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1  |  INTRODUC TION

Aging is a gradual and progressive deterioration in biological system 
integrity, which is thought to arise from the accumulation changes at 

the cellular level (Ferrucci et al., 2018). It is accompanied by changes 
in sleep quality, quantity, and architecture, especially in elderly adults 
(Carroll & Prather, 2021). Nevertheless, the mutual causal association 
between sleep and accelerated aging is still in debate. Along with many 
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Abstract
Sleep has been associated with aging and relevant health outcomes, but the causal 
relationship remains inconclusive. In this study, we investigated the associations of 
sleep behaviors with biological ages (BAs) among 363,886 middle and elderly adults 
from UK Biobank. Sleep index (0 [worst]–6 [best]) of each participant was retrieved 
from the following six sleep behaviors: snoring, chronotype, daytime sleepiness, sleep 
duration, insomnia, and difficulties in getting up. Two BAs, the KDM-biological age 
and PhenoAge, were estimated by corresponding algorithms based on clinical traits, 
and their residual discrepancies with chronological age were defined as the age accel-
erations (AAs). We first observed negative associations between the sleep index and 
the two AAs, and demonstrated that the change of AAs could be the consequence 
of sleep quality using Mendelian randomization with genetic risk scores of sleep 
index and BAs. Particularly, a one-unit increase in sleep index was associated with 
0.104- and 0.119-year decreases in KDM-biological AA and PhenoAge acceleration, 
respectively. Air pollution is another key driver of aging. We further observed signifi-
cant independent and joint effects of sleep and air pollution (PM2.5 and NO2) on AAs. 
Sleep quality also showed a modifying effect on the associations of elevated PM2.5 
and NO2 levels with accelerated AAs. For instance, an interquartile range increase in 
PM2.5 level was associated with 0.009-, 0.044-, and 0.074-year increase in PhenoAge 
acceleration among people with high (5–6), medium (3–4), and low (0–2) sleep index, 
respectively. Our findings elucidate that better sleep quality could lessen accelerated 
biological aging resulting from air pollution.
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physiological alterations in normal aging, sleep behaviors change with 
aging independent of many factors including medical comorbidity and 
medications (Li et al., 2018). Some researchers thus suggest that sleep 
disorders are the consequence of aging-related changes in neuroen-
docrine function (Li et al., 2018). Meanwhile, sleep is also considered 
a restorative process that not only allows for energy renewal but also 
for cellular restoration (Carroll & Prather, 2021). Hence, the other hy-
pothesis is that the declines in sleep quality may lead to accelerated 
aging by triggering DNA damage and chronic inflammation to influ-
ence the compensatory/resiliency systems of the human body (Carroll 
& Prather, 2021). The lack of an established accurate measurement of 
aging, however, hinders the scientists from elucidating the directional-
ity and causal relationship between aging and sleep.

Aging is the sum of changes that occur at hierarchically orga-
nized levels in the human body (Ferrucci et al., 2018), which makes 
it hard to be captured by single age-related biomarkers employed in 
previous relevant studies. All individuals age chronologically at the 
same rate, but there is marked variation in their biological ages as 
we observe in real life that the people with the same chronologi-
cal age may not share the same aging-related symptoms (Ferrucci 
et al., 2018). Some could experience age-related decline faster than 
others. Moreover, as biological aging is a complex biological process 
in multiple organ systems, a single aging-related biomarker, such as 
telomere length or oxidative stress biomarkers, may not be able to 
completely depict the whole landscape of the aging process of indi-
viduals due to the heterogeneity of cells (Lopez-Otin et al., 2013). 
Therefore, the identification of “biological age (BA)” has been pro-
posed and has been explored over the last 10 years. To date, several 
forms of BAs which could be estimated based on the functions of 
cardiovascular, metabolic, renal, immune, and pulmonary systems 
(e.g., KDM-biological age (Klemera & Doubal, 2006; Levine, 2013) 
and PhenoAge (Levine et al., 2018)), or based on aging-related DNA 
methylation profiles (known as “epigenetic clocks” (Horvath & Raj, 
2018)), have been developed. Their discrepancies with chronological 
age, that is, the age accelerations (AAs), have been highly associated 
with aging-related health outcomes and mortality (Horvath & Raj, 
2018). However, previous studies on the associations of sleep with 
BAs or aging-related symptoms usually employed only one or two 
sleep behaviors or were conducted in a specific population with lim-
ited participants (Carroll et al., 2017, 2021; Carskadon et al., 2019; 
Han et al., 2018; Sun et al., 2020). Therefore, there is a dearth of 
studies exploring the associations between sleep and aging in larger 
populations with more detailed sleep information, and causal infer-
ence approaches are needed to uncover their causal nature explicitly.

Additionally, air pollution, especially the fine particulate matter 
[PM < 2.5 μm (PM2.5)], is a critical environmental exposure that could 
advance aging (Peters et al., 2021) and affect sleep quality (Liu et al., 
2020). Previous studies have linked aberrant accelerated epigene-
tic clocks with the increased exposure to various air pollutants in 
different populations (Peters et al., 2021). Plenty of evidence has 
also documented increased risks of sleep disorders (Liu et al., 2020) 
and sleep-related neurological impairments, for example, dementia 
and cognitive decline (Gao et al., 2021; Schikowski & Altug, 2020), 

associated with elevated air pollution levels. Nevertheless, since the 
direction of the sleep-aging relationship is still undetermined, no 
studies yet evaluated whether the sleep quality or BAs could modify 
or mediate the adverse effects of air pollution on biological aging or 
sleep quality, which is critical for developing interventions to miti-
gate the adverse effects of air pollution.

Therefore, we examined the causal associations of sleep (as 
reflected by six sleep behaviors) with KDM-biological age and 
PhenoAge based on the measures of clinical traits of multiple organs 
in the UK Biobank, a national-wide population-based cohort study in 
the UK. We subsequently explored the associations of five major air 
pollutants (PM2.5, PM with an aerodynamic diameter between 2.5 
and 10 µm [PMcoarse], PM with an aerodynamic diameter of less than 
10  µm [PM10], nitrogen dioxide [NO2], and nitrogen oxides [NOx]) 
with AAs and sleep, and explored whether AAs could mediate or 
modify the associations of air pollution with sleep, or whether the 
AAs could reflect the predisposition of participants regarding the 
impact of air pollution on their sleep quality.

2  |  RESULTS

2.1  |  Participants’ characteristics and air pollution 
distributions

Table 1 presents the baseline characteristics of 363,886 study par-
ticipants by sleep index category. Participants’ age (mean ± stand-
ard deviation) was 56.5 ± 8.1 years and most of them were white. 
About 35% and 55% participants were former and never smokers, 
respectively. The majority of them had healthy physical activity and 
>10 years of education. Nearly half were with a healthy daily intake 
of alcohol. Only about 24%, 5%, and 5.5% participants were with hy-
pertension, diabetes, and CHD diagnosed by doctors, respectively. 
Insomnia complaint is the most frequent (~75%) sleep-related behav-
ior that the participants had and most participants (~82%) could get 
up easily in the mornings. About 30% have a high sleep quality (sleep 
index = 5–6) and 15% have a low sleep quality (sleep index = 0–2). 
The high sleep quality group has lower BAs and higher AAs than 
the low sleep group, and the medium sleep quality group (sleep 
index = 3–4) has the BAs and AAs at the intermediate level in be-
tween. Both BAs were highly correlated with the other and with the 
chronological age (Figure S1). The average concentrations of air pol-
lutants were 9.96 ± 1.05 μg/m3 (interquartile range [IQR] = 1.27) for 
PM2.5, 6.42 ± 0.90 μg/m3 (IQR = 0.79) for PMcoarse, 19.23 ± 2.01 μg/
m3 (IQR = 2.33) for PM10, 28.93 ± 9.10 μg/m3 (IQR = 10.80) for NO2, 
and 43.58 ± 15.47 μg/m3 (IQR = 16.44) for NOx. Levels of all air pol-
lutants were highly correlated (Table S1, all p-values <0.001).

2.2  |  Associations of sleep with biological ages

We first examined the associations of both forms of AAs with each 
of the six sleep behaviors (Table 2). After controlling for all potential 
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TA B L E  1 Baseline characteristics of all participants and by sleep index categorya

Characteristic
All
(n = 363,886)

Sleep index category

Low (index = 0–2)
(n = 55,174)

Medium (index = 3–4)
(n = 201,795)

High (index = 5–6)
(n = 106,917)

Age (years) 56.52 (8.07) 56.13 (8.02) 56.88 (7.97) 56.04 (8.23)

BMI (kg/m2) 27.39 (4.74) 28.78 (5.39) 27.48 (4.68) 26.51 (4.30)

Sex (male) 163,532 (44.9%) 25,765 (46.7%) 92,222 (45.7%) 45,545 (42.6%)

Race (white) 345,349 (94.9%) 50,998 (92.4%) 191,918 (95.1%) 102,433 (95.8%)

Smoking statusb

Current smoker 37,016 (10.2%) 8361 (15.2%) 20,715 (10.3%) 7940 (7.5%)

Former smoker 128,074 (35.3%) 20,204 (36.7%) 73,092 (36.3%) 34,778 (32.6%)

Never smoker 197,734 (54.5%) 26,432 (48.1%) 107,378 (53.4%) 63,924 (59.9%)

Healthy alcohol intake (yes)c 181,313 (49.9%) 25,002 (45.4%) 99,870 (49.5%) 56,441 (52.8%)

Healthy physical activity (yes)d 256,498 (71.7%) 34,491 (64.1%) 141,816 (71.5%) 80,191 (75.9%)

Years of education (>10 years) 236,963 (65.1%) 33,833 (61.3%) 129,472 (64.2%) 73,658 (68.9%)

Major diseasese

Hypertension 86,758 (23.8%) 15,475 (28.1%) 49,993 (24.8%) 21,290 (19.9%)

Diabetes 17,883 (4.9%) 4270 (7.7%) 9972 (4.9%) 3641 (3.4%)

Coronary heart disease 19,931 (5.5%) 4439 (8.1%) 11,253 (5.6%) 4239 (4.0%)

Biological ages

KDM-biological age 49.11 (11.87) 49.57 (11.68%) 49.43 (11.84) 48.26 (11.96)

KDM-biological age 
acceleration

−7.41 (9.09) −6.56 (8.96) −7.45 (9.10) −7.78 (9.11)

PhenoAge 47.70 (9.73) 46.19 (9.77) 45.92 (9.62) 44.42 (9.79)

PhenoAge acceleration −8.82 (5.34) −9.94 (5.50) −10.96 (5.09) −11.62 (4.89)

Components of biological ages

FEV1 (L)f 2.80 (0.74) 2.75 (0.74) 2.80 (0.74) 2.84 (0.74)

SBP (mm Hg)f 139.64 (19.35) 139.10 (19.06) 140.12 (19.34) 139.04 (19.50)

Total cholesterol (mg/dl)f 220.46 (42.92) 218.88 (44.34) 220.85 (43.14) 220.55 (41.74)

Glycated hemoglobin (%)f 5.44 (0.56) 5.52 (0.66) 5.44 (0.56) 5.38 (0.50)

Blood urea nitrogen (mg/dl)f 15.10 (3.64) 15.06 (3.83) 15.14 (3.65) 15.03 (3.53)

Lymphocyte (%)g 28.98 (7.28) 28.91 (7.40) 28.98 (7.29) 29.02 (7.21)

Mean cell volume (fl)g 82.78 (5.17) 82.73 (5.31) 82.79 (5.17) 82.78 (5.11)

Serum glucose (mg/dl)g 91.40 (17.95) 92.82 (21.14) 91.46 (17.91) 90.55 (16.09)

Red cell distribution width (%)g 13.46 (0.89) 13.53 (0.95) 13.46 (0.88) 13.43 (0.88)

White blood cell count (1000 
cells/μl)g

6.86 (1.76) 7.05 (1.86) 6.87 (1.77) 6.74 (1.69)

Albumin (g/dl)f,g 4.52 (0.24) 4.51 (0.25) 4.52 (0.24) 4.53 (0.24)

Creatinine (mg/dl)f,g 0.81 (0.17) 0.82 (0.17) 0.81 (0.17) 0.81 (0.16)

C-reactive protein (mg/dl)f,g 0.25 (0.41) 0.30 (0.47) 0.25 (0.41) 0.22 (0.37)

Alkaline phosphatase (U/L)f,g 83.04 (23.9) 85.50 (25.36) 83.34 (23.66) 81.22 (23.42)

Sleep behaviors for sleep index

No self-reported snoring 
(behavior 1)

227,927 (62.6%) 17,018 (30.8%) 116,296 (57.6%) 94,613 (88.5%)

Early chronotype (behavior 2) 229,411 (63.0%) 11,256 (20.4%) 120,434 (59.7%) 97,721 (91.4%)

No frequent daytime 
sleepiness (behavior 3)

277,377 (76.2%) 22,947 (41.6%) 151,197 (74.9%) 103,233 (96.6%)

Sleep 7–8 h/day (behavior 4) 248,038 (68.2%) 17,552 (31.8%) 128,967 (63.9%) 101,519 (95.0%)

(Continues)
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covariates, we found that four and five sleep behaviors were nega-
tively associated with KDM-biological AA and PhenoAge accelera-
tion, respectively. Early chronotype and normal sleep duration were 
significantly associated with both AAs. Early chronotype was associ-
ated with 0.071- and 0.234-year decreases in KDM-biological AA and 
PhenoAge acceleration, respectively. And, normal sleep duration was 
associated with 0.245- and 0.206-year decreases in KDM-biological 

AA and PhenoAge acceleration, respectively. KDM-biological AA was 
additionally associated with self-reported snoring and insomnia, and 
PhenoAge acceleration was additionally related to frequent daytime 
sleepiness and difficulties in getting up in the mornings. We further ob-
served significant negative associations between the continuous sleep 
index and both AAs (Table 2 and Figure 1a,b). One unit increase in the 
sleep index was associated with 0.104- and 0.119-year decreases in 

Characteristic
All
(n = 363,886)

Sleep index category

Low (index = 0–2)
(n = 55,174)

Medium (index = 3–4)
(n = 201,795)

High (index = 5–6)
(n = 106,917)

Never/rarely insomnia 
(behavior 5)

88,533 (24.3%) 2925 (5.3%) 32,888 (16.3%) 52,720 (49.3%)

Getting up easy in morning 
(behavior 6)

299,436 (82.3%) 21,529 (39.0%) 171,919 (85.2%) 105,988 (99.1%)

Sleep index (continuous) 3.77 (1.23) 1.69 (0.54) 3.58 (0.49) 5.19 (0.40)

aMean values (standard deviation) for continuous variables and n (%) for categorical variables.
bData missing in 1062 participants.
cHealthy alcohol intake: male: <28g/day; female: <14g/day; data missing in 23 participants.
dHealthy physical activity: ≥150 min/week moderate or ≥75 min/week vigorous or 150 min/week mixed (moderate + vigorous) activity; data missing 
in 6066 participants.
eMajor disease diagnosed by doctor.
fEmployed to construct KDM-biological age
gEmployed to construct PhenoAge.

TA B L E  1 (Continued)

TA B L E  2 Associations of six sleep behaviors and sleep index with the accelerations of biological agesa

Sleep behaviors

KDM-biological age acceleration (years) PhenoAge acceleration (years)

Coefficients (SE) p-Value Coefficients (SE) p-Value

Self-reported snoring No −0.287 (0.023) <0.0001 0.065 (0.067) 0.29

Yes Ref Ref

Chronotype Early −0.071 (0.022) 0.0015 −0.234 (0.017) <0.0001

Later Ref Ref

Frequent daytime sleepiness No −0.015 (0.025) 0.56 −0.191 (0.019) <0.0001

Yes Ref Ref

Sleep duration Normal (7–8 h) −0.245 (0.023) <0.0001 −0.206 (0.017) <0.0001

Short or long Ref Ref

Insomnia Never or rarely −0.079 (0.025) 0.0018 −0.029 (0.019) 0.12

Sometimes or often Ref Ref

Getting up in morning Very or fairly easy −0.009 (0.029) 0.76 −0.341 (0.021) <0.0001

Not or not very easy Ref Ref

Sleep index (continuous, 0–6) −0.104 (0.009) <0.0001 −0.119 (0.007) <0.0001

Sleep index (category) High (5–6) −0.335 (0.034) <0.0001 −0.443 (0.025) <0.0001

Medium (3–4) −0.179 (0.031) <0.0001 −0.319 (0.023) <0.0001

Low (0–2) Ref Ref

aModel adjusted for age, sex, race, BMI, smoking status, healthy alcohol intake, healthy physical activity, years of education (<10 years or ≥10 years), 
hypertension, diabetes, and coronary heart disease. The examination center was controlled for as a random effect to account for the potential 
residual bias from examinations. Bolded values that were below the significance threshold, which was 0.05/(8*2) = 0.0031, were considered as 
statistically significant.
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KDM-biological AA and PhenoAge acceleration, respectively. The AAs 
of the high sleep quality group were 0.335 (KDM)-  and 0.443-year 
(PhenoAge) lower than the low sleep quality group, and the changes in 
both AAs of the medium sleep quality group were at the intermediate 

levels. As illustrated in Figure 1c,d, monotonic negative dose-response 
relationships between continuous sleep index and both AAs were 
observed. Sensitivity analysis in psychiatric illness-free participants 
showed slightly attenuated but still robust associations (Table S2), 

F I G U R E  1 Averaged age accelerations by sleep index and best-fitting dose-response curves. In panels a and b, the blue bars are the mean 
values of z-scored age accelerations by the sleep index, error bars are the standard deviations of the age accelerations; in panels c and d, the 
solid lines are the point estimations, the blue/red dash lines are the 95% confidence limits, the green dash lines are the reference lines, and 
the dots are the knots at sleep score = 1, 3, and 5
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TA B L E  3 Causal associations between sleep index and biological age accelerations with unweighted genetic risk scoresa

KDM-biological age acceleration (years) PhenoAge acceleration (years)

Coefficients (SE) p-Value Coefficients (SE) p-Value

(1) Sleep index → Biological ages

Observed effects −0.129 (0.011) <0.0001 −0.153 (0.008) <0.0001

Genetic-predicted effects −1.654 (0.037) <0.0001 −0.808 (0.028) <0.0001

(2) Biological ages → sleep index

Observed effects −0.034 (0.003) <0.0001 −0.044 (0.002) <0.0001

Genetic-predicted effects 0.099 (0.068) 0.15 0.008 (0.011) 0.48

aEffects were estimated by one SD change in the sleep index or biological age accelerations. Models were adjusted for age, sex, race, BMI, smoking 
status, healthy alcohol intake, healthy physical activity, years of education (<10 years or ≥10 years), hypertension, diabetes, and coronary heart 
disease. The examination center was controlled for as a random effect. The genetic risk scores for sleep index and biological age accelerations 
were unweighted. Bolded values that were below the significance threshold, which was 0.05/(2*2*2) = 0.00625, were considered as statistically 
significant.



6 of 14  |     GAO et al.

which suggests that the influence of underlying psychiatric illness on 
the primary findings might be minor.

Furthermore, to investigate the causal associations between 
sleep and AAs, we conducted two MR analyses in two directions. 
Constructed genetic risk scores (GRSs) have the acceptable variance 
explained ranging from ~2.3% (for sleep duration) to ~51% (for KDM-
biological AA) for the MR analyses (Table S3). As demonstrated in 
Table 3 with unweighted GRSs for sleep index and AAs, we ob-
served significant negative associations between genetic-predicted 
sleep index and both AAs. However, the genetic-predicted KDM-
biological AA was positively associated with sleep index, and the 
negative association between genetic-predicted PhenoAge acceler-
ation and sleep index was not statistically significant. Similar trends 
were also observed for each of the six sleep behaviors (Table S4) and 
another sensitivity analysis with weighted GRSs of sleep additionally 
demonstrated similar trends for each scenario (Table S5). Altogether, 
these results indicate that sleep quality was more likely to be the 
determinant of the change in AAs rather than a consequence.

2.3  |  Joint effects of air pollution and sleep on 
biological ages

Given it was more plausible that accelerated AAs were the conse-
quences of impaired sleep quality, along with the known association 
between air pollution and biological aging, we validated the associa-
tions of the five air pollutants with each AA and explored the hy-
pothesis that whether sleep index could mediate the effects of air 
pollutants on AAs. As shown in Table S6, PM2.5 and NO2 were the 
two air pollutants that were significantly associated with both AAs 
in models without the adjustment of sleep index. An IQR increase 
in PM2.5 level was associated with 0.060-  and 0.042-year higher 
KDM-biological AA and PhenoAge acceleration (p-values < 0.0001), 
respectively. The same change in NO2  level was associated with 
0.097-  and 0.093-year higher KDM-biological AA and PhenoAge 
acceleration (p-values < 0.0001), respectively. Their effects and p-
values were slightly reduced in models which additionally controlled 
for sleep index. Meanwhile, the effects of sleep index on both AAs 
were also marginally altered in this mutual adjustment model. To un-
derstand their joint effects explicitly, we classified the participants 
based on binary air pollution levels (by median) and sleep index cat-
egory, and then observed clear and stepwise increasing trends of the 
joint effects of both factors on the two AAs (Figure 2). Particularly, 
compared to the group with high sleep quality and lower exposure 
to PM2.5, people with low sleep quality and higher exposure had a 
0.397- and 0.496-year higher KDM-biological AA and PhenoAge ac-
celeration (p-values < 0.0001), respectively (Table S7).

2.4  |  Modifying effects of sleep quality

According to the robust joint effects of air pollution and sleep on 
AAs, we additionally explored the potential modifying effect of 

sleep quality on the associations between air pollution and AAs 
since sleep is a modifiable factor that could be intervened by human 
behaviors relatively easily. As shown in Figure 3 and Table S8, 
we observed a robust modifying effect of sleep quality on the air 
pollution-AA associations (p-values of interaction terms <0.001). 
Particularly, an IQR increase in PM2.5 concentration was associated 
with 0.009-, 0.044-, and 0.074-year increase in PhenoAge accelera-
tion among people with high, medium, and low sleep quality, respec-
tively. The same increase in NO2 concentration was associated with 
0.048-, 0.098-, and 0.133-year increase in PhenoAge acceleration 
among people with different sleep qualities. Even though not all in-
teractions of each sleep pattern with air pollutants were statistically 
significant (Table S9), a clear trend was observed that participants 
with healthier sleep patterns were with less accelerated AAs under 
the exposure of both pollutants compared to those without health-
ier patterns. We further evaluated the linearities and dose-response 
relationships of the PM2.5 and NO2 with both AAs. Non-linear re-
lationships for each air pollutant were observed (Figures 4 and 5). 
Modifying effects of sleep quality on the changes in both biological 
AAs could be distinguished under relatively lower PM2.5 (~10 μg/m3, 
Figure 4) and NO2 levels (~30 μg/m3, Figure 5).

3  |  DISCUSSION

In this large cohort of middle- and elderly-aged adults, we dem-
onstrated that worsening sleep quality could accelerate biological 
aging with BAs estimated by two well-established algorithms and a 
comprehensive sleep index combining the impacts of six major sleep 
disorders. We further observed that people with low sleep quality 
and higher exposure to PM2.5 or NO2  had the highest AAs. Sleep 
quality could also modify the associations of elevated PM2.5 and 
NO2 levels with accelerated aging. For instance, an IQR increase in 
PM2.5 concentration was associated with 0.009-, 0.044-, and 0.074-
year increase in PhenoAge acceleration among people with high, 
medium, and low sleep index, respectively.

To date, our study is the first investigation demonstrating that 
impaired sleep quality could accelerate human aging in a large pop-
ulation with the state-of-art of causal interpretation. Our observed 
negative sleep-BA association has been partially suggested by previ-
ous studies. In Han et al.’s study, they reported a positive association 
of sleep duration of >8 h/day with an increased BA estimated based 
on five phenotypes (Han et al., 2018), which was also found in our 
study that abnormal sleep duration was associated with increased 
AAs. Additionally, Carroll et al. and Carskadon et al. separately linked 
insomnia and insufficient sleep duration with accelerated epigenetic 
clocks among older females (Carroll et al., 2017), pregnant women 
(Carroll et al., 2021), and freshmen (Carskadon et al., 2019), respec-
tively. In line with these studies, we observed increasing patterns 
of AAs under worsening general sleep quality. Previous studies also 
provided much more marginal evidence that is consistent with our 
findings with respect to other aging biomarkers. For example, in a 
study of physicians, overnight on-call participants had lower baseline 
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DNA repair gene expression and more DNA breaks than participants 
who did not work overnight (Cheung et al., 2019). And, shortened 
telomere length, a well-known biomarker of cellular aging, was also 
found in relation to <6 h of sleep (Liang et al., 2011) and chronic poor 
sleep quality (Cribbet et al., 2014), respectively. Sun et al. (2020) also 
preliminarily found that poor sleep was associated with being frail, 
another aging-related syndrome. Taken together, these complex 
aging biomarkers including BAs provided an exciting new avenue for 
investigating the underlying biological mechanisms of the interplay 
between sleep- and aging-related health outcomes. We additionally 
found that four behaviors showed inconsistent associations with the 
two AAs. Such unique patterns might be explained by that the be-
haviors may be more closely related to the unique features of each 
BA as the KDM-biological age is inclined to reflect the loss of sys-
tem integrity while PhenoAge is more related to the risk of mortality 
(Hastings et al., 2019; Parker et al., 2020).

More intriguingly, although aging is tied to sleep difficulties 
firmly, due to the relatively limited sample size and cross-sectional 
nature, previous studies were not able to address the causal asso-
ciations. Our study answered this scientific question of interest by 
a causal inference test using the MR scheme. We found that it was 
more likely that sleep behaviors lead to the changes in AAs with 

statistically significant associations between genetic-predicted 
sleep index and both AAs. This suggests that sleep quality may af-
fect the aging of organs and systems reflected by two BAs based 
on mainly blood biochemistry biomarkers, and indicates that im-
proving modifiable aspects of sleep may help to lessen the adverse 
effects associated with biological aging and to attenuate the risks 
of aging-related diseases. Since BAs have been associated with car-
diovascular health (Zhong et al., 2016), our finding is in agreement 
with that sleep quality is a preventable risk factor of cardiovascular 
events, which have been well-established and recognized in large 
population-based studies and clinical trials (Covassin & Singh, 2016). 
However, our study did not fully exclude the possibility that aging 
could be one of the major determinants of sleep impairment. Given 
the GRSs of sleep patterns could only explain 2.25%–8.1% variances 
in sleep patterns (Table S3), multiple factors including environmen-
tal, social, lifestyle, medical, and psychiatric conditions may contrib-
ute to elevated AA and their contributions could not be captured 
by the genetic background (Lopez-Otin et al., 2013). Explained vari-
ances for the GRSs of AAs were much higher than that of sleep pat-
terns since selected SNPs were retrieved from the same cohort.

Furthermore, literatures have established the adverse impact 
of air pollution on sleep quality in different perspectives (Liu et al., 

F I G U R E  2 Joint associations of sleep index and air pollution levels with biological age accelerations. The dots are point estimations and 
the error bars are the 95% confidence limits
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2020), such as the risks of breathing problems, insomnia, sleep effi-
ciency, and overall sleep quality, as well as on aging in different pop-
ulations (Peters et al., 2021). With the previously determined causal 
association between sleep and AAs in the first step, we expected to 
find a robust mediation effect of sleep on the air pollution-AA rela-
tionship. However, we observed very limited changes in the effects 
of different air pollutants on AAs in models mutually adjusting for 
sleep index, which suggests that sleep does not play a major role in 
mediating the effects of air pollution on the two AAs. Since sleep is 
predominantly related to cognitive health and brain aging (Li et al., 
2018), especially the structural and physiological changes that occur 
in the brain, such limited mediation effects could be explained by the 
minimal capacity of the two BAs in measuring aging-related neuro-
logical changes. The clinical traits implemented in the constructions 
of the two BAs were not specifically associated with such abnormal 
alterations related to the central neuron system. This is in line with 
the findings of our sensitivity analysis in psychiatric illness-free par-
ticipants, suggesting that the two BAs may not be closely related 
to the aging-related damage of the neurological systems. Instead, 
we observed prominent modifying effects of sleep on the air pol-
lution-BA relationship, which implies that a healthy and adequate 
sleep may help attenuate the adverse aging effects of air pollution 

on non-neurological systems (Figure S2). Also, we noted response 
curves with different features of the PM2.5 and NO2 with both AAs. 
Because KDM-biological age is more related to the capacity and 
function of systems and organs (Hägg et al., 2019), and PhenoAge is 
skewed to predict the mortality risk of humans (Levine et al., 2018). 
Such various features of the modifying effects of sleep on the AAs 
suggest that sleep may help lessen the detrimental impacts of PM2.5 
and NO2 on body functions at a lower exposure level and could also 
attenuate the lethal effects of the two pollutants on mortality when 
they reached a higher level.

Regarding the underlying biological mechanisms under the in-
teresting modifying effects of sleep, one of the potential explana-
tions is the reduction of oxidative stress and inflammation during 
healthy and adequate sleep. First, air pollutants can induce oxida-
tive stress, the ability to respond to which has been identified as 
a key determinant of biological aging (Peters et al., 2021). Sleep 
may help with the anti-oxidative mechanism by removing reactive 
oxygen species resulting from air pollution insults (Atrooz & Salim, 
2020). But given our BAs were constructed based on nonoxidative 
biomarkers, this hypothesis could be validated in future biologi-
cal studies. Beyond this, sleep may also help enhance immune de-
fenses and stabilize the dysregulation of inflammatory responses 

F I G U R E  3 Associations of air pollution levels with biological age accelerations by sleep quality. The dots are point estimations and the 
error bars are the 95% confidence limits

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

Low Medium High Low Medium High
Sleep quality

C
ha

ng
e 

of
 b

io
lo

gi
ca

l a
ge

 a
cc

el
er

at
io

ns
 (y

ea
rs

)
1. PM2.5

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

Low Medium High Low Medium High
Sleep quality

C
ha

ng
e 

of
 b

io
lo

gi
ca

l a
ge

s 
(y

ea
rs

)

2. NO2

KDM-biological age acceleration KDM-biological age accelerationPhenoAge acceleration PhenoAge acceleration



    |  9 of 14GAO et al.

under air pollution exposure. Previous studies have suggested that 
sleep impairment is associated with increased serum levels of C-
reactive protein (CRP), interleukin (IL)-1, IL-6, IL-17, tumor necro-
sis factor α, and nuclear factor-kappa B in addition to alteration 
of numbers and activity of macrophages and natural killer cells 

(Atrooz & Salim, 2020; Meier-Ewert et al., 2004). The aberrant 
changes in such systematic inflammation biomarkers have been 
found to be involved in the impact of air pollution on the integ-
rity of organs and the development of aging-related diseases (Wu 
et al., 2018). This could be a more possible biological mechanism 

F I G U R E  4 Best-fitting models for the relationships of PM2.5 exposure with accelerations of two biological ages, by sleep quality. The solid 
lines are the point estimations, the dash lines are the 95% confidence limits, and the dots are the knots at 5th, 50th, and 95th percentiles of 
PM2.5 concentration. Red, blue, and green colors represent low, medium, and high sleep quality, respectively
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F I G U R E  5 Best-fitting models for the relationships of NO2 exposure with accelerations of two biological ages, by sleep quality. The solid 
lines are the point estimations, the dash lines are the 95% confidence limits, and the dots are the knots at 5th, 50th, and 95th percentiles of 
NO2 concentration. Red, blue, and green colors represent low, medium, and high sleep quality, respectively
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as our BAs have components related to inflammation such as lym-
phocyte proportion and CRP.

The major strengths of this study include the large sample size 
and relatively sufficient phenotype and biochemistry data for the 
biological age estimation. Several limitations are notable when in-
terpreting the results. First, UK Biobank is a volunteer cohort, and 
participants are likely healthier than the general population, which 
may limit the effect of sleep on BAs in our analysis as their AAs are 
expected to be lower than the general population theoretically. 
Furthermore, the measurement bias of air pollution must be noted. 
The air pollution data we used were mostly a single measurement of 
the annual average outdoor air pollution level in 2010 since the home 
addresses of the participants were unavailable during follow-up. 
Because the initial assessment visit of UK Biobank was from 2006 to 
2010, we were unable to determine the lag or short-term (<1 month) 
effects of air pollution on both sleep and AAs. Also, as most indi-
viduals spend a large amount of time indoors, individual exposure 
to all forms of air pollution may differ from that indicated by the 
ambient outdoor levels we used. Additionally, as sleep data used in 
our analyses were self-reported, misclassification of sleep behaviors 
might exist, and the contributions of each included behavior cannot 
be weighted due to the lack of relevant studies. Such bias may atten-
uate our findings toward the null and underestimate the effects we 
observed. Meanwhile, our sleep index dichotomized six sleep behav-
iors for simplicity rather than including all sleep behaviors or mea-
suring the changes of sleep behaviors before and after the survey, 
which may cause residual bias to some extent. Both aforementioned 
limitations highlight the need for future studies with comprehensive 
measures of sleep quality with well-established questionnaires to 
confidently validate our findings of this study. Cautious is recom-
mended to interpret our main results as an exploratory finding as 
the sleep index is yet validated clinically in comparison with other 
established sleep scales including Pittsburgh sleep quality index 
(PSQI) or Ford Insomnia response to stress Test (FIRST). Also, as a 
study with a cross-sectional nature, even though the MR could make 
causal inference to somewhat extent, caution must still be taken in 
the causal interpretation on sleep and aging. And, given the genome-
wide association studies (GWAS) we used to build the GRS for BAs is 
the only available one but was conducted in UK Biobank, these SNPs 
we selected may be biased and not objective adequately. Therefore, 
we conducted a sensitivity analysis using 11 SNPs reported in a 
GWAS of DNA methylation age to create the GRS for both BAs/AAs 
(Gibson et al., 2019) as the DNA methylation age has been highly 
associated with the two BAs we investigated in this study (Belsky 
et al., 2020). The findings were in line with our primary findings by 
showing that sleep quality was more likely to be the determinant of 
the change in AAs rather than a consequence (Table S10). Last, par-
ticipants in this study were mostly of European descent, which limits 
the generalization of our findings to other races.

In conclusion, our study is the first identifying the accelerating 
effect of poor sleep quality on biological aging. With this premise, 
we further found that sleep and air pollution were independently 
associated with biological aging, and sleep quality may modify the 

aging effects of air pollution. These findings not only provide ex-
ploratory evidence supporting sleep as an aging contributor but also 
underscore the importance of high-quality sleep as an intervention 
approach to mitigate the negative impact of air pollution on human 
aging. Nevertheless, aging is associated with a myriad of changes 
in psychological, social, spiritual, financial, and lifestyle across the 
lifetime (Lopez-Otin et al., 2013), and the sleep index we used also 
needs clinical validations. Further longitudinal studies with a more 
detailed evaluation of aging and comprehensive clinical measures of 
sleep quality are highly warranted to validate our findings and fur-
ther determine the underlying biological mechanisms.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study design and population

Study design and methods of UK Biobank have been reported in de-
tail previously (Sudlow et al., 2015). In brief, UK Biobank is a large-
scale prospective study with 502,536 participants aged 37–73 years 
recruited in 2006–2010 with multiple follow-ups. At the initial visit, 
participants provided information on sleep and other health-related 
aspects through touch-screen questionnaires and physical measure-
ments. Blood samples were collected for genotyping and biochem-
istry tests. UK Biobank research has approval from the North West 
Multicenter Research Ethical Committee. All participants provided 
written informed consent for the study. In this analysis, we included 
363,886 participants with available data of sleep behaviors, meas-
ures of biological traits for BA construction, and air pollution. This 
report followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) reporting guideline. This re-
search has been conducted using the UK Biobank Resource under 
Application Number 44430.

4.2  |  Assessment of sleep behaviors

Due to the lack of specialized questionnaires of sleep, such as PSQI 
or FIRST at the baseline survey of UK Biobank, we instead used an 
algorithm based on self-reported sleep quality information that was 
first introduced in 2020 for UK Biobank cohort (Fan et al., 2020). This 
algorithm has been used widely since 2020 and was used to make an 
index for sleep with 5 sleep-related items (Fan et al., 2020; Li, Zheng, 
et al., 2021; Li, Xue, et al., 2021) or 4 items (Sambou et al., 2021), and 
showed the capacity as an alternative approach to reflect the sleep 
patterns of the participants of UK Biobank. Therefore, to optimize the 
sleep quality assessment in the UK Biobank, we used six self-reported 
sleep behaviors in this study: snoring, chronotype, daytime sleepiness, 
sleep duration, and insomnia that were used in 5-item sleep score (Fan 
et al., 2020) and the “difficulties in getting up in the morning” pattern 
that was found to be related to the risk of terminated health-span 
(Sambou et al., 2021) to enhance the measurement of sleep quality and 
the capacity of the below-mentioned sleep index (Table S11). Detailed 
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assessment of sleep behaviors can be found in supplementary meth-
ods. According to the six sleep behaviors, we generated a sleep index. 
The low-risk categories of each component were no self-reported 
snoring, early chronotype (“morning” or “morning than evening”), no 
frequent daytime sleepiness (“never/rarely” or “sometimes”), normal 
sleep duration (7–8 h/day), reported never or rarely having insomnia 
symptoms, and getting up easy in morning (“fairly easy” or “very easy”). 
For each sleep behavior, the participant received a score of 1 if he or 
she was classified as the low-risk group or 0 if otherwise as the high-
risk group. All component scores were summed to obtain a continu-
ous sleep index ranging from 0 (worst) to 6 (best), with a higher index 
indicating a general better sleep quality. We further defined a sleep 
index category as high (5–6), medium (3–4), and low (0–2) based on the 
continuous sleep index.

4.3  |  Assessment of biological ages

We computed the BAs derived from a total of 12 blood chemistry 
traits, systolic blood pressure, and lung function data (Table S11) with 
two commonly accepted algorithms, the Klemera–Doubal method (i.e., 
KDM) and the PhenoAge method. Both algorithms were initially trained 
in data from the National Health and Nutrition Examination Survey 
(NHANES) following the method originally described by Klemera et al. 
(Klemera & Doubal, 2006; Levine, 2013) and Levine et al. (2018) with 
two sets of nine clinical traits (Table 1). The two BAs were constructed 
with different purposes. KDM-biological age was computed from an 
algorithm derived from a series of regressions of nine individual bio-
markers on chronological age in the reference population to quantify 
the decline of system integrity, and PhenoAge was computed from an 
algorithm derived from multivariate analysis of mortality hazards to 
estimate the risk of death (Hastings et al., 2019; Parker et al., 2020). 
The two BAs were developed in the white population (Hastings et al., 
2019) and were stable in other populations and cohorts (Parker et al., 
2020). The selected traits, algorithms, and corresponding R code can 
be found in the R package ‘BioAge’ at: https://github.com/dayoo​
nkwon/​BioAge and corresponding publications (Belsky et al., 2020; 
Kwon & Belsky, 2021). Missing values of each trait consisted of <10% 
of all traits and were, therefore, imputed by the median value of the 
corresponding trait. The residual differences between the estimated 
BAs and chronological age were considered as AAs since this approach 
could minimize the heterogeneities between the measurement plat-
forms of each component of BAs (Hägg et al., 2019; Horvath & Raj, 
2018). The residuals were calculated by a linear regression procedure 
in which one of the BAs was the outcome and chronological age was 
the independent variable. AAs were the targeted outcomes/modifiers 
in our primary analyses.

4.4  |  Exposure assessments

As previously described (Wang et al., 2021), the annual average con-
centrations of PM2.5, PMcoarse, PM10, NO2, and NOx were calculated 

centrally by the UK Biobank using a Land Use Regression (LUR) 
model developed by the ESCAPE project. More details on the air pol-
lution data of the UK Biobank cohort and LUR model can be found 
at: http://bioba​nk.ndph.ox.ac.uk/showc​ase/label.cgi?id=114 and in 
the supplement methods. The exposure data of PM2.5, PMcoarse, and 
NOx were collected in 2010, while annual concentrations of NO2 
and PM10 were available for several years (2005, 2006, 2007, and 
2010 for NO2, and 2007 and 2010 for PM10). Since the baseline sur-
vey of UK Biobank was conducted from 2006 to 2010, to achieve 
a better risk prediction, averaged values of NO2 and PM10 were in-
cluded in the analysis.

4.5  |  Measurements of covariates

We included age, sex, body mass index (BMI), race, smoking status, 
healthy alcohol intake status, healthy physical activity status, years 
of education (<10 years), and prevalent hypertension, coronary heart 
disease (CHD), and diabetes that could be associated with aging as 
well as sleep quality as covariates to address potential confound-
ing. Height and weight were measured by trained nurses during the 
baseline assessment center visit, and BMI was calculated by dividing 
weight in kilograms by the square of height in meters. Healthy alco-
hol intake status was defined as: male: <28 g/day; female: <14 g/
day. Healthy physical activity status was defined as: ≥150 min/week 
moderate or ≥75 min/week vigorous or 150 min/week mixed (mod-
erate + vigorous) activity. The Metabolic Equivalent Task (MET) min-
utes based on items from the short International Physical Activity 
Questionnaire (IPAQ) was adopted to assess physical activity. The 
history of hypertension and diabetes was based on self-reported in-
formation and medical records.

4.6  |  Construction of genetic risk scores of sleep 
index and biological ages

Detailed information on genotyping, imputation, and quality con-
trol in the UK Biobank study has been described previously (Sudlow 
et al., 2015). We created GRSs for each sleep behavior, sleep index, 
and both AAs for the MR analyses. A total of 583 single-nucleotide 
polymorphisms (SNPs) based on the up-to-date largest GWAS of 
the six sleep behaviors in ~1.3 million participants from 23andMe 
and UK Biobank cohorts were selected for the GRS of six sleep be-
haviors and sleep index (reported p-value < 5 × 10−8) (Jansen et al., 
2019). For the GRS of AAs, we used the latest and the only GWAS 
on both BAs (Kuo et al., 2021), which, respectively, reported 16 and 
29 SNPs that were robustly associated with KDM-biological age and 
PhenoAge (reported p-value <5 ×  10−8). Because the SNPs were 
evaluated in pruned genetic data in previous studies, no further 
loci pruning was conducted in our study. Each selected SNP was re-
coded as 0, 1, or 2 according to the number of risk alleles, and miss-
ing SNP values of individuals were imputed. The unweighted GRSs 
were directly summed up and the weighted GRSs were calculated 

https://github.com/dayoonkwon/BioAge
https://github.com/dayoonkwon/BioAge
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=114
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by summing up after multiplied with its effect value, and then di-
vided by half of the total effect size. The detailed SNPs were dem-
onstrated in Table S12. The unweighted GRSs were employed in the 
primary analyses and the weighted ones for sleep index and AAs 
were used in the sensitivity analyses.

4.7  |  Statistical analysis

We first examined the associations of each sleep behavior and the 
sleep index with both forms of AAs using mixed-effect linear re-
gression models in which the AAs were the outcomes. We adjusted 
for covariates described in the previous section including chronic 
diseases and additionally controlled for the examination center in 
the model as a random effect to account for the potential residual 
bias from examinations. Since psychiatric disorders may affect sleep 
quality, we additionally conducted a sensitivity analysis in 285,054 
participants that were free of dementia, depression, and anxiety. 
These disorders were ascertained using hospital inpatient records 
and Patient Health Questionnaire (PHQ)-4 questionnaire as previ-
ously described (Milaneschi et al., 2021; Zhang et al., 2021).

Then, we performed one-stage MR analyses to explore the 
causal relationships between sleep and BAs in two scenarios using 
mixed-effect linear regression models. The GRS of sleep index was 
used to predict sleep index genetically and to study the effect of 
sleep on BAs. The GRS of BA was used to predict AAs genetically 
and to study the effects of the two AAs on sleep quality. The statis-
tically significant genetic-predicted effect in either scenario that was 
in the same direction as the observed effect in the primary model 
would indicate the plausibility of a causal effect. Corresponding 
dose-response curves between sleep index and the two BAs were 
further assessed by restricted cubic spline regression (Desquilbet & 
Mariotti, 2010). Models were adjusted for the previously described 
covariates and the sleep index = 1, 3, and 5 were selected as knots.

Based on the results of MR analyses, the next part of our study 
would test whether (a) sleep quality could mediate or modify the as-
sociation between elevated air pollution levels and accelerated AAs 
(i.e., if declined sleep index →the increased AAs) or (b) AAs could 
mediate or modify the association between elevated air pollution 
levels and declined sleep quality (i.e., if the increased AAs →declined 
sleep index). The possibility of the mediator role of the factors of 
interest would be examined by comparing the estimates of air pol-
lutants in mixed-effect linear regression models with air pollutants 
only with the ones in models with the mutual adjustment of both air 
pollutants and the potential mediator. If a robust mediation effect 
was identified, the mediation proportion would be estimated by the 
mediation analysis using the SAS function “PROC CAUSALMED”. 
Meanwhile, the possible modifying effects of the factors of interest 
would be examined by an interaction term of air pollution and the 
factor in a mixed-effect linear regression model adjusting for cor-
responding air pollution and factors. If the interaction terms were 
statistically significant and hence suggested a likely modifying ef-
fect, a subgroup analysis by sleep index category or binary AAs (by 

median) would be conducted to test the effects of air pollution on 
AAs or sleep quality in a mixed-effect linear regression model. The 
effects of air pollutants in all models were demonstrated by one 
IQR increase in the concentrations. Corresponding dose-response 
curves and linearity of the relationships between air pollutants and 
BAs by sleep index category were subsequently assessed by re-
stricted cubic spline regression if necessary. The 5th, 50th, and 95th 
percentiles were selected as knots. The ranges of air pollutants for 
curves were set according to the air quality guidelines of the WHO 
(World Health Organization, 2021) and their distributions in the UK 
Biobank cohort.

SAS version 9.4 TS1M5 (SAS Institute Inc.) was used to conduct 
data cleaning and all analyses. A two-sided p-value of <0.05 was 
considered statistically significant. Bonferroni corrections were con-
ducted to correct the multiple comparisons according to the number 
of tests in each step of analysis accordingly.
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