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Abstract
In the past decade, malaria rates have plummeted as a result of aggressive
infection control measures and the adoption of artemisinin-based combination
therapies (ACTs). However, a potential crisis looms ahead. Treatment failures
to standard antimalarial regimens have been reported in Southeast Asia, and
devastating consequences are expected if resistance spreads to the African
continent. To prevent a potential public health emergency, the antimalarial
arsenal must contain therapeutics with novel mechanisms of action (MOA). An
impressive number of high-throughput screening (HTS) campaigns have since
been launched, identifying thousands of compounds with activity against one of
the causative agents of malaria, . Now begins thePlasmodium falciparum
difficult task of target identification, for which studies are often tedious, labor
intensive, and difficult to interpret. In this review, we highlight approaches that
have been instrumental in tackling the challenges of target assignment and
elucidation of the MOA for hit compounds. Studies that apply these innovative
techniques to antimalarial target identification are described, as well as the
impact of the data in the field.
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Introduction
Due to the concerted efforts to reduce malaria morbidity and  
mortality, it is estimated that since 2000, more than 663 million  
clinical cases and 6.2 million deaths have been averted in  
sub-Saharan Africa1. The drastic reduction in malaria burden is 
largely due to the implementation of infection control measures, 
including the adoption of the highly effective artemisinin-based 
combination therapies (ACTs). In Africa alone, ACTs save approxi-
mately 100,000 lives each year2. Despite these successes, malaria 
remains a major threat to public health. Annually, 3.2 billion  
people are at risk of infection and more than 400,000 die, with 
young children and pregnant women being disproportionately 
affected3. While ACTs remain the cornerstone for global malaria 
treatment, recent reports indicate that current regimens are failing4–8. 
Thus, new classes of antimalarial compounds are desperately 
needed to combat emerging and existing drug-resistant parasites, if 
the progress made in the last decade is not to be undone9.

To this end, over 6 million compounds have been screened against 
Plasmodium falciparum, the etiological agent responsible for 
the bulk of malaria deaths10. Initially, high-throughput screening 
(HTS) campaigns concentrated on the intraerythrocytic stage of  
P. falciparum, which resulted in an unprecedented number of hits 
with the potential to treat the symptomatic stage of the disease11–17. 
Antimalarials that target the liver stages and the asymptomatic 
gametocyte stages will be critical as priorities shift from treatment 
towards local elimination. Thus, recent endeavors have focused 
on screening agents against these more tenacious stages of the  
P. falciparum life cycle18–26. As a result of the collaborative 
efforts between academia and the pharmaceutical industry, more 
than 25,000 compounds with half-maximal inhibitory concentra-
tion (IC

50
) activity ≤1 μM against P. falciparum now await target 

identification and further characterization10.

Estimates suggest that 7% of drugs approved by the US Food 
and Drug Administration (FDA) lack a defined target, and 
approximately 18% lack a definitive mechanism of action  
(MOA)27–29. While assigning the target and MOA of a compound 
are clearly not essential for its development, this information 
is often crucial in hit-to-lead optimization. For example, target  
identification informs medicinal chemistry to improve selectivity 
and/or pharmacokinetic and toxicity profiles, without sacrificing 
potency30. A molecular understanding of compound action may  
also direct dosing, aid in partner drug selection, and assist with  
drug resistance surveillance31,32. Finally, once a target has been 
identified and validated, inhibitors may be instrumental in probing 
essential parasite biology32.

Elucidating the molecular targets responsible for the phenotypic 
effects observed in cell-based assays is often one of the most  
challenging and time-consuming steps in drug discovery. For  
P. falciparum, MOA assignment for first-in-class drugs has tradi-
tionally been quite difficult, as almost 50% of the genome lacks 
annotation, transcriptional profiling has had varying results, 
and heterologous protein expression remains problematic32–35.  
Moreover, the majority of known antimalarial agents have pleio-
tropic effects and exhibit polypharmacology, a likely outcome 
for many of the identified hits that will further complicate target  

assignment36–38. Often, tedious biochemical, genetic, and cellular 
studies are needed to deeply understand the MOA of a compound, 
as demonstrated by many attempts to identify the targets and 
biological effects of the elusive antimalarials atovaquone and 
artemisinin39–41. To overcome these barriers, a number of target 
deconvolution strategies have been developed, including resist-
ance screening, transcriptional profiling, proteomic analysis, and 
metabolic analysis32,42. In this brief review, we describe the recent 
advances in experimental target identification in P. falciparum and 
present examples that exemplify each method. Of note, in silico 
approaches of target assignment have been covered separately in 
recent reviews43–45.

Genetic approaches of target identification
Resistance screening
To discern the target and the MOA of a novel antimalarial 
agent, one method that has been commonly employed is in vitro  
evolution of resistant parasites. Drug pressure is applied to  
cloned P. falciparum cultures either at a single concentration or  
in a stepwise fashion. In a recent large study to develop resist-
ant mutants against many novel antimalarials, de novo resistance  
appears to occur rapidly in more than half of such attempts9,32,46. 
Resistant parasites are then cloned, and the genomic DNA is  
isolated and analyzed by next-generation sequencing to identify 
genetic changes associated with resistance46. The genomes of the 
parental and mutant parasite lines are compared to identify single 
nucleotide polymorphisms (SNPs) and copy number vari-
ants (CNVs)46. Propagation of drug-resistant P. falciparum has  
successfully assigned a number of known and proposed  
antimalarial targets, including 1-deoxy-D-xylulose 5-phosphate 
reductoisomerase47, cytochrome bc1

48–50, apicoplast-localized and 
cytoplasmic isoleucyl tRNA synthetase51, signal peptide pepti-
dase52, lysyl-tRNA synthetase53, dihydroorotate dehydrogenase54, 
prolyl-tRNA synthetase55, and the P-type ATPase 4 (PfATP4)9,56–61. 
Remarkably, genetic changes in PfATP4 have been found to  
associate with resistance to multiple antimalarial chemotypes 
(spiroindolones, pyrazoles, dihydroisoquinolones, MMV722, 
MMV011567, and MMV007275)9,56–61. Currently, the reason for 
this commonly observed, PfATP4-associated resistance is unclear, 
but several mechanisms have been proposed61.

Caution is required when assigning compound MOA based on 
in vitro resistance selection and associated genetic changes. 
Multiple examples in malaria parasites and other organisms have 
shown that mutations in genes distinct from the molecular target may 
yet confer resistance. For example, mutations in the P. falciparum 
multi-drug resistance transporters, such as MDR1, mediate resist-
ance to multiple classes of antimalarials due to compound trans-
port. Resistance alleles may reveal related parasite biology, as in 
work by Guggisberg et al., which demonstrated that a mutation in a 
metabolic regulator, HAD1, confers resistance to fosmidomycin 
(FSM) due to changes in intracellular metabolite levels62. These 
genetic changes would arguably have been far more difficult 
to interpret if the target of FSM (PfDXR) had not already been 
well established. While the generation of resistant mutants has 
been instrumental for target validation in P. falciparum, neither 
genetic nor chemical methods alone can definitively conclude that 
an enzyme, metabolic pathway, or cellular function is indeed the 
target; thus, complementary approaches must be utilized63.
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Chemogenomic profiling
To date, global chemical-genetic methods for drug target iden-
tification have been relatively underutilized in P. falciparum. 
Chemogenomic profiling represents a powerful tool that deduces 
MOA by comparing alterations in drug fitness profiles within 
a panel of mutants64,65. In 2015, the first chemogenomic screen 
of P. falciparum was performed with a library of 71 random  
piggyBac transposon insertion mutants and 53 antimalarial  
drugs and metabolic inhibitors64. The antimalarial drug sensitivities 
were monitored in the mutant parasite lines, and thus the chem-
ogenomic interactions and the relationships between drug pairs  
were discerned64. Interestingly, a cluster of seven mutants were 
identified that were sensitive to artemisinin, including one with 
a mutation in the K13-propeller gene that is associated with  
resistance64,66,67. In a second study by Aroonsri et al., reverse-
genetic chemogenomic profiling was used to uncover novel  
antimalarial agents that target dihydrofolate reductase-thymidylate 
synthase (DHFR-TS)65. By screening a small compound library, 
two novel DHFR-TS inhibitors (MMV667486 and MMV667487) 
were identified with activity against blood-stage P. falciparum.  
Presumably, additional DHFR-TS inhibitors could be discovered 
by screening larger, more diverse chemical libraries65. Together,  
the aforementioned studies demonstrate the utility of chemical-
genetic approaches in target assignment and pave the way for  
additional chemogenomic profiling in P. falciparum.

Target predictions via transcriptional analysis
Monitoring the global changes in gene expression may reveal  
regulatory and metabolic networks affected by drug treatment68. 
Thus, expression data may help elucidate the MOA of a drug  
and facilitate the characterization of unannotated genes68. Unfor-
tunately, transcriptional profiling of drug-treated P. falciparum  
has been met with mixed results69. Several studies reported that 
expression changes are limited following antimalarial treat-
ment, suggesting that malaria parasites are transcriptionally  
hard-wired33–35. Conversely, other studies have shown that  
chemical perturbations produce transcriptional responses in the 
expected target biological pathways70–73.

Recent work from Siwo et al. profiled the effect of 31 chemically  
and functionally diverse small molecules on P. falciparum74. 
By building a series of controls into their study design and by  
incorporating several normalization steps into their analysis, the 
transcriptional responses induced by each drug were success-
fully disentangled74. This novel approach not only identified tran-
scriptional changes in expected target pathways but also provided  
evidence that artemisinin targets cell cycle and lipid metabolism, 
consistent with previous data74–84. Further, the MOA were pre-
dicted for several HTS-selected compounds by correlating the 
connections identified in the small molecule-Gene Ontology (GO) 
network with the functions of genes located in their quantitative 
trait locus (QTL)13,74. Importantly, the study explains why previous 
gene expression studies failed to tease out drug-specific responses 
and demonstrates that transcriptional profiling can capture the  
complexity of drug effects and accurately assign drug targets.

Proteomic approaches of target assignment
Despite the trove of information that can be gleaned from using  
DNA and RNA analyses to identify drug targets, genomic methods 
alone are insufficient to capture the total cellular effects of a given 
antimalarial85. P. falciparum has approximately 5,300 protein- 
encoding genes86,87. In theory, monitoring the global proteomic 
changes following drug treatment may inform on the function, 
expression, localization, interacting partners, and regulation of every 
protein, thus providing clues to compound MOA85. Conventional 
proteomic methods have been used for drug target identification in 
P. falciparum. For example, mass spectrometry (MS) was used to 
analyze alterations in the parasite proteome following chloroquine 
or artemisinin treatment88, two-dimensional gel electrophoresis  
(2-DE) and tandem MS were used to identify protein changes in 
chloroquine-treated P. falciparum89, and finally isobaric tags for 
absolute and relative quantification (iTRAQ) and two-dimensional 
fluorescence gel electrophoresis (2D-DIGE) were used to moni-
tor protein expression in doxycycline-treated parasites90. More 
recently, 2-DE and tandem MS identified proteins differentially 
expressed following treatment with quinine, mefloquine, or the 
natural product diosgenone91. While these traditional methods can 
provide useful information regarding global proteomic changes, it 
should be mentioned that a major limitation of these techniques is 
that low-abundance proteins may be outside the detection limits.

Chemical proteomics
The emerging field of chemical proteomics uses synthetic  
chemistry to design and generate probes to identify small-molecule 
–protein interactions92,93. This global proteomic approach detects 
interacting partners via MS-based affinity chromatography, 
and interactions are then mapped to signaling and metabolic  
pathways92. Applications include characterizing drug targets,  
deducing protein function, and uncovering off-target effects92,93. 
Chemical proteomic techniques are separated into two classifica-
tions: (1) activity-based protein profiling (ABPP), which monitors 
enzyme activities, or (2) compound-centric approaches, which 
reveal direct molecular interactions between compounds and  
targets92,94. Both methods provide broad, unbiased analyses and 
have been successfully applied to antimalarial discovery research.

A typical chemical strategy is synthesis of compound analogs to 
incorporate a “click” handle to facilitate drug target identifica-
tion and validation in P. falciparum95. For example, a bifunctional 
compound based on the clinical candidate albitiazolium was syn-
thesized that was photoactivatable and taggable96. MS identified 
a discrete list of potential drug targets in P. falciparum, while  
bioinformatic and interactome analyses were used to predict  
protein functions96. As albitiazolium inhibits phospholipid  
metabolism, most of the target proteins are involved in lipid 
metabolic activities96. A number of surprising targets were also  
uncovered, such as proteins involved in vesicular budding and  
transport functions, thereby demonstrating the utility of the 
method96. Further, in work by Wang et al., an artemisinin analog 
was engineered with a “clickable” alkyne tag that was cou-
pled with either a biotin moiety for protein target identification 
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or a fluorescent dye that would enable the activation mecha-
nism of the drug to be monitored36. This dual chemical proteom-
ics approach identified 124 putative direct targets of artemisinin, 
33 of which had been proposed previously as antimalarial drug  
targets36. In a subsequent study, a panel of activity-based probes 
was generated that incorporated the endoperoxide scaffold of 
artemisinin as a warhead to alkylate the molecular targets in  
P. falciparum97. Tagged proteins were then isolated and identified 
by liquid chromatography (LC)-MS/MS97. Importantly, alkylated 
targets were identified in glycolytic, hemoglobin degradation,  
antioxidant defense, and protein synthesis pathways, supporting  
the promiscuous activity of artemisinin36,74,97.

Methods of target identification have been developed that do not 
rely on chemical modification of the investigative compound, 
including the cellular thermal shift assay (CETSA), drug affinity 
responsive target stability (DARTS), stability of proteins from rates 
of oxidation (SPROX), and thermal proteome profiling (TPP)98. 
While successful identification is largely dependent on the abun-
dance of the drug target, these methods are less time consum-
ing, avoid diminishing or altering drug activity, and can capture 
both the on- and off-target proteomic effects on a global scale98. 
Recently, a DARTS assay was conducted to identify targets for 
Torin 2, a lead compound with low nM activity against P. falciparum 
gametocytes99. Three gametocyte proteins (phosphoribosylpyro-
phosphate synthetase, PF3D7_1325100; aspartate carbamoyltrans-
ferase, PF3D7_1344800; and a transporter, PF3D7_0914700) were 
identified as putative targets for Torin 2, demonstrating the utility 
of label-free, chemical proteomic approaches in P. falciparum99. 
We anticipate that due to their unbiased nature and versatility, 
future antimalarial drug discovery ventures will incorporate com-
parable technologies into the pipeline, thereby accelerating target 
assignment.

Target identification through metabolite analysis
Small metabolic perturbations can have a dramatic impact on 
critical cellular processes such as cell division, differentiation, and 
stress response pathways. Accordingly, a number of antimalarial 
agents in clinical development target metabolic enzymes, including 
the enzymes of the electron transport chain (ELQ-300, GSK932121, 
DSM265)100–102, the methylerythritol phosphate (MEP) pathway 
(FSM, MMV008138)103–106, the folate biosynthetic pathway 
(P218)107, and phosphoinositide metabolism (MMV390048)108. 
It is predicted that many of the active compounds uncovered by 
HTS projects will also have metabolic targets. To expedite target 
assignment of the novel drugs and drug scaffolds identified via 
HTS projects, metabolomic strategies are increasingly being 
incorporated into the drug-screening pipeline.

Targeted metabolite profiling
When candidate targets are known, researchers may focus their 
efforts by analyzing only a subset of metabolites; however, this 
requires prior knowledge of the enzymes, their kinetics and end 
products, and the established pathways in which they participate109. 
Targeted methodologies facilitate the enrichment of low-abundance 
analytes and incorporate the use of internal standards to permit 
quantitative metabolite analysis109. Such metabolite profiling has 

been successfully employed to identify and validate a number of 
antimalarial drug targets. Notable examples include identification 
of targets for the novel quinolone CK-2-68 (NADH:ubiquinone 
oxidoreductase and cytochrome bc1), eflornithine (ornithine decar-
boxylase), MDL73811 (AdoMetDC), and a second target for the 
MEP pathway inhibitor FSM70,104,110,111.

More recently, targeted metabolite analysis was also used to charac-
terize the enzymes of the NAD+ salvage pathway in P. falciparum112. 
By tracing 13C-labeled compounds via mass spectrometry, O’Hara 
et al. demonstrated that parasites scavenge exogenous niacin 
from their host112. Nicotinate mononucleotide adenylyltransferase 
(PfNMNAT) enzyme within the pathway was required for NAD+ 
metabolism and, further, the P. falciparum enzyme was similar 
to bacterial NMNATs112. Parasites were then screened against a 
panel of bacterial NMNAT inhibitors and a compound with a mini-
mum inhibitory concentration (MIC) <1 μM against ring-stage 
P. falciparum was identified, validating NMNATs as an inhibitable 
drug target112.

Metabolomics
In contrast, untargeted metabolite analysis may be used to  
perform a global survey of the metabolic fluctuations induced by 
drug treatment. Metabolomic-based technologies measure the 
small molecule repertoire of the cell in response to a stimulus, such 
as drug treatment111,113. The resulting metabolic signature reveals 
the metabolites and pathways that are perturbed and, accordingly, 
assists with target identification30. Moreover, metabolomic strat-
egies are especially useful in characterizing drugs that impact  
multiple targets and identifying any off-target drug effects114. It is 
important to note that extraction efficiencies, separation methods, 
and sample degradation can greatly influence the chemical diver-
sity and concentrations of the metabolites present114,115. In addition, 
many metabolite features within a sample will remain unas-
signed, as current databases contain a small number of identified  
compounds114,115. While experimental techniques and metabolite 
identification methods have greatly advanced in recent years,  
untargeted metabolomic approaches for determining MOA remain 
limited.

Metabolomics in P. falciparum is arguably in its infancy. However, 
two new studies have demonstrated the utility of unbiased metabo-
lite analysis in drug discovery. First, a dual gas chromatography 
(GC)-MS and LC-MS approach was used to map the metabolic 
changes induced by known antimalarial agents in blood-stage 
parasites31. Although the MOA was confirmed for a number of 
clinical agents, metabolomics data uncovered that dihydroartem-
isinin (DHA) not only disrupts hemoglobin catabolism but also 
perturbs pyrimidine biosynthesis31. The authors then used their 
untargeted MS approach to characterize a novel antimalarial, 
Torin 2, as an inhibitor of hemoglobin catabolism31.

In a second study, the total lipid landscape was surveyed during  
P. falciparum blood-stage development116. In addition to identi-
fying ten new lipid classes and confirming the essentiality of the  
prominent lipid classes in the parasite, the authors tested a panel of 
compounds known to target lipid metabolisms116. Several inhibitors 
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had low micromolar activity against asexual P. falciparum 
(CAY10499, Orlistat, DL-threo-1-phenyl-2-palmitoylamino-3-
morpholino-1-propanol, GW4869, epoxyquinone, and N,N-dimeth-
ylsphingosine), suggesting that the lipid metabolic enzymes are 
possible drug targets116. Taken together, these two influential studies 
demonstrate that integration of metabolomics into the drug discov-
ery pipeline will be crucial for accelerating target assignment.

Concluding remarks
In the past decade, the research and development portfolio of anti-
malarial agents has expanded, with approximately 20 new drugs 
now at various stages of development74. Considerable time, effort, 
and cooperation between academia and industry have led to the 
identification of 25,000 hit compounds, many of which may prove 
to be successful therapeutics10. Now, thousands of compounds lie in 
wait, as the more difficult and time-consuming task of hit-to-lead 
optimization must be launched, independently, for each potential 
candidate. Although not essential, target identification not only 
helps prioritize hits but also guides medicinal chemists in their 
quest to improve potency and pharmacokinetic properties32. Target 
assignment for a novel drug demands that innovative approaches 
are used to reveal clues of its MOA. Drug candidate attrition is 
inevitable and resistance development is expected10. As such, the 
drug discovery pipeline should be flooded with candidates that 
represent a broad spectrum of MOAs.

A collection of 400 diverse compounds with antimalarial activity 
was assembled by the Medicines for Malaria Venture into the 
Malaria Box, a resource that was made available free of charge in 
the hopes of catalyzing drug discovery research14. More than 250 
Malaria Boxes were distributed between 2011 and 2015, and large 
amounts of data have been deposited into the public domain117. 
Recently, a meta-analysis was performed on the 291 Malaria Box 
screens conducted by 55 different research groups118. Aggregated 
data from all biochemical and cellular assays revealed likely MOA 
for only 135 (34%) of the compounds118. Therefore, we predict 
that a multi-pronged attack is almost certainly required for target 
assignment and MOA identification in the P. falciparum drug  
discovery pipeline.
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