85 

related data—such as temperature and precipitation— and geographic features to predict 86 

distributions. These types of analyses have been primarily applied to estimate the distributions of 87 
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species under changing climatic conditions. It is thought that climate change, particularly rising 88 

temperatures, could facilitate the expansion of fungal species ranges and ease the colonization of 89 

host organisms, thereby increasing the prevalence of emerging fungal pathogens (23–26). This 90 

topic has stimulated research into the distributions of various genera and species that impact 91 

human health or agriculture, including Cryptococcus, Fusarium, and Coccidioides (27–29).  92 

  93 

In this study, we sought to examine the geographical distribution and diversity of species 94 

in the biomedically and biotechnologically important fungal genus Aspergillus. Specifically, we 95 

trained a random forest classifier (30) on 30,542 terrestrial occurrence records for 176 species 96 

(~40% of known species in the genus) and 96 environmental variables to investigate the 97 

geographic distributions and ecological patterns of the genus Aspergillus. Additionally, we 98 

combined this framework with future climate models to predict the distributions of Aspergillus 99 

species under three climate change scenarios to explore differences between species distributions 100 

in response to changing climates. Our findings identify the diverse environmental factors that 101 

influence Aspergillus geographic ranges, such as natural and anthropogenic factors, and 102 

underscore the importance of continued monitoring of Aspergillus species to further both the 103 

understanding of the unique environmental dynamics impacting their ranges and to anticipate 104 

responses to the currently changing climates.  105 

  106 
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Results and Discussion 107 

Areas of the highest species richness are centered in warm, humid, and temperate forests 108 

 To examine the distributions of geographic sampling of species obtained from the 109 

GlobalFungi database (22) across the genus, we mapped the sampling on a phylogeny of 110 

Aspergillus. The sampling spanned 27 of the 28 taxonomic sections (Figure S1), which enabled 111 

us to analyze global patterns of species diversity across the genus. Our data were from 17 112 

different isolation sources, with soil being the largest source (soil: 61,724; topsoil: 23,748; 113 

rhizosphere soil: 6,029). To investigate the underlying patterns in species distributions, we used a 114 

random forest classifier to predict global species distributions for 236 Aspergillus species. We 115 

predicted distributions for species with > 4 occurrence records and excluded species with True 116 

Positive and True Negative rates < 75%, which yielded 176 species for further analyses (Figure 117 

S2 and Table S2).  118 

 119 

To identify areas with potentially high species diversity, we generated a species richness 120 

map (Figure 1A). We did not detect any latitudinal or longitudinal richness gradients across 121 

Aspergillus (Figure S3), consistent with data from other fungal lineages and with the raw data 122 

from GlobalFungi (Figure S4) (30–32). Areas of high richness include southeastern Europe, 123 

southeastern Asia, and portions of southwestern Africa, which are known for high biodiversity 124 

and more stable temperatures. Additionally, areas of moderate richness include portions of the 125 

United States, Europe, Central and South America, and Australia, which may have larger 126 

seasonal variations contributing to the reduced species richness. We compared the predicted 127 

hotspots of species richness to the sampling hotspots in the raw data and found that eastern Asia 128 

had a high sampling density and a high species richness. To address potential biases in sampling, 129 
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we compared the relationship between sampling effort from the empirical observations in the 130 

training data with observed species richness and predicted species richness. We found the 131 

relationship between predicted richness and sampling effort (p = 8.24e-12, m = 0.24, r2 = 0.08) 132 

was much weaker than the observations in the training data (p = 9.13e-211, m = 0.84, r2 = 0.8) 133 

(Figure S5). Furthermore, there were several areas predicted to have moderate to high species 134 

richness from relatively low sampling, like portions of western Australia and South America.   135 

 136 

Species were distributed across 15 diverse biomes, with the highest average species 137 

richness (ASR) found in the Mediterranean Forests, Woodlands, and Scrub biome, which is 138 

characterized by its hot, dry summers and cool, moist winters and includes California, the 139 

Chilean Matorral, southern Africa, southwest and southern Australia, and the Mediterranean 140 

Basin (Figure 1B). Although this biome has the highest ASR, other biomes were also species-141 

rich. For example, there were five other biomes that had an ASR of 30 species, illustrating the 142 

breadth of environments that Aspergillus species can occupy. We also analyzed the ASR across 143 

Köppen-Geiger climate classifications, which divide climates into major groups and subgroups 144 

according to seasonal precipitation and temperature (Figure 1C). We found that species richness 145 

is highest in temperate areas with dry seasons and temperate areas without dry seasons, 146 

specifically in the Temperate regions with Dry Winters and Warm Summers (Figure S6). 147 

 148 

To identify specific environmental components associated with higher species richness, 149 

we analyzed ecofloristic zones (based on climate and vegetation type), soil classes, plant classes, 150 

and geomorphic classes (Figure S7). We found that the ecofloristic zones subtropical dry (ASR: 151 

78) and humid (ASR: 77) forests, the soil class alisols (ASR: 77), the plant classes urban/built-up 152 
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areas (ASR: 52) and deciduous broadleaf trees (average species richness: 38), and lastly the 153 

geomorphic class depression (ASR: 37) displayed the highest averages of species richness 154 

(Figure S7). The ecofloristic zone and soil class data further support the association of 155 

Aspergillus species richness with consistently warm, humid climate types (alisols are acidic and 156 

poorly drained soils typically found in humid tropical, humid subtropical, and humid temperate 157 

regions). Interestingly, our finding that the highest average richness in plant classes was found in 158 

urban/built-up areas reveals an association of Aspergillus with human-made environments. In 159 

summary, these results suggest that areas of higher Aspergillus species richness exhibit 160 

consistently warmer and more humid climates with little seasonal variation, have topographical 161 

variation, and contain human-made developments. 162 

 163 

Extensive variation in species ranges and overlap 164 

To examine the size of species' ranges and their overlap, we analyzed the percentage of 165 

grid cells or pixels of the raster image occupied by each species as a proxy for the extent of their 166 

geographic range. We found extensive variation in Aspergillus species ranges, with an average of 167 

2.3% of global grid cells occupied per species (n = 176 species). Aspergillus sigurros (section 168 

Usti) and Aspergillus flocculosus (section Circumdati) had the largest predicted ranges of 4.83% 169 

and 4.51%, respectively, while Aspergillus lucknowensis (section Usti), Aspergillus ambiguus 170 

(section Flavipedes), and Aspergillus unilateralis (section Fumigati) had the noticeably smallest 171 

predicted ranges of 0.14%, 0.40%, and 0.52%, respectively (Figure S8 and Table S4). The 172 

ranges of A. lucknowensis and A. ambiguus are primarily restricted to the Mediterranean Forests, 173 

Woodlands, and Scrub biome. These results suggest that while some species have larger ranges 174 

and are cosmopolitan, others are more restricted and occupy specific environments. 175 
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 176 

To test whether the frequency of a species in the training data was associated with the 177 

size of their predicted ranges, we performed an ordinary least squares regression. We found a 178 

very weak, statistically significant negative relationship (p = 0.014, effect size = -0.0006, r² = 179 

0.034) (Figure S9A and Table S5). Thus, while species with fewer occurrence records in the 180 

training data might have slightly larger predicted ranges, their overall impact on species range 181 

predictions is small compared to specific ecological and environmental factors.  182 

 183 

To test whether species ranges differed by taxonomic section, we plotted the percentage 184 

of grid cells occupied for 163 / 176 species from 25 sections (with available nucleotide 185 

sequences for the three taxonomic maker genes β-tubulin, calmodulin, and RNA polymerase β) 186 

on the Aspergillus phylogeny. We found the ranges were highly variable across sections, with no 187 

section displaying consistently higher or lower ranges (Figure 2). The highest average 188 

percentage of grid cells occupied by a section with more than one species was section 189 

Circumdati (n = 12 species), with an average of 2.72% grid cells occupied. Section Aenei had the 190 

lowest average (1.81% grid cells occupied; n = 7 species). Examination of species richness maps 191 

by section showed that many sections have similar distributions as the entire genus (Figure S10). 192 

However, the distributions of a few sections differ from the rest. For example, species in section 193 

Sparsi (n = 7) are restricted to most of Central and South America, southeastern Asia, and central 194 

Africa, whereas species in section Restricti (n = 13 species) are mainly predicted to be absent 195 

from Africa.  196 

 197 
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Previous studies in yeast have shown that species ranges are negatively correlated with 198 

species richness and absolute latitude (30). To test whether these patterns also held true in 199 

Aspergillus, we analyzed the relationship between range size and absolute latitude and species 200 

richness using phylogenetic generalized least squares analyses. Species range was statistically 201 

significantly negatively correlated with absolute latitude (p = 0.00002, effect size = -0.0244, r2 = 202 

0.106, n = 163) (Figure S9B and Table S5). Species range was non-statistically significantly 203 

negatively correlated with average species richness per each species range (p = 0.169, effect size 204 

= -0.008, r2 = 0.012, n = 163) (Figure S9C and Table S5). Lastly, we did not find that 205 

phylogenetic distance and geographic distance were correlated (Mantel test based on Pearson 206 

Product-Moment, p = 0.35; Mantel test statistic = 0.0107; n = 163 species) (Figure S11 and 207 

Table S5). 208 

 209 

Few species have large proportions of overlap in ranges 210 

 As many of the species in this analysis occupy similar regions, we sought to quantify the 211 

amount of geographic overlap between species by calculating the pairwise Jaccard Index of 212 

similarity (Figure S12 and Table S6). Jaccard Index values closer to one indicate identical 213 

ranges, where values of zero indicate no overlap. The species pair with the largest amount of 214 

overlap was Aspergillus puniceus (section Usti) and Aspergillus neoniveus (section Flavipedes) 215 

with a Jaccard index of 0.79, indicating a substantial portion of their ranges overlap (Figure 3A). 216 

In contrast, Aspergillus leporis (section Flavi) did not overlap with Aspergillus puniceus (section 217 

Usti) or Aspergillus pulvinus (section Cremei) (Figure 3B). Across all 176 species, most of them 218 

display low amounts of overlap in ranges indicated by an average global species richness of ~29 219 

species / per grid cell, but the extent of the overlap is variable. Most species pairs had Jaccard 220 
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Indices between 0.1 and 0.3, and very few were greater than 0.7 (Figure 3C). These results 221 

suggest that while many species do overlap in some areas, the overlap in ranges between species 222 

pairs is relatively small, resulting in low average global species richness. The low amount of 223 

overlap could be attributed to competitive exclusion, niche differentiation, or environmental 224 

partitioning, with similar species sharing similar ecological niches and competing for limited 225 

resources and environmental conditions, which could result in reduced co-occupation of 226 

environments. Additionally, there could also be differences in microhabitats, with variations in 227 

soil types, climate, or vegetation types, which enable the formation of distinct ecological niches 228 

that may allow for species to occupy similar regions without necessarily overlapping in ranges. 229 

 230 

Diverse environmental drivers of Aspergillus distributions  231 

To better understand environmental factors that influence Aspergillus macroecology, we 232 

used SHapley Additive exPlanations (SHAP) values, which provide a quantitative measure of the 233 

contribution of each feature to the random forest classifier’s prediction for individual species. 234 

Across all 176 species, the most informative variables were Köppen-Geiger Climate 235 

classifications, ecofloristic zones, index of cumulative human impact, soil class, and biome 236 

(Figure S2 and Table S3). Four of the top five predictors (Köppen-Geiger Climate 237 

classifications, ecofloristic zones, soil class, and biome) are categorical and reflect diverse 238 

environmental conditions. This suggests that variations in climate zones, vegetation types, and 239 

soil characteristics are key in determining species ranges. The index of cumulative human impact 240 

in the top predictors highlights the importance of anthropogenic factors. This index, which 241 

aggregates various human activities such as land use, population density, and overall human 242 

infrastructure, reveals that Aspergillus species may thrive or decline in response to human 243 
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influence on their habitats. This suggests that Aspergillus species distributions are also driven by 244 

human activities that alter ecosystems or create more available niches. Considered in 245 

combination, these five variables suggest that Aspergillus species distributions are shaped by 246 

both natural environmental gradients and human-induced changes.  247 

 248 

To further explore which variables were the most predictive of average species richness 249 

per ecoregion, we conducted negative binomial regressions, scaled linear regressions, and a 250 

relative importance analysis on 95 variables (88 quantitative variables and 7 binary variables). 251 

To reduce correlations between significant variables, we decomposed highly correlated variables 252 

into principal components, which yielded 47 variables or principal components (Figure S13 and 253 

Table S9). We found Index of Cumulative Human Impact, Temperate vs. Non-Temperate 254 

ecoregions, Productivity PCA, and Temperature PCA were the most predictive variables 255 

(relative importance value of 1), followed by Clay PCA and Forest vs. Non-Forest ecoregions 256 

(both with a relative importance of 0.99) (Figure 4 and Table S11). Consistent with the random 257 

forest results, we found that both environmental characteristics and human activities influence 258 

the distribution of Aspergillus species (Figure 4).  259 

 260 

Latitudinal biodiversity gradients where species richness is typically higher in the tropics 261 

have been found across mammals, plants, invertebrates, and other microbes (33–37). Contrary to 262 

these analyses, we found that Aspergillus average species richness was higher in temperate 263 

ecoregions than in tropical ones (Figure 4A and Figure S14). This result aligns with findings 264 

from other fungal biodiversity studies (19,30,38). The Temperature PCA suggests that regions 265 

with average temperatures between ~10ºC and ~25ºC support the highest species richness 266 
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(Figure 4B). Additionally, the Productivity and Clay PCAs emphasize the role of ecosystem 267 

productivity and clay content in soil in shaping Aspergillus distributions. 268 

 269 

Aspergillus species display variability in predicted responses to changing climates 270 

 To predict how Aspergillus species would respond to future climate change scenarios, we 271 

refined our random forest classifier, focusing on 15 environmental variables that have 272 

corresponding data under predicted climate change models (Table S12). We trained the classifier 273 

on the current dataset and used the trained classifier to predict species distributions across two 274 

future timeframes: 2041-2070 and 2071-2100. There were three predicted distributions per 275 

timeframe reflecting three distinct climate change scenarios: mild (sustainability, respect of 276 

environmental boundaries, and lower resource and energy intensity), moderate (regional rivalry 277 

redirecting focus to national and regional security, environmental concerns are low priority 278 

resulting in strong environmental degradation in some regions), and severe (fossil-fueled 279 

development, exploitation of fossil fuels to increase development and growth of the global 280 

economy) (39,40). We predicted distributions for species with > 300 occurrence records and 281 

excluded species with True Positive and True Negative rates < 75%, which yielded predictions 282 

for 33 species (Figure S15 and Table S13). We compared the predictions of the current 283 

distributions of species using the original vs. the refined classifier and found that the refined 284 

classifier predicts larger ranges for species in the same locations (average of ~ 0.5% larger), 285 

which is likely a result of focusing solely on climatic factors. 286 

 287 

 Our classifiers predicted that there was an overall range decrease for many Aspergillus 288 

species across all timeframes and climate change scenarios (Figure S16). However, we found 289 
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substantial variation in the magnitude and direction of changes, highlighting the nuanced 290 

interactions between climate change and individual species ranges (Figure 5 and Figure S16). 291 

Specifically, 14 species, including Aspergillus versicolor (section Nidulantes), Aspergillus 292 

ochraceus (section Ochraceorosei), and Aspergillus terreus (section Terrei) were predicted to 293 

expand their ranges due to climate change, although some expansions appear marginal or suggest 294 

more stable distributions, as seen with Aspergillus niger (section Nigri). Species from sections 295 

Nigri and Nidulantes showed a higher tendency toward range expansions, raising the hypothesis 296 

that they may harbor specific evolutionary or ecological traits that make them more resilient or 297 

adaptable to changing climatic conditions. In contrast, Aspergillus udagawae (section Fumigati), 298 

a minor pathogen (41), was predicted to significantly contract its range, particularly in southern 299 

Africa and Central America.  300 

 301 

A few species have overall predicted range increases from the second timeframe to the 302 

third (Aspergillus caninus, Aspergillus ochraceus, Aspergillus puulaauensis, and Aspergillus 303 

ruber). These predicted range increases correspond to a reduction in areas like southern Africa 304 

with much warmer forecasted air temperatures from current to 2041-2070 under the severe 305 

scenario and an increase in prevalence in eastern Asia.   306 

 307 

The variation in predicted species ranges suggests that climate change will not 308 

necessarily lead to a global increase in the range of Aspergillus species. In some regions, 309 

urbanization or localized climate change could result in higher-than-average temperature 310 

increases, driving species expansions in urban heat islands or areas of intense land use change. 311 

Some species may exploit anthropogenically-altered habitats due to agriculture or infrastructure 312 
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development. Additionally, many Aspergillus species are temperature tolerant and can grow in 313 

temperatures ranging from ~ 10ºC to ~ 45ºC, and in some species even higher (42,43). In this 314 

context, the lack of major predicted range expansions for most species has biological relevance, 315 

as a few degrees of temperature increase will likely not result in major changes in ranges. 316 

Furthermore, our observation that the refined classifier tends to predict larger ranges for most 317 

species, coupled with our finding that some species ranges remain stable, could suggest that 318 

climatic factors play a more significant role in predicting individual species ranges. In contrast, 319 

species that had the larger deviations between the classifiers may be more strongly influenced by 320 

environmental factors. 321 

 322 

The ranges of opportunistic pathogens tend to decrease over time 323 

 Rising temperatures due to climate change have been hypothesized to increase the ranges 324 

of fungal species, as environments with temperatures previously outside of optimal growth 325 

ranges become more habitable with increasing temperatures (44,45). Numerous species have 326 

observed range increases potentially in response to changing climates, including species in the 327 

genera Blastomyces, Histoplasma, and Coccidioides, which all have generally geographically 328 

restricted ranges (45–47). To determine the potential distributions of Aspergillus pathogens 329 

under the severe climate change scenario, we focused on two major pathogens (Aspergillus 330 

fumigatus and Aspergillus flavus) and six minor pathogens (Aspergillus felis, Aspergillus 331 

lentulus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, and Aspergillus udagawae) 332 

from four different sections.  333 

 334 
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We found that the ranges of major pathogens are predicted to decrease slightly over time 335 

under the severe climate scenario (Figure 6A, 6B, 6C), particularly by the 2071-2100 period. 336 

While their combined ranges are predicted to decrease, Aspergillus flavus is predicted to initially 337 

increase in 2041-2070 and decrease in 2071-2100 to a similar level as the current range, and 338 

Aspergillus fumigatus decreases slightly but remains rather constant. However, the predicted 339 

changes are not uniform across all regions. During the 2041-2070 timeframe, range contraction 340 

is predicted in southern Africa and expansion in South America. This suggests that climate-341 

driven range shifts for the major pathogens may be region-specific, driven by localized 342 

environmental variables, rather than on a global scale. The expansion of these pathogens in 343 

South America indicates that while species may experience geographic shifts, the overall 344 

terrestrial space they occupy may remain relatively similar (Figure 6D). In contrast, minor 345 

pathogens show a consistent decline in their predicted ranges over time (Figure 6E, 6F, 6G, 346 

6H). There is a particularly large, predicted range contraction of minor pathogens in the United 347 

States and southern Africa, accompanied by a smaller but notable expansion in eastern regions of 348 

South America. While the ranges of these minor pathogens are predicted to decrease over time, 349 

they persist globally in relatively the same regions with variable prevalence.  350 

 351 

The observed variation in Aspergillus species ranges predicted under future climate 352 

change scenarios suggests that species are expanding in regions where they already reside or 353 

being eliminated in regions where they can no longer inhabit due to changing climate. We 354 

analyzed species richness across timeframes and climate change scenarios and found that most 355 

areas have an overall reduction in species richness apart from eastern Asia and South America, 356 

where species richness appears to increase under the moderate and severe scenarios (Figure 357 
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S17). Aspergillus species have been noted as generalists, and it is thought that generalist species 358 

may be more resilient to changing climates because of their ability to occupy a wider diversity of 359 

environments (3). This generalist lifestyle, coupled with their global presence, may explain their 360 

ability to withstand changing climate conditions. We have shown Aspergillus species display 361 

complex and diverse ecologies that are not entirely reliant on climatic conditions, which 362 

indicates that warming environments will not necessarily lead to a higher abundance of species.  363 

 364 

Conclusions 365 

 In this study, we investigated patterns in the global distributions of Aspergillus species. 366 

We used a combination of species range modeling and environmental variables to generate a 367 

comprehensive picture of species in the genus Aspergillus across diverse environments. Our 368 

results revealed that species richness is highest in temperate forested regions with stable, warm, 369 

humid climates, particularly Mediterranean-type ecosystems. We also identified five climatic and 370 

environmental factors that are the most predictive of average species richness and found that 371 

human activities may have a crucial role in shaping Aspergillus distributions. Interestingly, we 372 

observed deviations from traditional patterns in plants and animals while analyzing Aspergillus 373 

distributions, such as a lack of latitudinal and longitudinal gradients and higher species richness 374 

in temperate regions compared to tropical regions. Additionally, we identified extensive 375 

variability in the species range sizes within and across sections, and a small proportion of species 376 

ranges overlap, showing that some species are more widespread while others are predicted to 377 

have restricted, localized ranges. Lastly, we found Aspergillus species have highly variable 378 

responses to future climate change scenarios, depicting the species-specific changes as some 379 

increase, decrease, or remain rather stable.  380 
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 381 

One key component to consider while interpreting these results is that these predictions 382 

assume that species will continue to occupy the same ecological niches. If species evolve (e.g., 383 

through mutations that facilitate growth at higher temperatures) in response to shifting 384 

environmental conditions, particularly in regions with rapid temperature increases or other 385 

climate-related stresses, their future distributions may diverge extensively from these predictions. 386 

Experimental evolution studies in various fungi have shown that the acquisition of mutations that 387 

enable thermotolerance can occur in relatively short time frames (48–52); thus, increasing global 388 

temperatures and potential range shifts or expansions of fungal species have led to concerns that 389 

adaptation to these increasing temperatures will result in the emergence of new opportunistic 390 

pathogens of humans (23–25,53). The evolution of thermotolerance may allow fungi to more 391 

readily infect humans (23–25), but whether a few degrees in temperature increase will give rise 392 

to new fungal pathogens remains uncertain (43). These predictions may aid in determining which 393 

species may maintain their presence in areas where mean annual air temperatures meet or exceed 394 

human body temperatures to help monitor potential emerging Aspergillus pathogens.  395 

  396 
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Figures 397 

398 

Figure 1: Aspergillus species richness is highest in temperate forests.  399 

A) Global map of Aspergillus species richness. Horizontal lines indicate latitudes of400 

40ºN, 0º, and -40ºS and vertical lines are longitudes of 100ºW, 0º, and -100ºE. Warmer401 

colors display areas of higher species richness with a maximum of 139 species; colder402 

colors are areas of lower species richness with a minimum of 1 species; and grey areas403 

denote the absence of any species. B) Average species richness per biome. The X-axis404 

is the average species richness per raster grid cell (pixel), and the Y-axis is the different405 

biomes represented in the dataset ordered from highest to lowest average species406 
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richness. C) Average species richness per Köppen-Geiger (KG) climate classes, which 407 

classify climates based on temperature, precipitation, and seasonal patterns. The X-axis 408 

is the average species richness per raster grid cell, and the Y-axis is the different KG 409 

classes ordered from highest to lowest average species richness. 410 

 411 
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Figure 2: Species ranges vary extensively within taxonomic sections and across 413 

the genus 414 

A) Phylogeny of 163 Aspergillus species. Colored branches and numbers on the 415 

phylogeny correspond to taxonomic sections, which are depicted on the left. The 416 

species Talaromyces mimosinus and Talaromyces marneffei were used as the outgroup 417 

and are designated by the black branches at the top of the phylogeny. Each tip on the 418 

phylogeny corresponds to a species. Species names have been removed for easier 419 

visualization but can be viewed in Figure S8. B) Species ranges represented by the 420 

percentage of grid cells (pixels) occupied. The X-axis shows the percent grid cells 421 

occupied by each species as a proxy for range, and the Y-axis is the phylogeny.  422 

  423 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.29.626055doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.29.626055
http://creativecommons.org/licenses/by-nc/4.0/


424 

Figure 3: Most species pairs exhibit limited overlap in their ranges with a few425 

exceptions 426 

Purple represents areas where both species have predicted presence values, grey are427 

areas where both species have predicted absence values, and orange and green are428 

areas where only one species is present. Jaccard Index is displayed for both species429 
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pairs with values of 1 indicating identical ranges and 0 indicating no overlap. A) 430 

Aspergillus neoniveus (section Flavipedes) and Aspergillus puniceus (section Usti) have 431 

the largest proportion of range overlap even though each species individually does not 432 

have the overall largest range. The Jaccard Index of overlap for this species pair is 433 

0.79. B) Aspergillus puniceus (section Usti) and Aspergillus leporis (section Flavi) do not 434 

overlap at all and have a Jaccard Index of 0. Aspergillus leporis generally occupies 435 

northern latitudes, whereas Aspergillus puniceus generally occupies southern latitudes. 436 

C) Most species pairs share limited overlap in range, with the rare occurrence of large 437 

range overlaps and an average species richness of ~29. X-axis indicates the proportion 438 

of species pairs out of 15,400 unique combinations of pairs across 176 species. Y-axis 439 

shows the Jaccard Index bins. 0.34 species pairs overlapped with a Jaccard Index of 440 

<0.1, 0.46 between 0.1-0.3, 0.18 between 0.3-0.5, 0.02 between 0.5-0.7, and 0.0004 441 

>0.7. 442 
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444 

Figure 4: The six environmental variables most predictive of Aspergillus average445 

species richness per ecoregion 446 

The negative binomial regressions and scaled linear regressions of the 47447 

environmental variables and/or principal components revealed the six most predictive448 

variables of average species richness per ecoregion. A-C) The Y-axis displays the449 

average species richness per ecoregion across three environmental variables: (A)450 

Temperate vs. Non-Temperate ecoregions, (B) Mean Annual Air Temperature (ºC),451 
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which had the largest effect size from the Temperature PCA (FDR: 1.54E-88, m: 10.2), 452 

and (C) Index of Cumulative Human Impact. D-F) The Y-axis displays the average 453 

species richness per ecoregion across three environmental variables: (D) Forest vs. 454 

Non-Forest ecoregions, (E) Length of the Growing Season (Days), which had the 455 

largest effect size from the Productivity PCA (FDR: 1.70E-112, m: 16.34), and (F) 456 

Proportion of Clay Particles in the Fine Earth Fraction which had the largest effect size 457 

from the Clay PCA (FDR: 1.15E-17, m: 10.24). Each plot contains the False Discovery 458 

Rate (FDR) of the negative binomial regression, scaled slope of linear regression (m), 459 

and black lines represent the locally estimated scatter plot smoothing. Each dot on the 460 

scatter plots corresponds to an ecoregion, and the colors relate to average species 461 

richness, with warm colors indicating higher average species richness and colder colors 462 

indicating lower average species richness.  463 
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465 

Figure 5: Some Aspergillus species ranges are predicted to increase and some to466 

decrease under warming temperatures 467 

Different species have varying changes in their predicted ranges under future climate468 

change scenarios. X-axis shows each species under the mild (sustainability, respect of469 

environmental boundaries, and lower resource and energy intensity), moderate470 

(regional rivalry redirecting focus to national and regional security, environmental471 

concerns are low priority resulting in strong environmental degradation in some472 

regions), and severe (fossil-fueled development, exploitation of fossil fuels to increase473 

development and growth of the global economy) climate change scenarios for the two474 

timeframes of 2041-2071 and 2071-2100. The Y-axis shows predicted ranges in percent475 

grid cells (pixels) occupied. The grey bar is the predicted range using current data, the476 

purple using mild scenario data, the orange bar using the moderate scenario data, and477 

the green using severe scenario data. Some species have predicted range increases478 

across timeframes and models, like A. versicolor. However, some have more variable479 

responses (A. terreus) or overall decreases in range (A. udagawae). 480 
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481 

Figure 6: Prevalence of major and minor pathogens decreases under the severe482 

or “worst-case scenario” climate change model. 483 

The maps depict the predicted distributions of major pathogens (A. fumigatus and A.484 

flavus; left side) and minor pathogens (A. felis, A. lentulus, A. nidulans, A. niger, A.485 

terreus, and A. udagawae; right side) under the severe climate model. This model is486 

based on fossil-fueled development and an energy-intensive lifestyle. A-D) Major487 

pathogen ranges for the timeframes: current (A), 2041-2071 (B), and 2071-2100 (C) and488 

their ranges over time (D). X-axis is the range size in percent grid cells occupied (pixels)489 
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and the Y-axis represents the timeframes. E-H) Minor pathogen ranges for the 490 

timeframes: current (E), 2041-2071 (F), and 2071-2100 (G), and their ranges over time 491 

(H). The X-axis is the range size in percent grid cells occupied, and the Y-axis 492 

represents the timeframes. The presence of species is depicted in purple, and the 493 

absence is depicted in grey.  494 
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Methods 496 

Retrieval and pre-processing of species occurrence records 497 

All occurrence records (116,664) were obtained from the GlobalFungi database (22) 498 

(release 5, January 8th, 2024) and preprocessed following the protocols of a previous study (30). 499 

Briefly, we selected only valid species names listed Index Fungorum and reconciled species 500 

names with the updated nomenclature. We removed duplicate coordinates for the same species. 501 

Then we used the R package CoordinateCleaner (54) to remove records with equal longitude and 502 

latitude coordinates, zero coordinates, and coordinates that matched the centroid of 503 

counties/provinces or biodiversity institutions. This resulted in 41,820 occurrence records from 504 

240 Aspergillus species.  505 

 506 

Next, for each occurrence record, we extracted data from 96 environmental raster files 507 

(30) that were then projected onto the WGS84 (EPSG:4326) coordinate system with a resolution 508 

of 30” (~1km2) using a custom R script with the terra and raster libraries (55,56). The raster files 509 

contained information about the vegetation, soil, climate, and anthropogenic inputs of the area 510 

(Table S1) (30). Following the environmental variable extraction, we removed occurrence 511 

records with NA values and records with the same environmental variables within a hundredth-512 

degree latitude or longitude to prevent the overrepresentation of samples from a specific location. 513 

This resulted in a training dataset of 30,542 occurrence records across 236 species. In addition to 514 

the occurrence records, we randomly sampled coordinates across the entire raster extent (102,609 515 

points) as pseudoabsence points. 516 

 517 

Training the random forest algorithm 518 
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Using the data compiled for Aspergillus species, we trained a random forest classifier to 519 

predict species distributions. We used the same parameters and methods as the study of David et 520 

al. (30). Briefly, we used the R package randomforest (57) with a downsampling approach to 521 

reduce overfitting. We created a model for each species with at least five occurrence records, 522 

which resulted in 205 random forest classifiers (one for each species) (Table S2). Each classifier 523 

had 100 decision trees, and all other parameters were set to their default values. We used a leave-524 

one-out strategy for validation, which consists of leaving out one row from each training dataset 525 

for validation. We retained 176 models with at least a 75% True Positive rate and Negative rate 526 

for further analysis. The average area under the curve for the Receiver Operator Characteristic 527 

curves for all 205 models was 0.93, and an average True Positive rate of 85% and True Negative 528 

rate of 90%. The summary statistics from the random forest predictions for all 205 models can be 529 

found in Tables S2 & 3 and Figure S2. We used the SHapley Additive exPlanations (SHAP) 530 

python package (58) to visualize and interpret feature importance from the random forest 531 

classifiers.  532 

 533 

Species range and overlap analyses 534 

To estimate the ranges for each species, we calculated the number of grid cells (pixels) 535 

occupied per species from their predicted raster files using a custom R script. To determine if 536 

there were any meaningful differences in species ranges between the different taxonomic 537 

sections within Aspergillus, we built a concatenation-based maximum likelihood phylogeny 538 

using the nucleotide sequences Beta-Tubulin, Calmodulin, and RNA Polymerase Beta (second 539 

largest subunit) for 456 Aspergillus species obtained from previous studies (1,2). We included 540 

Talaromyces marneffei and Talaromyces mimosinus as outgroups, bringing the total to 458 541 
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species. Briefly, we created multi-fasta files for each gene, aligned the gene sequences across all 542 

458 taxa using Mafft (v7.245) (59), built a concatenation matrix of the trimmed sequences using 543 

PhyKIT (v1.12.5) (60), and built the phylogeny using IQTree (v2.2.6) (61) (Figure S1 and 544 

Table S14). Only 163 of the 176 species in these analyses had nucleotide sequences available to 545 

analyze on the phylogeny. To display only the 163 species of interest, we pruned the phylogeny 546 

using the R Shiny application Treehouse (62).  547 

 548 

To quantify the degree of overlap in range estimates between species, we calculated the 549 

Jaccard Index or similarity coefficient (total number of overlapping cells/total number of unique 550 

cells occupied by each species). Figures displaying species overlap in ranges were generated 551 

using QGIS.  552 

 553 

To determine if there was a relationship between phylogenetic distance and geographic 554 

distance among species, we performed a Mantel test based on Pearson’s product-moment 555 

correlation. We identified the centroid of each species range using the terra package in R (55) 556 

and pruned the phylogeny to match the species labels using the R package ape (63). We 557 

calculated the pairwise geographic distances between species centroids using the Haversine 558 

formula using the geosphere package in R (64) and calculated the pairwise phylogenetic 559 

distances using the cophenetic function (the sum of the branch lengths that connect two species 560 

in the phylogeny) from the ape package. This analysis resulted in two distance matrices, which 561 

were aligned to each other by species. We used the resulting distance matrices to do the Mantel 562 

test using the vegan package in R (65) and evaluated the significance of the correlation using 999 563 

permutations.  564 
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 565 

Additionally, we performed two phylogenetic generalized least squares (PGLS) analyses 566 

to test whether the range sizes of each species are influenced by absolute latitude and species 567 

richness. We extracted the centroid of each species range, determined the absolute latitude at the 568 

centroid of the species range, and used the R packages caper (66) and ape (63) to do the PGLS. 569 

In the same fashion, we extracted the average species richness across each individual species 570 

range and performed the PGLS.  571 

 572 

Assessing the ecological parameters that drive Aspergillus species diversity 573 

To determine the ecological drivers of Aspergillus diversity, we constructed negative 574 

binomial regression models (30) using 95 environmental variables (as the independent variable) 575 

and Aspergillus average species richness per ecoregion (as the dependent variable). We chose to 576 

look at the average species richness per ecoregion as compared to overall species richness or per 577 

biome because ecoregions represent more localized ecosystems with unique variations in 578 

climatic, geological, and biotic factors, and it is less computationally intensive. To do this, we 579 

selected 88 quantitative environmental variables from the random forest training data and 580 

extracted their average values for each ecoregion. In addition to the quantitative variables, we 581 

included 7 categorical variables (tropical, temperate, secondary forest, cultivated, continental, 582 

dry) encoded into binary variables based on the majority class of that variable in each ecoregion 583 

(temperate (1) vs. non-temperate (0) ecoregions). A species was considered present in that 584 

ecoregion if it was found in at least 10% of the region’s grid cells (pixels). We also performed 585 

scaled linear regressions with the slope (m) as a measure of effect size. We removed seven 586 

variables with False Discovery Rates (FDR) > 0.05 from the negative binomial regression. We 587 
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then combined highly correlated variables into principal components to reduce correlations 588 

between environmental variables, which resulted in a total of 88 variables decomposed into 47 589 

variables and/or principal components. Following decomposition, the greatest r2 between 590 

principal components/variables was 0.77 (µ=0.09) (Figure S13). The first PC for each principal 591 

component analysis explained at least 86% of the total variation apart from the soilRichness PCA 592 

(78%) (Table S10). There was an overall mean variance of 92%.  593 

 594 

To determine the most predictive variables of average species richness out of all 47 595 

variables and/or principal components, we used a relative importance analysis. We constructed 596 

negative binomial regression models using average species richness as the dependent variable for 597 

every combination of variables/ principal components whose linear relationship with average 598 

species richness had an r2 > 0.15 and slope (m) > 0.20. There were six variables and/or principal 599 

components that met the criteria: 2009 human footprint (index of cumulative human impact), 600 

temperate ecoregions, temperature PCA, productivity PCA, clay PCA, and forest ecoregions. 601 

This resulted in 63 individual models. We then calculated Akaike weights to estimate the relative 602 

importance of each variable.  603 

 604 

Predicting species distributions under climate change scenarios 605 

To predict the future distributions of species under different climate change scenarios or 606 

shared socioeconomic pathways (SSPs), we selected 15 environmental variables from the larger 607 

dataset of 96 environmental variables that had future forecasts for the years 2041-2070 and 2071-608 

2100. The future forecast data were obtained from the Climatologies at high resolution for the 609 
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earth’s land surface area (CHELSA) CMIP6 database (67). To reduce the number of 610 

assumptions, only 15 environmental variables with future data were selected (Table S12).  611 

 612 

For each of the 15 variables, raster files were obtained for both timeframes as well as 613 

three different SSPs: ssp126 (SSP1-RCP2.6 climate as simulated by the GCMs), ssp370 (SSP3-614 

RCP7 climate as simulated by the GCMs), and ssp585 (SSP5-RCP8.5 climate as simulated by 615 

the GCMs) from the gfdl-esm4 models from the National Oceanic and Atmospheric 616 

Administration, Geophysical Fluid Dynamics Laboratory at a resolution of 30” (~1km2) and the 617 

WGS84 (ESPG:4326) coordinate system. We classified the three SSPs as mild (ssp126, based on 618 

sustainability, respect of environmental boundaries, and lower resource and energy intensity), 619 

moderate (ssp370, regional rivalry redirecting focus to national and regional security, 620 

environmental concerns are low priority resulting in strong environmental degradation in some 621 

regions), and severe (ssp585, fossil-fueled development, exploitation of fossil fuels to increase 622 

development and growth of the global economy) climate change scenarios. We used the same 623 

occurrence records and filtering steps mentioned above. We created seven raster stacks: 1) 624 

current rasters (1981-2010) used in the predicting species distributions based on current data, 2) 625 

three raster stacks for the timeframe 2041-2070 for each climate change scenario, and 3) three 626 

raster stacks for the timeframe 2071-2100 for each climate change scenario. We then extracted 627 

data for each occurrence record and the pseudo-absence coordinates from the current climate 628 

raster stack. We filtered the training data in the same fashion as the previous model; however, 629 

with fewer variables, there were fewer NA values, resulting in 34,718 species occurrence records 630 

for training the model.  631 

 632 
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We trained the model on the current climate data to get their predicted distributions under 633 

current climatic and ecological conditions using the 15 environmental variables. However, in this 634 

case, we selected the 33 species with over 300 occurrence records to predict future distributions, 635 

which yielded 33 models. This resulted in an average area under the Receiver Operator 636 

Characteristic curve of 0.94. We then removed species with True Negative rates and True 637 

Positive rates less than 75% (Figure S15). All species met the criteria with an average True 638 

Positive rate of 84% and a True Negative rate of 89%. Once we had the current predicted 639 

distributions, we then used the trained model for each species to predict future distributions using 640 

the three different raster stacks for each timeframe with the assumption that species will occupy 641 

similar niches under the three forecasted climate change scenarios. This resulted in a total of 642 

seven predicted raster files per species. We then calculated the species ranges for each raster 643 

using the same approach as above and compared them to each other.  644 

 645 

Data Availability  646 

All supplementary figures, data files, and code required to replicate the species distribution 647 

modeling and additional analyses have been deposited to the figshare repository and will be 648 

made publicly accessible upon publication. 649 
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