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1  |  INTRODUC TION

Aging is a gradual and progressive deterioration in biological system 
integrity, which is thought to arise from the accumulation changes at 

the cellular level (Ferrucci et al., 2018). It is accompanied by changes 
in sleep quality, quantity, and architecture, especially in elderly adults 
(Carroll & Prather, 2021). Nevertheless, the mutual causal association 
between sleep and accelerated aging is still in debate. Along with many 
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Abstract
Sleep has been associated with aging and relevant health outcomes, but the causal 
relationship remains inconclusive. In this study, we investigated the associations of 
sleep behaviors with biological ages (BAs) among 363,886 middle and elderly adults 
from UK Biobank. Sleep index (0 [worst]– 6 [best]) of each participant was retrieved 
from the following six sleep behaviors: snoring, chronotype, daytime sleepiness, sleep 
duration,	 insomnia,	and	difficulties	 in	getting	up.	Two	BAs,	the	KDM-	biological	age	
and PhenoAge, were estimated by corresponding algorithms based on clinical traits, 
and their residual discrepancies with chronological age were defined as the age accel-
erations (AAs). We first observed negative associations between the sleep index and 
the two AAs, and demonstrated that the change of AAs could be the consequence 
of	 sleep	 quality	 using	 Mendelian	 randomization	 with	 genetic	 risk	 scores	 of	 sleep	
index and BAs. Particularly, a one- unit increase in sleep index was associated with 
0.104-		and	0.119-	year	decreases	in	KDM-	biological	AA	and	PhenoAge	acceleration,	
respectively. Air pollution is another key driver of aging. We further observed signifi-
cant	independent	and	joint	effects	of	sleep	and	air	pollution	(PM2.5 and NO2) on AAs. 
Sleep	quality	also	showed	a	modifying	effect	on	the	associations	of	elevated	PM2.5 
and NO2 levels with accelerated AAs. For instance, an interquartile range increase in 
PM2.5	level	was	associated	with	0.009-	,	0.044-	,	and	0.074-	year	increase	in	PhenoAge	
acceleration	among	people	with	high	(5–	6),	medium	(3–	4),	and	low	(0–	2)	sleep	index,	
respectively. Our findings elucidate that better sleep quality could lessen accelerated 
biological aging resulting from air pollution.
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physiological alterations in normal aging, sleep behaviors change with 
aging independent of many factors including medical comorbidity and 
medications (Li et al., 2018). Some researchers thus suggest that sleep 
disorders are the consequence of aging- related changes in neuroen-
docrine function (Li et al., 2018).	Meanwhile,	sleep	is	also	considered	
a restorative process that not only allows for energy renewal but also 
for cellular restoration (Carroll & Prather, 2021). Hence, the other hy-
pothesis is that the declines in sleep quality may lead to accelerated 
aging by triggering DNA damage and chronic inflammation to influ-
ence the compensatory/resiliency systems of the human body (Carroll 
& Prather, 2021). The lack of an established accurate measurement of 
aging, however, hinders the scientists from elucidating the directional-
ity and causal relationship between aging and sleep.

Aging is the sum of changes that occur at hierarchically orga-
nized	levels	in	the	human	body	(Ferrucci	et	al.,	2018), which makes 
it hard to be captured by single age- related biomarkers employed in 
previous relevant studies. All individuals age chronologically at the 
same rate, but there is marked variation in their biological ages as 
we observe in real life that the people with the same chronologi-
cal age may not share the same aging- related symptoms (Ferrucci 
et al., 2018). Some could experience age- related decline faster than 
others.	Moreover,	as	biological	aging	is	a	complex	biological	process	
in multiple organ systems, a single aging- related biomarker, such as 
telomere length or oxidative stress biomarkers, may not be able to 
completely depict the whole landscape of the aging process of indi-
viduals	due	to	the	heterogeneity	of	cells	 (Lopez-	Otin	et	al.,	2013). 
Therefore, the identification of “biological age (BA)” has been pro-
posed and has been explored over the last 10 years. To date, several 
forms of BAs which could be estimated based on the functions of 
cardiovascular, metabolic, renal, immune, and pulmonary systems 
(e.g.,	KDM-	biological	age	 (Klemera	&	Doubal,	2006; Levine, 2013) 
and PhenoAge (Levine et al., 2018)), or based on aging- related DNA 
methylation profiles (known as “epigenetic clocks” (Horvath & Raj, 
2018)), have been developed. Their discrepancies with chronological 
age, that is, the age accelerations (AAs), have been highly associated 
with aging- related health outcomes and mortality (Horvath & Raj, 
2018). However, previous studies on the associations of sleep with 
BAs or aging- related symptoms usually employed only one or two 
sleep behaviors or were conducted in a specific population with lim-
ited participants (Carroll et al., 2017, 2021; Carskadon et al., 2019; 
Han et al., 2018; Sun et al., 2020). Therefore, there is a dearth of 
studies exploring the associations between sleep and aging in larger 
populations with more detailed sleep information, and causal infer-
ence approaches are needed to uncover their causal nature explicitly.

Additionally, air pollution, especially the fine particulate matter 
[PM	<	2.5	μm	(PM2.5)], is a critical environmental exposure that could 
advance aging (Peters et al., 2021) and affect sleep quality (Liu et al., 
2020). Previous studies have linked aberrant accelerated epigene-
tic clocks with the increased exposure to various air pollutants in 
different populations (Peters et al., 2021). Plenty of evidence has 
also documented increased risks of sleep disorders (Liu et al., 2020) 
and sleep- related neurological impairments, for example, dementia 
and cognitive decline (Gao et al., 2021; Schikowski & Altug, 2020), 

associated with elevated air pollution levels. Nevertheless, since the 
direction of the sleep- aging relationship is still undetermined, no 
studies yet evaluated whether the sleep quality or BAs could modify 
or mediate the adverse effects of air pollution on biological aging or 
sleep quality, which is critical for developing interventions to miti-
gate the adverse effects of air pollution.

Therefore, we examined the causal associations of sleep (as 
reflected	 by	 six	 sleep	 behaviors)	 with	 KDM-	biological	 age	 and	
PhenoAge based on the measures of clinical traits of multiple organs 
in the UK Biobank, a national- wide population- based cohort study in 
the UK. We subsequently explored the associations of five major air 
pollutants	 (PM2.5,	PM	with	an	aerodynamic	diameter	between	2.5	
and 10 µm	[PMcoarse],	PM	with	an	aerodynamic	diameter	of	less	than	
10 µm	 [PM10], nitrogen dioxide [NO2], and nitrogen oxides [NOx]) 
with AAs and sleep, and explored whether AAs could mediate or 
modify the associations of air pollution with sleep, or whether the 
AAs could reflect the predisposition of participants regarding the 
impact of air pollution on their sleep quality.

2  |  RESULTS

2.1  |  Participants’ characteristics and air pollution 
distributions

Table 1 presents the baseline characteristics of 363,886 study par-
ticipants by sleep index category. Participants’ age (mean ± stand-
ard	deviation)	was	56.5	± 8.1 years and most of them were white. 
About	35%	and	55%	participants	were	former	and	never	smokers,	
respectively. The majority of them had healthy physical activity and 
>10 years of education. Nearly half were with a healthy daily intake 
of	alcohol.	Only	about	24%,	5%,	and	5.5%	participants	were	with	hy-
pertension, diabetes, and CHD diagnosed by doctors, respectively. 
Insomnia complaint is the most frequent (~75%)	sleep-	related	behav-
ior that the participants had and most participants (~82%)	could	get	
up	easily	in	the	mornings.	About	30%	have	a	high	sleep	quality	(sleep	
index =	5–	6)	and	15%	have	a	low	sleep	quality	(sleep	index	= 0– 2). 
The high sleep quality group has lower BAs and higher AAs than 
the low sleep group, and the medium sleep quality group (sleep 
index =	3–	4)	has	the	BAs	and	AAs	at	the	intermediate	level	 in	be-
tween. Both BAs were highly correlated with the other and with the 
chronological age (Figure S1). The average concentrations of air pol-
lutants were 9.96 ±	1.05	μg/m3 (interquartile range [IQR] =	1.27)	for	
PM2.5,	6.42	± 0.90 μg/m3 (IQR =	0.79)	for	PMcoarse, 19.23 ± 2.01 μg/
m3 (IQR =	2.33)	for	PM10, 28.93 ± 9.10 μg/m3 (IQR = 10.80) for NO2, 
and	43.58	±	15.47	μg/m3 (IQR =	16.44)	for	NOx.	Levels	of	all	air	pol-
lutants were highly correlated (Table S1, all p- values <0.001).

2.2  |  Associations of sleep with biological ages

We first examined the associations of both forms of AAs with each 
of the six sleep behaviors (Table 2). After controlling for all potential 
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TA B L E  1 Baseline	characteristics	of	all	participants	and	by	sleep	index	categorya

Characteristic
All
(n = 363,886)

Sleep index category

Low (index = 0– 2)
(n = 55,174)

Medium (index = 3– 4)
(n = 201,795)

High (index = 5– 6)
(n = 106,917)

Age (years) 56.52	(8.07) 56.13	(8.02) 56.88	(7.97) 56.04	(8.23)

BMI	(kg/m2) 27.39	(4.74) 28.78	(5.39) 27.48	(4.68) 26.51	(4.30)

Sex (male) 163,532	(44.9%) 25,765	(46.7%) 92,222	(45.7%) 45,545	(42.6%)

Race (white) 345,349	(94.9%) 50,998	(92.4%) 191,918	(95.1%) 102,433	(95.8%)

Smoking statusb

Current smoker 37,016	(10.2%) 8361	(15.2%) 20,715	(10.3%) 7940	(7.5%)

Former smoker 128,074	(35.3%) 20,204	(36.7%) 73,092	(36.3%) 34,778	(32.6%)

Never smoker 197,734	(54.5%) 26,432	(48.1%) 107,378	(53.4%) 63,924	(59.9%)

Healthy alcohol intake (yes)c 181,313	(49.9%) 25,002	(45.4%) 99,870	(49.5%) 56,441	(52.8%)

Healthy physical activity (yes)d 256,498	(71.7%) 34,491	(64.1%) 141,816	(71.5%) 80,191	(75.9%)

Years	of	education	(>10 years) 236,963	(65.1%) 33,833	(61.3%) 129,472	(64.2%) 73,658	(68.9%)

Major	diseasese

Hypertension 86,758	(23.8%) 15,475	(28.1%) 49,993	(24.8%) 21,290	(19.9%)

Diabetes 17,883	(4.9%) 4270	(7.7%) 9972	(4.9%) 3641	(3.4%)

Coronary heart disease 19,931	(5.5%) 4439	(8.1%) 11,253	(5.6%) 4239	(4.0%)

Biological ages

KDM-	biological	age 49.11	(11.87) 49.57	(11.68%) 49.43	(11.84) 48.26	(11.96)

KDM-	biological	age	
acceleration

−7.41	(9.09) −6.56	(8.96) −7.45	(9.10) −7.78	(9.11)

PhenoAge 47.70	(9.73) 46.19	(9.77) 45.92	(9.62) 44.42	(9.79)

PhenoAge acceleration −8.82	(5.34) −9.94	(5.50) −10.96	(5.09) −11.62	(4.89)

Components of biological ages

FEV1 (L)f 2.80	(0.74) 2.75	(0.74) 2.80	(0.74) 2.84	(0.74)

SBP (mm Hg)f 139.64	(19.35) 139.10 (19.06) 140.12	(19.34) 139.04	(19.50)

Total cholesterol (mg/dl)f 220.46	(42.92) 218.88	(44.34) 220.85	(43.14) 220.55	(41.74)

Glycated	hemoglobin	(%)f 5.44	(0.56) 5.52	(0.66) 5.44	(0.56) 5.38	(0.50)

Blood urea nitrogen (mg/dl)f 15.10	(3.64) 15.06	(3.83) 15.14	(3.65) 15.03	(3.53)

Lymphocyte	(%)g 28.98	(7.28) 28.91	(7.40) 28.98	(7.29) 29.02	(7.21)

Mean	cell	volume	(fl)g 82.78	(5.17) 82.73	(5.31) 82.79	(5.17) 82.78	(5.11)

Serum glucose (mg/dl)g 91.40	(17.95) 92.82	(21.14) 91.46	(17.91) 90.55	(16.09)

Red	cell	distribution	width	(%)g 13.46	(0.89) 13.53	(0.95) 13.46	(0.88) 13.43	(0.88)

White blood cell count (1000 
cells/μl)g

6.86	(1.76) 7.05	(1.86) 6.87	(1.77) 6.74	(1.69)

Albumin (g/dl)f,g 4.52	(0.24) 4.51	(0.25) 4.52	(0.24) 4.53	(0.24)

Creatinine (mg/dl)f,g 0.81	(0.17) 0.82	(0.17) 0.81	(0.17) 0.81 (0.16)

C- reactive protein (mg/dl)f,g 0.25	(0.41) 0.30	(0.47) 0.25	(0.41) 0.22	(0.37)

Alkaline phosphatase (U/L)f,g 83.04	(23.9) 85.50	(25.36) 83.34	(23.66) 81.22	(23.42)

Sleep behaviors for sleep index

No self- reported snoring 
(behavior 1)

227,927	(62.6%) 17,018	(30.8%) 116,296	(57.6%) 94,613	(88.5%)

Early chronotype (behavior 2) 229,411	(63.0%) 11,256	(20.4%) 120,434	(59.7%) 97,721	(91.4%)

No frequent daytime 
sleepiness (behavior 3)

277,377	(76.2%) 22,947	(41.6%) 151,197	(74.9%) 103,233	(96.6%)

Sleep	7–	8	h/day	(behavior	4) 248,038	(68.2%) 17,552	(31.8%) 128,967	(63.9%) 101,519	(95.0%)

(Continues)
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covariates, we found that four and five sleep behaviors were nega-
tively	 associated	 with	 KDM-	biological	 AA	 and	 PhenoAge	 accelera-
tion, respectively. Early chronotype and normal sleep duration were 
significantly associated with both AAs. Early chronotype was associ-
ated	with	0.071-		and	0.234-	year	decreases	in	KDM-	biological	AA	and	
PhenoAge acceleration, respectively. And, normal sleep duration was 
associated	with	0.245-		and	0.206-	year	decreases	 in	KDM-	biological	

AA	and	PhenoAge	acceleration,	respectively.	KDM-	biological	AA	was	
additionally associated with self- reported snoring and insomnia, and 
PhenoAge acceleration was additionally related to frequent daytime 
sleepiness and difficulties in getting up in the mornings. We further ob-
served significant negative associations between the continuous sleep 
index and both AAs (Table 2 and Figure 1a,b). One unit increase in the 
sleep	 index	was	associated	with	0.104-		and	0.119-	year	decreases	 in	

Characteristic
All
(n = 363,886)

Sleep index category

Low (index = 0– 2)
(n = 55,174)

Medium (index = 3– 4)
(n = 201,795)

High (index = 5– 6)
(n = 106,917)

Never/rarely insomnia 
(behavior	5)

88,533	(24.3%) 2925	(5.3%) 32,888	(16.3%) 52,720	(49.3%)

Getting up easy in morning 
(behavior 6)

299,436	(82.3%) 21,529	(39.0%) 171,919	(85.2%) 105,988	(99.1%)

Sleep index (continuous) 3.77	(1.23) 1.69	(0.54) 3.58	(0.49) 5.19	(0.40)

aMean	values	(standard	deviation)	for	continuous	variables	and	n	(%)	for	categorical	variables.
bData missing in 1062 participants.
cHealthy alcohol intake: male: <28g/day; female: <14g/day;	data	missing	in	23	participants.
dHealthy	physical	activity:	≥150	min/week	moderate	or	≥75	min/week	vigorous	or	150	min/week	mixed	(moderate	+ vigorous) activity; data missing 
in 6066 participants.
eMajor	disease	diagnosed	by	doctor.
fEmployed	to	construct	KDM-	biological	age
gEmployed to construct PhenoAge.

TA B L E  1 (Continued)

TA B L E  2 Associations	of	six	sleep	behaviors	and	sleep	index	with	the	accelerations	of	biological	agesa

Sleep behaviors

KDM- biological age acceleration (years) PhenoAge acceleration (years)

Coefficients (SE) p- Value Coefficients (SE) p- Value

Self- reported snoring No −0.287	(0.023) <0.0001 0.065	(0.067) 0.29

Yes Ref Ref

Chronotype Early −0.071	(0.022) 0.0015 −0.234	(0.017) <0.0001

Later Ref Ref

Frequent daytime sleepiness No −0.015	(0.025) 0.56 −0.191	(0.019) <0.0001

Yes Ref Ref

Sleep duration Normal	(7–	8	h) −0.245	(0.023) <0.0001 −0.206	(0.017) <0.0001

Short or long Ref Ref

Insomnia Never or rarely −0.079	(0.025) 0.0018 −0.029	(0.019) 0.12

Sometimes or often Ref Ref

Getting up in morning Very or fairly easy −0.009	(0.029) 0.76 −0.341	(0.021) <0.0001

Not or not very easy Ref Ref

Sleep index (continuous, 0– 6) −0.104	(0.009) <0.0001 −0.119	(0.007) <0.0001

Sleep index (category) High	(5–	6) −0.335	(0.034) <0.0001 −0.443	(0.025) <0.0001

Medium	(3–	4) −0.179	(0.031) <0.0001 −0.319	(0.023) <0.0001

Low (0– 2) Ref Ref

aModel	adjusted	for	age,	sex,	race,	BMI,	smoking	status,	healthy	alcohol	intake,	healthy	physical	activity,	years	of	education	(<10	years	or	≥10	years),	
hypertension, diabetes, and coronary heart disease. The examination center was controlled for as a random effect to account for the potential 
residual	bias	from	examinations.	Bolded	values	that	were	below	the	significance	threshold,	which	was	0.05/(8*2)	= 0.0031, were considered as 
statistically significant.
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KDM-	biological	AA	and	PhenoAge	acceleration,	respectively.	The	AAs	
of	 the	 high	 sleep	 quality	 group	were	 0.335	 (KDM)-		 and	 0.443-	year	
(PhenoAge) lower than the low sleep quality group, and the changes in 
both AAs of the medium sleep quality group were at the intermediate 

levels. As illustrated in Figure 1c,d, monotonic negative dose- response 
relationships between continuous sleep index and both AAs were 
observed. Sensitivity analysis in psychiatric illness- free participants 
showed slightly attenuated but still robust associations (Table S2), 

F I G U R E  1 Averaged	age	accelerations	by	sleep	index	and	best-	fitting	dose-	response	curves.	In	panels	a	and	b,	the	blue	bars	are	the	mean	
values of z- scored age accelerations by the sleep index, error bars are the standard deviations of the age accelerations; in panels c and d, the 
solid	lines	are	the	point	estimations,	the	blue/red	dash	lines	are	the	95%	confidence	limits,	the	green	dash	lines	are	the	reference	lines,	and	
the dots are the knots at sleep score =	1,	3,	and	5
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TA B L E  3 Causal	associations	between	sleep	index	and	biological	age	accelerations	with	unweighted	genetic	risk	scoresa

KDM- biological age acceleration (years) PhenoAge acceleration (years)

Coefficients (SE) p- Value Coefficients (SE) p- Value

(1) Sleep index → Biological ages

Observed effects −0.129	(0.011) <0.0001 −0.153	(0.008) <0.0001

Genetic- predicted effects −1.654	(0.037) <0.0001 −0.808	(0.028) <0.0001

(2) Biological ages → sleep index

Observed effects −0.034	(0.003) <0.0001 −0.044	(0.002) <0.0001

Genetic- predicted effects 0.099 (0.068) 0.15 0.008 (0.011) 0.48

aEffects	were	estimated	by	one	SD	change	in	the	sleep	index	or	biological	age	accelerations.	Models	were	adjusted	for	age,	sex,	race,	BMI,	smoking	
status, healthy alcohol intake, healthy physical activity, years of education (<10	years	or	≥10	years),	hypertension,	diabetes,	and	coronary	heart	
disease. The examination center was controlled for as a random effect. The genetic risk scores for sleep index and biological age accelerations 
were	unweighted.	Bolded	values	that	were	below	the	significance	threshold,	which	was	0.05/(2*2*2)	=	0.00625,	were	considered	as	statistically	
significant.
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which suggests that the influence of underlying psychiatric illness on 
the primary findings might be minor.

Furthermore, to investigate the causal associations between 
sleep	and	AAs,	we	conducted	 two	MR	analyses	 in	 two	directions.	
Constructed genetic risk scores (GRSs) have the acceptable variance 
explained ranging from ~2.3%	(for	sleep	duration)	to	~51%	(for	KDM-	
biological	AA)	 for	 the	MR	analyses	 (Table	S3).	As	demonstrated	 in	
Table 3 with unweighted GRSs for sleep index and AAs, we ob-
served significant negative associations between genetic- predicted 
sleep	 index	 and	 both	AAs.	However,	 the	 genetic-	predicted	KDM-	
biological AA was positively associated with sleep index, and the 
negative association between genetic- predicted PhenoAge acceler-
ation and sleep index was not statistically significant. Similar trends 
were	also	observed	for	each	of	the	six	sleep	behaviors	(Table	S4)	and	
another sensitivity analysis with weighted GRSs of sleep additionally 
demonstrated	similar	trends	for	each	scenario	(Table	S5).	Altogether,	
these results indicate that sleep quality was more likely to be the 
determinant of the change in AAs rather than a consequence.

2.3  |  Joint effects of air pollution and sleep on 
biological ages

Given it was more plausible that accelerated AAs were the conse-
quences of impaired sleep quality, along with the known association 
between air pollution and biological aging, we validated the associa-
tions of the five air pollutants with each AA and explored the hy-
pothesis that whether sleep index could mediate the effects of air 
pollutants	on	AAs.	As	shown	in	Table	S6,	PM2.5 and NO2 were the 
two air pollutants that were significantly associated with both AAs 
in models without the adjustment of sleep index. An IQR increase 
in	 PM2.5	 level	 was	 associated	 with	 0.060-		 and	 0.042-	year	 higher	
KDM-	biological	AA	and	PhenoAge	acceleration	(p- values < 0.0001), 
respectively. The same change in NO2 level was associated with 
0.097-		 and	 0.093-	year	 higher	 KDM-	biological	 AA	 and	 PhenoAge	
acceleration (p- values < 0.0001), respectively. Their effects and p- 
values were slightly reduced in models which additionally controlled 
for	sleep	index.	Meanwhile,	the	effects	of	sleep	index	on	both	AAs	
were also marginally altered in this mutual adjustment model. To un-
derstand their joint effects explicitly, we classified the participants 
based on binary air pollution levels (by median) and sleep index cat-
egory, and then observed clear and stepwise increasing trends of the 
joint effects of both factors on the two AAs (Figure 2). Particularly, 
compared to the group with high sleep quality and lower exposure 
to	PM2.5, people with low sleep quality and higher exposure had a 
0.397-		and	0.496-	year	higher	KDM-	biological	AA	and	PhenoAge	ac-
celeration (p- values <	0.0001),	respectively	(Table	S7).

2.4  |  Modifying effects of sleep quality

According to the robust joint effects of air pollution and sleep on 
AAs, we additionally explored the potential modifying effect of 

sleep quality on the associations between air pollution and AAs 
since sleep is a modifiable factor that could be intervened by human 
behaviors relatively easily. As shown in Figure 3 and Table S8, 
we observed a robust modifying effect of sleep quality on the air 
pollution- AA associations (p- values of interaction terms <0.001). 
Particularly,	an	IQR	increase	in	PM2.5 concentration was associated 
with	0.009-	,	0.044-	,	and	0.074-	year	increase	in	PhenoAge	accelera-
tion among people with high, medium, and low sleep quality, respec-
tively. The same increase in NO2 concentration was associated with 
0.048-	,	 0.098-	,	 and	0.133-	year	 increase	 in	PhenoAge	acceleration	
among people with different sleep qualities. Even though not all in-
teractions of each sleep pattern with air pollutants were statistically 
significant (Table S9), a clear trend was observed that participants 
with healthier sleep patterns were with less accelerated AAs under 
the exposure of both pollutants compared to those without health-
ier patterns. We further evaluated the linearities and dose- response 
relationships	of	 the	PM2.5 and NO2 with both AAs. Non- linear re-
lationships for each air pollutant were observed (Figures 4 and 5). 
Modifying	effects	of	sleep	quality	on	the	changes	in	both	biological	
AAs	could	be	distinguished	under	relatively	lower	PM2.5 (~10 μg/m3, 
Figure 4) and NO2 levels (~30 μg/m3, Figure 5).

3  |  DISCUSSION

In this large cohort of middle-  and elderly- aged adults, we dem-
onstrated that worsening sleep quality could accelerate biological 
aging with BAs estimated by two well- established algorithms and a 
comprehensive sleep index combining the impacts of six major sleep 
disorders. We further observed that people with low sleep quality 
and	higher	 exposure	 to	PM2.5 or NO2 had the highest AAs. Sleep 
quality	 could	 also	 modify	 the	 associations	 of	 elevated	 PM2.5 and 
NO2 levels with accelerated aging. For instance, an IQR increase in 
PM2.5	concentration	was	associated	with	0.009-	,	0.044-	,	and	0.074-	
year increase in PhenoAge acceleration among people with high, 
medium, and low sleep index, respectively.

To date, our study is the first investigation demonstrating that 
impaired sleep quality could accelerate human aging in a large pop-
ulation with the state- of- art of causal interpretation. Our observed 
negative sleep- BA association has been partially suggested by previ-
ous studies. In Han et al.’s study, they reported a positive association 
of sleep duration of >8 h/day with an increased BA estimated based 
on five phenotypes (Han et al., 2018), which was also found in our 
study that abnormal sleep duration was associated with increased 
AAs. Additionally, Carroll et al. and Carskadon et al. separately linked 
insomnia and insufficient sleep duration with accelerated epigenetic 
clocks among older females (Carroll et al., 2017), pregnant women 
(Carroll et al., 2021), and freshmen (Carskadon et al., 2019), respec-
tively. In line with these studies, we observed increasing patterns 
of AAs under worsening general sleep quality. Previous studies also 
provided much more marginal evidence that is consistent with our 
findings with respect to other aging biomarkers. For example, in a 
study of physicians, overnight on- call participants had lower baseline 
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DNA repair gene expression and more DNA breaks than participants 
who did not work overnight (Cheung et al., 2019). And, shortened 
telomere length, a well- known biomarker of cellular aging, was also 
found in relation to <6 h of sleep (Liang et al., 2011) and chronic poor 
sleep quality (Cribbet et al., 2014), respectively. Sun et al. (2020) also 
preliminarily found that poor sleep was associated with being frail, 
another aging- related syndrome. Taken together, these complex 
aging biomarkers including BAs provided an exciting new avenue for 
investigating the underlying biological mechanisms of the interplay 
between sleep-  and aging- related health outcomes. We additionally 
found that four behaviors showed inconsistent associations with the 
two AAs. Such unique patterns might be explained by that the be-
haviors may be more closely related to the unique features of each 
BA	as	the	KDM-	biological	age	is	inclined	to	reflect	the	loss	of	sys-
tem integrity while PhenoAge is more related to the risk of mortality 
(Hastings et al., 2019; Parker et al., 2020).

More	 intriguingly,	 although	 aging	 is	 tied	 to	 sleep	 difficulties	
firmly,	due	to	the	relatively	limited	sample	size	and	cross-	sectional	
nature, previous studies were not able to address the causal asso-
ciations. Our study answered this scientific question of interest by 
a	causal	inference	test	using	the	MR	scheme.	We	found	that	it	was	
more likely that sleep behaviors lead to the changes in AAs with 

statistically significant associations between genetic- predicted 
sleep index and both AAs. This suggests that sleep quality may af-
fect the aging of organs and systems reflected by two BAs based 
on mainly blood biochemistry biomarkers, and indicates that im-
proving modifiable aspects of sleep may help to lessen the adverse 
effects associated with biological aging and to attenuate the risks 
of aging- related diseases. Since BAs have been associated with car-
diovascular health (Zhong et al., 2016), our finding is in agreement 
with that sleep quality is a preventable risk factor of cardiovascular 
events,	which	 have	 been	well-	established	 and	 recognized	 in	 large	
population- based studies and clinical trials (Covassin & Singh, 2016). 
However, our study did not fully exclude the possibility that aging 
could be one of the major determinants of sleep impairment. Given 
the	GRSs	of	sleep	patterns	could	only	explain	2.25%–	8.1%	variances	
in sleep patterns (Table S3), multiple factors including environmen-
tal, social, lifestyle, medical, and psychiatric conditions may contrib-
ute to elevated AA and their contributions could not be captured 
by	the	genetic	background	(Lopez-	Otin	et	al.,	2013). Explained vari-
ances for the GRSs of AAs were much higher than that of sleep pat-
terns since selected SNPs were retrieved from the same cohort.

Furthermore, literatures have established the adverse impact 
of air pollution on sleep quality in different perspectives (Liu et al., 

F I G U R E  2 Joint	associations	of	sleep	index	and	air	pollution	levels	with	biological	age	accelerations.	The	dots	are	point	estimations	and	
the	error	bars	are	the	95%	confidence	limits
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2020), such as the risks of breathing problems, insomnia, sleep effi-
ciency, and overall sleep quality, as well as on aging in different pop-
ulations (Peters et al., 2021). With the previously determined causal 
association between sleep and AAs in the first step, we expected to 
find a robust mediation effect of sleep on the air pollution- AA rela-
tionship. However, we observed very limited changes in the effects 
of different air pollutants on AAs in models mutually adjusting for 
sleep index, which suggests that sleep does not play a major role in 
mediating the effects of air pollution on the two AAs. Since sleep is 
predominantly related to cognitive health and brain aging (Li et al., 
2018), especially the structural and physiological changes that occur 
in the brain, such limited mediation effects could be explained by the 
minimal capacity of the two BAs in measuring aging- related neuro-
logical changes. The clinical traits implemented in the constructions 
of the two BAs were not specifically associated with such abnormal 
alterations related to the central neuron system. This is in line with 
the findings of our sensitivity analysis in psychiatric illness- free par-
ticipants, suggesting that the two BAs may not be closely related 
to the aging- related damage of the neurological systems. Instead, 
we observed prominent modifying effects of sleep on the air pol-
lution- BA relationship, which implies that a healthy and adequate 
sleep may help attenuate the adverse aging effects of air pollution 

on non- neurological systems (Figure S2). Also, we noted response 
curves	with	different	features	of	the	PM2.5 and NO2 with both AAs. 
Because	 KDM-	biological	 age	 is	 more	 related	 to	 the	 capacity	 and	
function of systems and organs (Hägg et al., 2019), and PhenoAge is 
skewed to predict the mortality risk of humans (Levine et al., 2018). 
Such various features of the modifying effects of sleep on the AAs 
suggest	that	sleep	may	help	lessen	the	detrimental	impacts	of	PM2.5 
and NO2 on body functions at a lower exposure level and could also 
attenuate the lethal effects of the two pollutants on mortality when 
they reached a higher level.

Regarding the underlying biological mechanisms under the in-
teresting modifying effects of sleep, one of the potential explana-
tions is the reduction of oxidative stress and inflammation during 
healthy and adequate sleep. First, air pollutants can induce oxida-
tive stress, the ability to respond to which has been identified as 
a key determinant of biological aging (Peters et al., 2021). Sleep 
may help with the anti- oxidative mechanism by removing reactive 
oxygen	species	resulting	from	air	pollution	insults	(Atrooz	&	Salim,	
2020). But given our BAs were constructed based on nonoxidative 
biomarkers, this hypothesis could be validated in future biologi-
cal studies. Beyond this, sleep may also help enhance immune de-
fenses	and	stabilize	the	dysregulation	of	inflammatory	responses	

F I G U R E  3 Associations	of	air	pollution	levels	with	biological	age	accelerations	by	sleep	quality.	The	dots	are	point	estimations	and	the	
error	bars	are	the	95%	confidence	limits
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under air pollution exposure. Previous studies have suggested that 
sleep impairment is associated with increased serum levels of C- 
reactive	protein	(CRP),	interleukin	(IL)-	1,	IL-	6,	IL-	17,	tumor	necro-
sis factor α, and nuclear factor- kappa B in addition to alteration 
of numbers and activity of macrophages and natural killer cells 

(Atrooz	 &	 Salim,	 2020;	 Meier-	Ewert	 et	 al.,	 2004). The aberrant 
changes in such systematic inflammation biomarkers have been 
found to be involved in the impact of air pollution on the integ-
rity of organs and the development of aging- related diseases (Wu 
et al., 2018). This could be a more possible biological mechanism 

F I G U R E  4 Best-	fitting	models	for	the	relationships	of	PM2.5 exposure with accelerations of two biological ages, by sleep quality. The solid 
lines	are	the	point	estimations,	the	dash	lines	are	the	95%	confidence	limits,	and	the	dots	are	the	knots	at	5th,	50th,	and	95th	percentiles	of	
PM2.5 concentration. Red, blue, and green colors represent low, medium, and high sleep quality, respectively
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F I G U R E  5 Best-	fitting	models	for	the	relationships	of	NO2 exposure with accelerations of two biological ages, by sleep quality. The solid 
lines	are	the	point	estimations,	the	dash	lines	are	the	95%	confidence	limits,	and	the	dots	are	the	knots	at	5th,	50th,	and	95th	percentiles	of	
NO2 concentration. Red, blue, and green colors represent low, medium, and high sleep quality, respectively
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as our BAs have components related to inflammation such as lym-
phocyte proportion and CRP.

The	major	strengths	of	this	study	include	the	large	sample	size	
and relatively sufficient phenotype and biochemistry data for the 
biological age estimation. Several limitations are notable when in-
terpreting the results. First, UK Biobank is a volunteer cohort, and 
participants are likely healthier than the general population, which 
may limit the effect of sleep on BAs in our analysis as their AAs are 
expected to be lower than the general population theoretically. 
Furthermore, the measurement bias of air pollution must be noted. 
The air pollution data we used were mostly a single measurement of 
the annual average outdoor air pollution level in 2010 since the home 
addresses of the participants were unavailable during follow- up. 
Because the initial assessment visit of UK Biobank was from 2006 to 
2010, we were unable to determine the lag or short- term (<1 month) 
effects of air pollution on both sleep and AAs. Also, as most indi-
viduals spend a large amount of time indoors, individual exposure 
to all forms of air pollution may differ from that indicated by the 
ambient outdoor levels we used. Additionally, as sleep data used in 
our analyses were self- reported, misclassification of sleep behaviors 
might exist, and the contributions of each included behavior cannot 
be weighted due to the lack of relevant studies. Such bias may atten-
uate our findings toward the null and underestimate the effects we 
observed.	Meanwhile,	our	sleep	index	dichotomized	six	sleep	behav-
iors for simplicity rather than including all sleep behaviors or mea-
suring the changes of sleep behaviors before and after the survey, 
which may cause residual bias to some extent. Both aforementioned 
limitations highlight the need for future studies with comprehensive 
measures of sleep quality with well- established questionnaires to 
confidently validate our findings of this study. Cautious is recom-
mended to interpret our main results as an exploratory finding as 
the sleep index is yet validated clinically in comparison with other 
established sleep scales including Pittsburgh sleep quality index 
(PSQI) or Ford Insomnia response to stress Test (FIRST). Also, as a 
study	with	a	cross-	sectional	nature,	even	though	the	MR	could	make	
causal inference to somewhat extent, caution must still be taken in 
the causal interpretation on sleep and aging. And, given the genome- 
wide association studies (GWAS) we used to build the GRS for BAs is 
the only available one but was conducted in UK Biobank, these SNPs 
we selected may be biased and not objective adequately. Therefore, 
we conducted a sensitivity analysis using 11 SNPs reported in a 
GWAS of DNA methylation age to create the GRS for both BAs/AAs 
(Gibson et al., 2019) as the DNA methylation age has been highly 
associated with the two BAs we investigated in this study (Belsky 
et al., 2020). The findings were in line with our primary findings by 
showing that sleep quality was more likely to be the determinant of 
the change in AAs rather than a consequence (Table S10). Last, par-
ticipants in this study were mostly of European descent, which limits 
the	generalization	of	our	findings	to	other	races.

In conclusion, our study is the first identifying the accelerating 
effect of poor sleep quality on biological aging. With this premise, 
we further found that sleep and air pollution were independently 
associated with biological aging, and sleep quality may modify the 

aging effects of air pollution. These findings not only provide ex-
ploratory evidence supporting sleep as an aging contributor but also 
underscore the importance of high- quality sleep as an intervention 
approach to mitigate the negative impact of air pollution on human 
aging. Nevertheless, aging is associated with a myriad of changes 
in psychological, social, spiritual, financial, and lifestyle across the 
lifetime	(Lopez-	Otin	et	al.,	2013), and the sleep index we used also 
needs clinical validations. Further longitudinal studies with a more 
detailed evaluation of aging and comprehensive clinical measures of 
sleep quality are highly warranted to validate our findings and fur-
ther determine the underlying biological mechanisms.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study design and population

Study design and methods of UK Biobank have been reported in de-
tail previously (Sudlow et al., 2015). In brief, UK Biobank is a large- 
scale	prospective	study	with	502,536	participants	aged	37–	73	years	
recruited in 2006– 2010 with multiple follow- ups. At the initial visit, 
participants provided information on sleep and other health- related 
aspects through touch- screen questionnaires and physical measure-
ments. Blood samples were collected for genotyping and biochem-
istry tests. UK Biobank research has approval from the North West 
Multicenter	Research	Ethical	Committee.	All	participants	provided	
written informed consent for the study. In this analysis, we included 
363,886 participants with available data of sleep behaviors, meas-
ures of biological traits for BA construction, and air pollution. This 
report followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) reporting guideline. This re-
search has been conducted using the UK Biobank Resource under 
Application	Number	44430.

4.2  |  Assessment of sleep behaviors

Due	to	the	 lack	of	specialized	questionnaires	of	sleep,	such	as	PSQI	
or FIRST at the baseline survey of UK Biobank, we instead used an 
algorithm based on self- reported sleep quality information that was 
first introduced in 2020 for UK Biobank cohort (Fan et al., 2020). This 
algorithm has been used widely since 2020 and was used to make an 
index	for	sleep	with	5	sleep-	related	items	(Fan	et	al.,	2020; Li, Zheng, 
et al., 2021; Li, Xue, et al., 2021)	or	4	items	(Sambou	et	al.,	2021), and 
showed the capacity as an alternative approach to reflect the sleep 
patterns	of	the	participants	of	UK	Biobank.	Therefore,	to	optimize	the	
sleep quality assessment in the UK Biobank, we used six self- reported 
sleep behaviors in this study: snoring, chronotype, daytime sleepiness, 
sleep	duration,	and	insomnia	that	were	used	in	5-	item	sleep	score	(Fan	
et al., 2020) and the “difficulties in getting up in the morning” pattern 
that was found to be related to the risk of terminated health- span 
(Sambou et al., 2021) to enhance the measurement of sleep quality and 
the capacity of the below- mentioned sleep index (Table S11). Detailed 
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assessment of sleep behaviors can be found in supplementary meth-
ods. According to the six sleep behaviors, we generated a sleep index. 
The low- risk categories of each component were no self- reported 
snoring, early chronotype (“morning” or “morning than evening”), no 
frequent daytime sleepiness (“never/rarely” or “sometimes”), normal 
sleep	duration	(7–	8	h/day),	reported	never	or	rarely	having	insomnia	
symptoms, and getting up easy in morning (“fairly easy” or “very easy”). 
For each sleep behavior, the participant received a score of 1 if he or 
she was classified as the low- risk group or 0 if otherwise as the high- 
risk group. All component scores were summed to obtain a continu-
ous sleep index ranging from 0 (worst) to 6 (best), with a higher index 
indicating a general better sleep quality. We further defined a sleep 
index	category	as	high	(5–	6),	medium	(3–	4),	and	low	(0–	2)	based	on	the	
continuous sleep index.

4.3  |  Assessment of biological ages

We computed the BAs derived from a total of 12 blood chemistry 
traits, systolic blood pressure, and lung function data (Table S11) with 
two commonly accepted algorithms, the Klemera– Doubal method (i.e., 
KDM)	and	the	PhenoAge	method.	Both	algorithms	were	initially	trained	
in data from the National Health and Nutrition Examination Survey 
(NHANES) following the method originally described by Klemera et al. 
(Klemera & Doubal, 2006; Levine, 2013) and Levine et al. (2018) with 
two sets of nine clinical traits (Table 1). The two BAs were constructed 
with	different	purposes.	KDM-	biological	age	was	computed	from	an	
algorithm derived from a series of regressions of nine individual bio-
markers on chronological age in the reference population to quantify 
the decline of system integrity, and PhenoAge was computed from an 
algorithm	derived	 from	multivariate	 analysis	 of	mortality	 hazards	 to	
estimate the risk of death (Hastings et al., 2019; Parker et al., 2020). 
The two BAs were developed in the white population (Hastings et al., 
2019) and were stable in other populations and cohorts (Parker et al., 
2020). The selected traits, algorithms, and corresponding R code can 
be found in the R package ‘BioAge’ at: https://github.com/dayoo 
nkwon/ BioAge and corresponding publications (Belsky et al., 2020; 
Kwon & Belsky, 2021).	Missing	values	of	each	trait	consisted	of	<10%	
of all traits and were, therefore, imputed by the median value of the 
corresponding trait. The residual differences between the estimated 
BAs and chronological age were considered as AAs since this approach 
could	minimize	 the	heterogeneities	between	 the	measurement	plat-
forms of each component of BAs (Hägg et al., 2019; Horvath & Raj, 
2018). The residuals were calculated by a linear regression procedure 
in which one of the BAs was the outcome and chronological age was 
the independent variable. AAs were the targeted outcomes/modifiers 
in our primary analyses.

4.4  |  Exposure assessments

As previously described (Wang et al., 2021), the annual average con-
centrations	of	PM2.5,	PMcoarse,	PM10, NO2, and NOx were calculated 

centrally by the UK Biobank using a Land Use Regression (LUR) 
model	developed	by	the	ESCAPE	project.	More	details	on	the	air	pol-
lution data of the UK Biobank cohort and LUR model can be found 
at: http://bioba nk.ndph.ox.ac.uk/showc ase/label.cgi?id=114 and in 
the	supplement	methods.	The	exposure	data	of	PM2.5,	PMcoarse, and 
NOx were collected in 2010, while annual concentrations of NO2 
and	PM10	were	available	 for	several	years	 (2005,	2006,	2007,	and	
2010 for NO2,	and	2007	and	2010	for	PM10). Since the baseline sur-
vey of UK Biobank was conducted from 2006 to 2010, to achieve 
a better risk prediction, averaged values of NO2	and	PM10 were in-
cluded in the analysis.

4.5  |  Measurements of covariates

We	included	age,	sex,	body	mass	index	(BMI),	race,	smoking	status,	
healthy alcohol intake status, healthy physical activity status, years 
of education (<10 years), and prevalent hypertension, coronary heart 
disease (CHD), and diabetes that could be associated with aging as 
well as sleep quality as covariates to address potential confound-
ing. Height and weight were measured by trained nurses during the 
baseline	assessment	center	visit,	and	BMI	was	calculated	by	dividing	
weight in kilograms by the square of height in meters. Healthy alco-
hol intake status was defined as: male: <28 g/day; female: <14	g/
day.	Healthy	physical	activity	status	was	defined	as:	≥150	min/week	
moderate	or	≥75	min/week	vigorous	or	150	min/week	mixed	(mod-
erate +	vigorous)	activity.	The	Metabolic	Equivalent	Task	(MET)	min-
utes based on items from the short International Physical Activity 
Questionnaire (IPAQ) was adopted to assess physical activity. The 
history of hypertension and diabetes was based on self- reported in-
formation and medical records.

4.6  |  Construction of genetic risk scores of sleep 
index and biological ages

Detailed information on genotyping, imputation, and quality con-
trol in the UK Biobank study has been described previously (Sudlow 
et al., 2015). We created GRSs for each sleep behavior, sleep index, 
and	both	AAs	for	the	MR	analyses.	A	total	of	583	single-	nucleotide	
polymorphisms (SNPs) based on the up- to- date largest GWAS of 
the six sleep behaviors in ~1.3	million	participants	 from	23andMe	
and UK Biobank cohorts were selected for the GRS of six sleep be-
haviors and sleep index (reported p- value <	5	× 10−8) (Jansen et al., 
2019). For the GRS of AAs, we used the latest and the only GWAS 
on both BAs (Kuo et al., 2021), which, respectively, reported 16 and 
29	SNPs	that	were	robustly	associated	with	KDM-	biological	age	and	
PhenoAge (reported p- value <5	× 10−8). Because the SNPs were 
evaluated in pruned genetic data in previous studies, no further 
loci pruning was conducted in our study. Each selected SNP was re-
coded as 0, 1, or 2 according to the number of risk alleles, and miss-
ing SNP values of individuals were imputed. The unweighted GRSs 
were directly summed up and the weighted GRSs were calculated 

https://github.com/dayoonkwon/BioAge
https://github.com/dayoonkwon/BioAge
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=114
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by summing up after multiplied with its effect value, and then di-
vided	by	half	of	the	total	effect	size.	The	detailed	SNPs	were	dem-
onstrated in Table S12. The unweighted GRSs were employed in the 
primary analyses and the weighted ones for sleep index and AAs 
were used in the sensitivity analyses.

4.7  |  Statistical analysis

We first examined the associations of each sleep behavior and the 
sleep index with both forms of AAs using mixed- effect linear re-
gression models in which the AAs were the outcomes. We adjusted 
for covariates described in the previous section including chronic 
diseases and additionally controlled for the examination center in 
the model as a random effect to account for the potential residual 
bias from examinations. Since psychiatric disorders may affect sleep 
quality,	we	additionally	conducted	a	sensitivity	analysis	in	285,054	
participants that were free of dementia, depression, and anxiety. 
These disorders were ascertained using hospital inpatient records 
and	Patient	Health	Questionnaire	 (PHQ)-	4	questionnaire	as	previ-
ously	described	(Milaneschi	et	al.,	2021; Zhang et al., 2021).

Then,	 we	 performed	 one-	stage	 MR	 analyses	 to	 explore	 the	
causal relationships between sleep and BAs in two scenarios using 
mixed- effect linear regression models. The GRS of sleep index was 
used to predict sleep index genetically and to study the effect of 
sleep on BAs. The GRS of BA was used to predict AAs genetically 
and to study the effects of the two AAs on sleep quality. The statis-
tically significant genetic- predicted effect in either scenario that was 
in the same direction as the observed effect in the primary model 
would indicate the plausibility of a causal effect. Corresponding 
dose- response curves between sleep index and the two BAs were 
further assessed by restricted cubic spline regression (Desquilbet & 
Mariotti,	2010).	Models	were	adjusted	for	the	previously	described	
covariates and the sleep index =	1,	3,	and	5	were	selected	as	knots.

Based	on	the	results	of	MR	analyses,	the	next	part	of	our	study	
would test whether (a) sleep quality could mediate or modify the as-
sociation between elevated air pollution levels and accelerated AAs 
(i.e., if declined sleep index →the increased AAs) or (b) AAs could 
mediate or modify the association between elevated air pollution 
levels and declined sleep quality (i.e., if the increased AAs →declined 
sleep index). The possibility of the mediator role of the factors of 
interest would be examined by comparing the estimates of air pol-
lutants in mixed- effect linear regression models with air pollutants 
only with the ones in models with the mutual adjustment of both air 
pollutants and the potential mediator. If a robust mediation effect 
was identified, the mediation proportion would be estimated by the 
mediation	 analysis	 using	 the	 SAS	 function	 “PROC	 CAUSALMED”.	
Meanwhile,	the	possible	modifying	effects	of	the	factors	of	interest	
would be examined by an interaction term of air pollution and the 
factor in a mixed- effect linear regression model adjusting for cor-
responding air pollution and factors. If the interaction terms were 
statistically significant and hence suggested a likely modifying ef-
fect, a subgroup analysis by sleep index category or binary AAs (by 

median) would be conducted to test the effects of air pollution on 
AAs or sleep quality in a mixed- effect linear regression model. The 
effects of air pollutants in all models were demonstrated by one 
IQR increase in the concentrations. Corresponding dose- response 
curves and linearity of the relationships between air pollutants and 
BAs by sleep index category were subsequently assessed by re-
stricted	cubic	spline	regression	if	necessary.	The	5th,	50th,	and	95th	
percentiles were selected as knots. The ranges of air pollutants for 
curves were set according to the air quality guidelines of the WHO 
(World	Health	Organization,	2021) and their distributions in the UK 
Biobank cohort.

SAS	version	9.4	TS1M5	(SAS	Institute	Inc.)	was	used	to	conduct	
data cleaning and all analyses. A two- sided p- value of <0.05	was	
considered statistically significant. Bonferroni corrections were con-
ducted to correct the multiple comparisons according to the number 
of tests in each step of analysis accordingly.
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