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Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated

brain diseases, including Alzheimer’s disease (AD). Part of these actions takes

place through binding to estrogen receptors (ER) embedded in signalosomes, where

numerous signaling proteins are clustered. Signalosomes are preferentially located in

lipid rafts which are dynamic membrane microstructures characterized by a peculiar

lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and

sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger

intracellular signaling ultimately leading to the activation of molecular mechanisms

against AD. We have previously observed that the reduction of E2 blood levels

occurring during menopause induced disruption of ER-signalosomes at frontal cortical

brain areas. These molecular changes may reduce neuronal protection activities, as

similar ER signalosome derangements were observed in AD brains. The molecular

impairments may be associated with changes in the lipid composition of lipid rafts

observed in neurons during menopause and AD. These evidences indicate that the

changes in lipid raft structure during aging may be at the basis of alterations in

the activity of ER and other neuroprotective proteins integrated in these membrane

microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work

has pointed to this relevant aspect of E2 activity to preserve brain integrity, through

mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences

have demonstrated that estrogens and the docosahexaenoic acid (DHA) exert synergistic

effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at

the plasma membrane, promoting functional macromolecular interactions in signaling

platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated

with the most common age-associated neuropathologies, namely AD and Parkinson

disease. Altogether, these findings indicate that E2 may participate in brain preservation
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through a dual membrane-related mechanism. On the one hand, E2 interacting with

ER related signalosomes may protect against neurotoxic insults. On the other hand,

E2 may exert lipostatic actions to preserve lipid balance in neuronal membrane

microdomains. The different aspects of the emerging multifunctional role of estrogens

in membrane-related signalosomes will be discussed in this review.

Keywords: menopause, estrogen receptors, estrogen, lipid rafts, neurodegeneration, signalosome

GENERAL OVERVIEW

Sex steroids produced by peripheral glands such as
dihydrotestosterone (DHT), testosterone (T), estradiol

(E2), progesterone (PROG), and corticosterone (CORT)
are traditionally known to play crucial roles in sexually

dimorphic circuits located in the hypothalamus and other
brain areas controlling reproductive behaviors, as well as

brain masculinization, brain connectivity, and neuroplasticity

(Losecaat Vermeer et al., 2016; Panzica and Melcangi, 2016).
Furthermore, the central and peripheral nervous systems

show local synthesis of neurosteroids (Melcangi et al., 2008;
Giatti et al., 2010). These neuroactive steroids are considered
important regulators of neural functions, including brain
and cerebellar development, hippocampal neuritogenesis and
synaptogenesis (Murakami et al., 2017), and neuroprotection
against numerous pathologies, such as Alzheimer’s disease
(AD), Parkinson disease (PD), Huntington’s disease (HD),
stroke, multiple sclerosis (MS), spinal cord injury, peripheral
neuropathy, and psychiatric disorders (Melcangi et al., 2016).
These disorders show gender differences in their incidence
and progression, as an indicative of the different roles of
neurosteroids in the physiological actions in the nervous system.
Indeed, sex hormones also influence the local concentrations
of neurosteroids that affect the pathological context. Thus,
epidemiological studies have demonstrated a higher incidence
in women of AD, HD, MS, peripheral neuropathy, and some
psychiatric disorders, such as anxiety, depression, and eating
disorders. In the contrary, men show a higher incidence of PD,
stroke and autism as compared to women (Andersen et al., 1999;
Wooten et al., 2004; Afifi, 2007; Reeves et al., 2008; Melcangi
et al., 2016). In particular related to AD, neuroprotective effects
of estrogens in either cellular, animal, and clinical studies
have been extensively studied and characterized, whereas
brain beneficial actions of androgens and stress steroids have
been less investigated, and require further clarification of
the common molecular mechanisms of neurosteroid effects.
Interestingly, the incidence of AD in men does not seem
directly related to estrogens, since estrogens in men do not
exhibit a reduction with aging. Rather, detriment in testosterone
levels in men brain may predict enhanced vulnerability to AD
(Moffat et al., 2004; Pike, 2017). This phenomenon appears
to be sex-specific, since testosterone levels do not show
significant changes in women suffering AD (Rosario et al.,
2011).

A general clinical observation is that menopausal women
show a higher risk of developing a neurodegenerative disease,

indicating that estrogens are neuroprotective. Numerous data
in the last decade have concluded that estrogens (E2) exert a
plethora of neuroprotective actions against aged-associated brain
diseases, including AD. Part of these actions takes place through
binding to estrogen receptors (ER) embedded in signalosomes,
where numerous signaling proteins are clustered. Signalosomes
are preferentially located in lipid rafts which are dynamic
membrane microstructures characterized by a peculiar lipid
composition enriched in gangliosides, saturated fatty acids,
cholesterol, and sphingolipids. Rapid E2 interactions with ER-
related signalosomes appear to trigger intracellular signaling
ultimately leading to the activation of molecular mechanisms
against AD.

We have previously observed that the reduction of E2
blood levels occurring during menopause induced disruption
of ER-signalosomes at frontal cortical brain areas. These
molecular changes may reduce neuronal protection activities,
as similar ER signalosome derangements were observed in
AD brains. The molecular impairments may be associated
with changes in the lipid composition of lipid rafts observed
in neurons during menopause and AD. These observations
indicate that the changes in lipid raft structure during aging
may be at the basis of alterations in the activity of ER and
other neuroprotective proteins integrated in these membrane
microstructures.

Moreover, E2 is a homeostatic modulator of lipid rafts.
Recent work has pointed to this relevant aspect of E2
activity to preserve brain integrity, through mechanisms
affecting lipid uptake and local biosynthesis in the brain.
Some findings have demonstrated that estrogens and the
docosahexaenoic acid (DHA) exert synergistic effects to
stabilize brain lipid matrix. DHA is essential to enhance
molecular fluidity at the plasma membrane, promoting
functional macromolecular interactions in signaling platforms.
In support of this, DHA detriment in neuronal lipid
rafts has been associated with the most common age-
associated neuropathologies, namely AD and Parkinson
disease.

Altogether, these findings indicate that E2 may participate

in brain preservation through a dual membrane-related
mechanism. On the one hand, E2 interacting with ER related

signalosomes may protect against neurotoxic insults. On the
other hand, E2 may exert lipostatic actions to preserve lipid

balance in neuronal membrane microdomains. The different
aspects of the emerging multifunctional role of estrogens

in membrane-related signalosomes will be discussed in this

review.
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Neurological Transition During Menopause
Perimenopause and menopause are important periods of
woman’s life where significant physiological changes occur.
Perimenopause is a period in women whose age range is between
40–58 years, followed by a transition period of 1–5 years that
culminates with ∼12 months of amenorrhoea (Harlow et al.,
2012). Menopause is the final stage associated with cessation
of ovarian secretion of female sex hormones, estrogen, and
progesterone (Greendale et al., 2013). It is calculated that, within
EEUU and Europe,∼ >176million women undergomenopausal
periods, and this number increases by 9 million per year.
Moreover, worldwide, it is estimated that there are >850 million
women in perimenopause stages (Brinton et al., 2009). Even
more, only 20% of women are asymptomatic during this process,
whereas the remaining 80% suffer different symptoms associated
with hormone detriment.

Even though perimenopausal stages are focused on changes
in the reproductive system by oocyte depletion (hot flushes,
vaginal dryness, fatigue, irregular periods, etc.), the majority of
symptoms of these periods are neurological in nature (Brinton
et al., 2015). These features are variable, and appear to be co-
incident with a decline of brain metabolism (Rasgon et al.,
2005). The most common neurological disturbances reported
are insomnia, mood changes, depression, subjective memory
complaints, and cognitive dysfunction (specifically learning and
memory impairments).

Several studies have documented that women show higher
protection against the nervous system pathologies as compared
with men, whereas this tendency is inverted after menopause
(Sherwin and Henry, 2008; Pike, 2017). Consequently, it is
plausible that falling estrogen levels during menopausal periods
may increase the risk of neuronal vulnerability against injury. In
agreement with this, ovariectomy before natural menopause is
correlated with a higher incidence of dementia and PD (Rocca
et al., 2008). Also, premature menopausal women show a higher
risk of AD (Ryan et al., 2014). Furthermore, numerous evidence
has agreed that the progression of menopause increases the
incidence of neurological perturbations associated with the most
common aged-related neurodegenerative diseases, such as AD,
and PD, as well as cerebral stroke, ischemia andmultiple sclerosis
(Ramagopalan et al., 2010; Schreihofer andMa, 2013; Picillo et al.,
2017; Pike, 2017).

Besides gonadal hormone detriment in menopause, synthesis
of estrogens at, both, central and peripheral nervous systems
may also be affected with the progression of aging (Melcangi
et al., 2008; Giatti et al., 2015). Thus, neurosteroidogenesis is
decreased during menopause (Rosario et al., 2011), and this
reduction is exacerbated in AD brains (Schumacher et al., 2003).
Furthermore, the link between estrogen loss in post-menopausal
women and the risk of dementia is supported by clinical evidence
reporting that the incidence of AD is 2–3 times higher in
women than in men (Ryan et al., 2014). Overall, multifactorial
variations of estrogenic production in, both, gonadal and nervous
system duringmenopausal periodsmay intervene in the resulting
neurological impairments. Moreover, these data reflect the
importance of developing novel accurate hormonal replacement
strategies to counteract the potential cognitive decline related

to menopause, despite the inconclusive and discouraging results
obtained in previous clinical trials (Merlo et al., 2017).

Estrogens Protect the Brain
Estrogens display a variety of physiological roles in the
brain, including neuronal differentiation, neurogenesis, and
neuronal plasticity, which are crucial for brain homeostasis,
cognition, and preservation (Brinton, 2009; Engler-Chiurazzi
et al., 2017). In addition, E2 regulates actions on glial
cells at, both, central and peripheral nervous system (CNS
and PNS) including oligodendroglia, astrocytes, and microglia
(CNS), and Schwann cells (PNS). These hormone actions
include remyelination, inflammation, edema formation, and
extracellular glutamate levels which are important in the
regulation of physiological homeostasis, and preservation against
pathophysiological situations (Arevalo et al., 2010). Different
data has reported that Schwann cells, oligodendrocytes and
astrocytes are targets of E2. Thus, the hormone enhances myelin
sheet formation and the synthesis ofmyelin basic protein through
direct actions in Schwann and oligodendroglial cells (Jung-
Testas et al., 1992, 1993; Fex Svenningsen and Kanje, 1999;
Marin-Husstege et al., 2004). E2 also regulates the morphology
of astrocytes as well as the expression of numerous molecules
involved in the regulation of astrocytic functions (Luquin et al.,
1993; Garcia-Segura et al., 1996; McCarthy, 2008). Furthermore,
E2modulates microglial response to inflammation, thus avoiding
overreaction of these cells following brain injury (Vegeto et al.,
2006; Tapia-Gonzalez et al., 2008).

Taking into account these data, it is plausible to affirm
that menopause-related alterations in the nervous system may
be highly associated with estrogen depletion and estrogen
receptors (ERs) regulation. A big body of data has reported a
number of mechanisms by which estrogens (in particular, 17β-
estradiol, E2) protect against different neuroinflammatory and
neurodegenerative disorders. Thus, E2 has been demonstrated
to exert beneficial actions against a wide range of diseases:
AD, PD, ischemia, schizophrenia, multiple sclerosis, hypertensive
encephalopathy, spinal cord injury, traumatic brain injury, and
retinal degeneration (De Nicola et al., 2012; Petrone et al.,
2014; Cascio et al., 2015; Lan et al., 2015; Brotfain et al., 2016;
Itoh et al., 2017; McGregor et al., 2017; Raghava et al., 2017).
Furthermore, a plethora of in vivo and in vitro studies over
more than two decades have provided evidence that estrogen
exerts beneficial effects against different insults (Brann et al.,
2007; Petrovska and Jurisic, 2012). Among other toxic paradigms,
it has been documented that estrogens protect neurons against
glutamate excitotoxicity, glucose and serum deprivation, stress
injury, hydrogen peroxide, iron, sodium azide, and Aβ- and
MPTP-induced toxicities (Siddiqui et al., 2016). In addition,
E2 contributes to modulate the decrease in gliotic responses
under neurodegenerative conditions, through different actions
including glial cell proliferation after brain injury (Garcia-
Estrada et al., 1993; Zhang et al., 2002; Vegeto et al., 2006).
In particular in AD, E2 enhances Aβ uptake by microglia, as a
mechanism to promote Aβ clearance (Li et al., 2000; Yue et al.,
2005).

Frontiers in Neuroscience | www.frontiersin.org 3 March 2018 | Volume 12 | Article 128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Marin and Diaz Estrogen Interactions With Lipid Rafts

The precise molecular mechanisms underlying E2
neuroprotective effect still remain elusive because of the
vast complexity of the brain. Even though some of these actions
may be explained by the intrinsic antioxidant properties of
this hormone, acting as free radical scavenger of oxidative
stress (Prokai et al., 2003), the majority of E2 neuroprotective
effects require binding to ERs. To date, three distinct ERs
have been characterized distinctly distributed throughout
the different brain areas: ERα, ERβ, and G-protein coupled
ER1 (GPER) (Prossintz and Barton, 2011; Lu and Herndon,
2017). In addition, a variety of splice variants of ERα and ERβ

(ranging from 36 to 80 kDa) has also been identified in different
systems, although its functional relevance in brain preservation
is still unclear (Ascenzi et al., 2006; Marin et al., 2006; Kim
et al., 2017). Interestingly, certain of these splice forms are
brain-area specific. In this sense, an ERα-splice variant (MB1)
has been shown to increase its expression in women brains
during the transition period to menopause, as an indicator
of their potential role during aging (Ishunina and Swaab,
2008).

Furthermore, ERα and ERβ have also been detected in
glial cells. Thus, some immunohistochemical assays have
demonstrated an abundant localization of ERs in glial cells of
rat and mouse brain (Cardona-Gómez et al., 2000; Quesada
et al., 2007; Sierra et al., 2008; Tapia-Gonzalez et al., 2008).
Both ERs show partially distinct distribution in neural tissues,
suggesting that they may have distinct or complementary actions
that modulate glial responses related to remyelination, anti-
inflammatory process, edema formation, and other reparative
mechanisms (Arevalo et al., 2010). Thus, ERβ participates
in preservation of axonal integrity and demyelination in
oligodendrocytes (Tiwari-Woodruff and Voskuhl, 2009), and
against ischemia in microglia in the hippocampus (Takahashi
et al., 2004). Expression of this receptor in oligodendroglia
has also been recently shown to play a role in optic glioma-
induced retinal dysfunction (Toonen et al., 2017). Furthermore,
ERα, but not ERβ, expressed in oligodendrocytes plays anti-
inflammatory actions in an animal model of multiple sclerosis
(Tiwari-Woodruff et al., 2007). ERα has also been detected in
microglia from mouse adult brain and rat cerebellum following
peripheral inflammation (Sierra et al., 2008; Tapia-Gonzalez
et al., 2008). Moreover, both receptors play a role throughout
neural tissue maturation showing a differential expression in
astrocytes and oligodendrocytes in the spinal cord during rat
development (Platania et al., 2003). Collectively, these results
suggest that glial cells utilize E2 bound to ERs to influence
reparative mechanisms within microenvironments in the brain
and SNP.

MULTIFACTORIAL ROLES OF ESTROGEN
RECEPTORS IN BRAIN PRESERVATION

ERs are widely distributed in different brain areas. These
receptors are highly expressed in the hypothalamus, which
is a primary center regulator of body temperature, sleep,
and circadian rhythms (McEwen et al., 2012). ERs are also

shown in important regions for memory, cognition, attention,
sensory integration, mood, emotion, and motivation, such as the
prefrontal cortex, hippocampus, amygdala, posterior cingulate,
thalamus, raphe nucleus, and locus coeruleus (McEwen et al.,
2012; Brinton et al., 2015; Hara et al., 2015). The distribution
patterns of ERα and ERβ are distinct, observing higher levels
of ERα in hypothalamus and amygdala, whereas ERβ is most
abundant in the thalamus and hippocampus (Osterlund et al.,
2000a,b), as an indicative of different roles developed by these
receptors in the brain.

The neurobiological circuits expressing ERs are affected
during the perimenopausal transition, in co-incidence with
the most common neurological symptoms of perimenopausal
periods. Brain changes in ER patterns have been investigated
in aged female primates as a valuable model for studying the
menopause-related alterations that may affect brain functionality
(Gilardi et al., 1997; Walker and Herndon, 2008). During
menopause in rhesus monkey females, a lower density of synapse
spines, and changes in synapsis structure have been observed,
in particular, in the hippocampal dentate gyrus and prefrontal
cortex (Hara et al., 2015). These changes were correlated with
lower memory performance, whereas the cognitive skills were
recovered by estrogen treatment in the menopausal monkeys
(Hara et al., 2014). Reduction in hippocampal synaptic density
was also observed in a mouse model of menopause (Van
Kempen et al., 2014), suggesting a role of E2 in neuronal
plasticity.

A high number of evidence has demonstrated that E2 bound
to its receptor follows different pathways that are subjected
to multifactorial extracellular and intracellular events. With
the exception of GPER that binds to the hormone at the
plasma membrane, ERα and ERβ are dynamic molecules that
have been shown to be located within distinct neuronal and
glial compartments suggesting the co-existence of different
intracellular mechanisms of E2 action (Milner et al., 2001;
Pawlak et al., 2005; Ogiue-Ikeda et al., 2008). In the cellular
nucleus, E2 binding to ERs induces in a few hours genomic (or
classical) mechanisms of action, leading to the transcriptional
activation of late response genes that regulate, among others,
apoptosis, and inflammation (Marin et al., 2005; Heldring et al.,
2007). Other ERs, ERβ in particular, are found in mitochondria,
contributing to maintain mitochondrial functionality (Nilsen
et al., 2007; Yang et al., 2009). In these organelles, E2 acts as
regulator of bioenergetics circuits (Brinton, 2008), counteracting
the oxidative stress and glucose hypometabolism etiologies
implicated in AD and PD, as well as amyotrophic lateral sclerosis
(ALS) (Simpkins and Dykens, 2008).

Furthermore, a wide variety of neuroprotective actions has
been shown to occur within seconds to minutes following E2
exposure. These actions are referred to as rapid or non-genomic
mechanisms, where plasmamembrane-associated ERs binding to
the hormone are involved (Pietras and Szego, 1977; Levin, 2009).
These non-genomic mechanisms promote the rapid activation of
different intracellular signaling pathways that ultimatelymay lead
to neuroprotection. The best characterized pathway in neurons
involves the activation of extracellular signal-regulated kinases
(ERK) and phosphotidylinositol 3-kinase (PI3K)/Akt/glycogen
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synthase kinase 3 (GSK3) pathway in brain areas related to
memory and cognition (Kelly and Levin, 2001; Marin et al.,
2005; Garcia-Segura et al., 2006; Sheppard et al., 2017). In
septal and hippocampal neurons, activation of PI3K/Akt/GSK3
signal transduction has been shown to protect against injuries
induced by, Aβ exposure, glutamate exocytosis, staurosporine-
induced apoptosis, and oxygen glucose deprivation (Marin et al.,
2005; Zhao et al., 2016). Apart from neuronal survival, this
signaling pathway mediates cytoskeletal remodeling, synaptic
plasticity, and traumatic brain injury (Garcia-Segura et al., 2007;
Wang et al., 2017). Another preferential alternative intracellular
pathway by E2 membrane interactions involve activation
of Raf/MEK/ERK signaling, which enhances neuroprotection
following ischemic brain injury, stroke and Aβ- and glutamate-
induced toxicities (Bryant et al., 2006; Lebesgue et al., 2009).

Although still not fully characterized, the generally held
view maintains that these membrane-related mechanisms of
E2 are modulated by cell membrane homeostasic mechanisms,
where plasma membrane functional microdomains may play a
preferential role.

INVOLVEMENT OF NEURONAL LIPID
RAFTS IN RAPID ESTROGEN SIGNALING

Lipid rafts are dynamic membrane microstructures enriched
in distinct lipid classes, such as cholesterol, sphingolipids,
saturated fatty acids, and gangliosides (Lingwood and
Simons, 2010). This peculiar molecular composition confers
particular physico-chemical properties, observing a higher
molecular order and microviscosity as compared to non-raft
membrane regions. Lipid rafts are regulators of signaling
platforms (or signalosomes) formed by subsets of proteins
that compartmentalize in multimolecular clusters to trigger
different cellular responses (Levental and Veatch, 2016). The
association of apparent hydrophobic proteins to lipid rafts
typically takes place through association with different structural
features or lipid moieties that confer stability to the molecular
complexes. The most common protein anchoring targets in
these microstructures are glycosylphosphatidylinositol (GPI),
cholesterol, glycosphingolipids (GPL) S-palmitoylation, N-
myristoylation/palmitoylation, and S-acylation with saturated
fatty acids (Fantini, 2007; Levental et al., 2010). Moreover, the
particular microstructure of these highly molecular-ordered
domains may have consequences in the configuration of proteins
embedded. The molecular rearrangements may favor the
interaction of protein entities that co-exist in the same raft
microdomain, thereby enhancing the formation of functional
multiprotein clusters.

The subgroup of membrane-related ERs (mERs) classically
represents a small fraction of the total amount of receptors within
the cell. ER molecule lacks either transmembrane domains,
hydrophobic residues or other structural modifications to be
inserted into the plasma membrane (Pedram et al., 2007).
Although the strategies developed by a subpopulation of ERs
to anchor into the lipid bilayer are not yet fully clarified,
some results in different cell types have demonstrated that

palmitoylation of the receptor is required to be trafficked to the
cell membrane (Meitzen et al., 2013). This modification lies in
the covalent attachment of palmitic acid and other fatty acids
to a cysteine residue present in ERs to increase hydrophobicity.
In particular, Cys447 located in the ligand binding domain has
been demonstrated to be essential for ERα to interact with the cell
membrane. Indeed, the replacement of this aminoacid by Ala447
abrogates receptor insertion into the membrane compartment
(Acconcia et al., 2005).

The other necessary requirement for membrane trafficking
of ERs is their association with lipid rafts (Marin et al., 2012;
Maselli et al., 2015). In these microdomains, ERα also appears to
be palmitoylated (Liu et al., 2002). The stability of this receptor
in lipid rafts is achieved by its interaction with caveolin-1, a
raft scaffolding protein that allows ERα membrane anchoring
(Boulware et al., 2007). In support of this, ERα primary structure
shows a consensus sequence at positions 463–470 of the ligand
binding domain susceptible of binding to caveolar scaffolding
domain (CSD) present in caveolin-1 (Marin et al., 2008). This
consensus motif is conserved in different proteins involved in
signal transduction (Couet et al., 1997), and is required for the
transport of signaling proteins into raft domains (Massimino
et al., 2002). Furthermore, ERα downstream signaling may also
involve other members of the caveolin family, such as caveolin-2
and -3, as demonstrated in neurons from different brain regions
(Micevych and Mermelstein, 2008).

Lipid rafts provide the proper microenvironment for the
recruitment and integration of a wide range of receptors
within signaling platforms (signalosomes) that are activated
upon specific extracellular stimulation, thereby inducing distinct
cell responses. In this scenario, numerous lipid raft-associated
proteins have been shown to be involved in nervous system
functioning. The list includes GPI-anchored receptors; G
protein-coupled receptors (adrenergic receptors, adenosine
receptors and cannabinoid receptors); glutamate receptors
(AMPA, NMDA, mGluR); neurotrophin receptors (tyrosine
kinase receptors, TrkA, TrkB, ephrin receptor, Eph, c-Ret,
ErbB); Src family receptors (c-Src, Lyn, Fyn); cell adhesion
molecules (NCAMs, TAG-1, Thy-1); and proteins associated with
myelin glycosynapse (LINGO1, p75, NgR1, myelin-associated
glycoprotein). The association of this plethora of proteins in
signalosomes has been shown to modulate synapsis, neuronal
plasticity, cell-cell communication, myelin organization and
stability, autophagy, neuronal survival, and neurodegeneration
(George and Wu, 2012; Egawa et al., 2016). For an excellent
review of the importance of the lipid raft-related protein classes
in the brain context see Sonnino et al. (2014).

Several lines of evidence have demonstrated that ERs, ERα in
particular, form part of raft-integrated signalosomes to initiate
a variety of neuronal responses by mechanisms still not fully
elucidated (Srivastava et al., 2011). Caveolin-1 has been shown
to be the pivotal docking protein of ERα-related signalosomes
in brain areas related to memory and cognition. Thus, caveolin
scaffolding protein serves to determine interactions of ER
with metabotropic glutamate receptors (mGluRs) in lipid rafts
of the hippocampus and striatum (Meitzen and Mermelstein,
2011; Micevych and Kelly, 2012). E2 signaling initiated at the
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membrane level by interaction with the pairing of mGluR and
ER triggers intracellular responses that may be important for,
both, neuronal and glial physiology. This membrane estrogen
signaling occurs in the absence of mGluR-specific ligands, and
represents one of the underlying mechanisms of rapid estrogen
actions related to the nervous system functioning. Moreover,
caveolin-1 is also the pivotal anchor of ERα interactions with
the insulin growth factor-1 receptor β (IGF-1Rβ). This ERα/IGF-
1Rβ tandem has been shown to be cross-talked modulated by
their natural ligands, E2 and IGF-1, which mutually cooperate
in the prevention of age-related neuronal dysfunction (Alonso
and Gonzalez, 2012; Arevalo et al., 2015), and are crucial in brain
preservation against AD (Marin, 2011; Lan et al., 2015).

It has been postulated that part of E2 neuroprotective
actions triggered in ERα signalosomes against Aβ toxicity occur
by the activation of different signal transduction pathways,
including a voltage-dependent anion channel (VDAC) gating
modulation. This channel appears associated with ERα in
neuronal lipid rafts from a wide variety of brain regions,
including septum, hippocampus, and cortex from, both, murine
and human origins (Marin et al., 2007, 2009; Ramirez et al.,
2009), where it participates in different pathogenesis including
AD (Thinnes, 2015). In raft fractions of cortical neurons, VDAC
interacting with Aβ promotes the channel dephosphorylation in
tyrosine residues, a phenomenon that promotes VDAC gating,
and enhances neuronal death (Fernandez-Echevarria et al.,
2014). Indeed, VDAC appears in a dephosphorylating status
in cortical raft fractions of AD brains at late stages, as an
indicative of the toxic post-transductional modification of the
channel in correlation with the pathology (Canerina-Amaro
et al., 2017). Conversely, E2 binding to ERα signalosome has
been shown to prevent VDAC channel dephosphorylation in
neurons, as a mechanism underlying cell survival against Aβ

neurodegeneration (Herrera et al., 2011a; Thinnes, 2013). This
hormonal mechanism takes place through activation of Src-
kinase and protein kinase A (PKA) signaling pathways (Herrera
et al., 2011b). However, other kinases such as c-Jun N-terminal
kinase-3 (JNK3) have been shown to regulate mitochondrial
VDAC phosphorylation in the brain, thereby affecting the
channel conductance and opening probability (Gupta, 2017).
Overall, these data indicate that E2 modulation of VDAC
phosphorylation in neuronal lipid rafts may be physiologically
relevant in brain preservation. In support of this, a significant
VDAC dephosphorylation has been observed in lipid rafts from
cortical brain areas of menopausal women, in correlation with
E2 detriment occurring during this period of women’s life.
Thus, in lipid rafts isolated from frontal cortex of women above
65 years old, post-transcriptional VDAC pattern was resolved
in two main isoforms corresponding to non-phosphorylated
forms as compared to samples from women younger than 55
years old (Canerina-Amaro et al., 2017). Similar results were
obtained in AD samples from women at late stages of the
disease, detecting a displacement to non-raft fractions of VDAC
in parallel with dephosphorylation of the porine. The trafficking
of VDAC out of lipid raft microdomains was accompanied by an
impairment of ER-related signaling complex. These phenomena
may have important consequences for cell preservation, as

E2 phosphorylation of VDAC in lipid rafts is an important
prerequisite to palliate Aβ-induced neurotoxicity (Herrera et al.,
2011a; Fernandez-Echevarria et al., 2014). Indeed, selective
estrogen receptor modulators (SERMs) such as tamoxifen show
the opposite effects than the hormone, thus enhancing VDAC
dephosphorylation (Herrera et al., 2011b) and gating (Valverde
et al., 2002). Overall, although still inconclusive, these data
indicate that hormone alterations in cortical post-menopausal
lipid rafts may contribute to a progressive deterioration of
neuronal functionality and survival through deregulation of
VDAC.

Moreover, emerging evidence indicates a potential role of E2
in the lipid homeostatic preservation of the neuronal membrane,
which is crucial to maintain stability of functional signalosomes.

LIPID RAFT ALTERATIONS IN
NEURODEGENERATIVE DISEASES

The brain is highly enriched in functional lipids and,
consequently, the lipid homeostasis is particularly important in
this organ. Given that lipid raft structure and activity require
a particular proportion of distinct lipid classes, it follows
that alterations in the lipid content in these microdomains
can lead to abnormal functioning that may contribute to
neuropathological events. Some results have reported that loss
of lipid raft integrity correlates in general with brain aging
progression. Different events may induce lipid impairment
in these membrane structures, such as detriment in the lipid
amount (either by intake or local bioynthesis), alterations in
the proportion of polyunsaturated fatty acids (PUFA), increase
in saturate/unsaturated ratio, and decrease in ganglioside or
cholesterol levels that induce cell aging and death (Ledesma et al.,
2012; Colin et al., 2016). It has been postulated that raft changes
in lipid profile may induce modifications in the biophysical
properties of these microstructures (e.g., peroxidability,
viscosity, thermodynamics) that may contribute to neuronal
detriment in cognitive brain areas (Diaz et al., 2015). Thus, in
mice brains, subtle changes in the molecular composition of lipid
rafts undergo an “aging” process throughout normal life that
produces, among other events, an increase in membrane-order
and reduction in the peroxidability index, notably impacting
the lateral organization of these microstructures (Diaz et al.,
2012). Indeed, these aberrant features are aggravated by AD-like
genotype, observing an acceleration of lipid raft aging in parallel
with AD progression (Fabelo et al., 2012b). Furthermore,
alterations of lipid raft lipid matrix have been observed in
age-associated neuropathologies even at pre-symptomatic
stages, such as AD, PD, and dementia of Lewy bodies (DLB),
suggesting that lipid raft impairment may be an early parameter
of neuropathology (Fabelo et al., 2011, 2014; Marin et al.,
2017). These changes are summarized in Table 1. Related to
these dementias, the most significant lipid variations are the
reduced levels of cholesterol, gangliosides, PUFA, plasmalogens,
cerebrosides, and sulfatides as compared with age-matched
controls (Molander-Melin et al., 2005; Han, 2007; Fabelo
et al., 2011; Ariga, 2017; Marin et al., 2017). Anomalies in
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TABLE 1 | Lipid alterations in neuronal lipid raft microdomains.

Lipid alteration Neuronal tissue Related anomalies and injury References

- Reduced levels of PUFA (DHA, AA), and

oleic acid

- Increased levels of the proportion of

saturated fatty acids vs. PUFA

Frontal cortex Alzheimer’s disease at late stages (ADV-VI) Martín et al., 2010

- Reduced levels of PUFA (DHA, AA), oleic

acid, and cerebrosides

- Decreased levels of cholesterol and

sphingomyelin

Frontal cortex Low levels of estrogen in menopause

Alzheimer’s disease at late stages (ADV-VI)

Canerina-Amaro et al., 2017

- Lower levels of cholesterol, sterol esters,

sulfatides, and PUFA (DHA, AA)

- Increased levels of sphingomyelin and

saturated fatty acid content, and

increased phospholipids/cholesterol ratio

- The changes were highly significant in

aged (14 months old) mice

Neocortex Double-transgenic APP/presenilin mice Fabelo et al., 2012a

- Higher concentrations of gangliosides

GM1 and GM2

- Lower concentrations of cholesterol

Temporal cortex Early and late stages of Alzheimer’s disease Molander-Melin et al., 2005

- Alterations in the levels of gangliosides

- Increased levels of GM1, GM2, GM3,

GM4, GD3

- Reduced levels of GD1b and GT1b

Frontal cortex Temporal

cortex Parietal cortex

Hippocampus Basal

telencephalon

Alzheimer’s disease and its mice models Reviewed in Ariga (2017)

- Lower levels of ganglioside GM1

- Higher levels of ganglioside GM3

Cortical areas Parkinson disease Di Pasquale et al., 2010

- Reduced levels of cholesterol,

gangliosides, PUFA (DHA, AA),

plasmalogens, cerebrosides and

sulfatides

- Higher levels of saturated fatty acids (16:0

and 18:0)

Frontal cortex Incidental Parkinson disease

Parkinson disease

Fabelo et al., 2011

- Low levels of PUFA (DHA), plasmalogens

and cholesterol

Frontal cortex Dementia with Lewy bodies Marin et al., 2017

- Alterations in ganglioside profiles

- Decreased levels of ganglioside GM1

- Increased levels of GD3

Human caudate region

Forebrain of R6/1

transgenic mice

Huntington’s disease Desplats et al., 2007

- Increased levels of glucosylceramide,

hexosylsphingosine,

bis(monoacylglycero)phosphate and

gangliosides

- Decreased levels of cholesterol and

phosphatidylcholine

- Altered sphingolipid/cholesterol

proportion

Occipital cortex from sheep Neuronopathic Gaucher disease Hein et al., 2017

lipid metabolism of lipid rafts have also been reported in
other neurological diseases, such as Huntington’s disease,
where a marked reduction of ganglioside levels is observed
in striatum and caudate regions which has been related to
neuronal apoptosis (Desplats et al., 2007; Valencia et al., 2010).
These observations suggest that targeted lipid variations in
lipid raft normal molecular composition may be early events to
progressive neuronal degeneration. Consequently, identification
of these molecular alterations in cell membranes may predict
future pathological outcome (Marin et al., 2013a).

A consequence of lipid instability ofmembranemicrodomains
is the alteration in the functionality, molecular interactions
and trafficking of proteins integrated in signalosomes. Firstly,

the increased in viscosity and membrane order of these
microstructures may reduce the lateral mobility and phase
transition, thereby affecting lipid and protein interactions
(Molander-Melin et al., 2005; Diaz et al., 2015). Secondly,
proteins can be misfolded and adopt abnormal configurations
that may lead to toxic aggregates and dysfunctional intracellular
signaling. Thus, mounting evidence suggests that the key self-
aggregating proteins in different proteinopathies, such as Aβ in
AD, alpha-synuclein (α-syn) in PD, and prion protein (PrPc)
in prion diseases share similar biophysical properties that may
affect their biochemical interrelations with membrane-integrated
molecular compounds (Goedert, 2015; Ugalde et al., 2016).
Noticeably, lipid rafts are considered key sites in the modulation
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of amyloid-like seeding (Kazlauskaite et al., 2003; Arbor et al.,
2016), α-syn pathological fibrillation (Ariga, 2014), and the
conversion of PrPc to the scrapie form PrPsc (Taylor andHooper,
2006). Thirdly, lipid rafts may act as membrane molecular
sorting sites that coordinate the spatiotemporal rearrangement
of signalosomes according to extracellular ligands availability
(Simons and Gerl, 2010). As an example, changes in membrane
cholesterol levels, that affect raft microstructure, can result
in the stimulation of apoptotic events through activation or
deactivation of different raft protein markers, such as receptors
and channels (George and Wu, 2012). Taking into account
the high number of signaling proteins intrinsically present in
lipid rafts, it is conceivable that the consequences of abnormal
lipid homeostasis may affect crucial functions such as synapsis,
neuroplasticity, and cell preservation (Paratcha and Ibáñez, 2002;
Tsui-Pierchala et al., 2002; Sebastião et al., 2013; Egawa et al.,
2016). Fourthly, changes in lipid raft microenvironment may
alter protein translocation to lipid rafts, thereby modifying their
properties. According to this premise, some data support the
concept that changes in lipid homeostasis and protein trafficking
may underpin the etiology of AD. Notably, the regulation of
electrogenic molecules involves their translocation to lipid rafts
(Pristerá and Okuse, 2012). Also, accumulation and interaction
of the key proteins involved in Aβ processing, the amyloid
precursor protein (APP) and β-secretase (BACE) is promoted by
lipid alterations in raft microdomains (Parsons and Austen, 2007;
Vetrivel et al., 2009). Additionally, this mechanistic pathological
processing is initiated in cortical brain areas since the first
AD stages (ADI-II) before senile plaques are evidenced, as
a prelude to the typical anatomopathological events of this
dementia (Fabelo et al., 2014). Moreover, although still not fully
clarified, changes in raft lipid content observed in incidental PD
and other synucleopathies may promote α-syn toxic structural
conformations (Samuel et al., 2016; Marin et al., 2017).

In correlation with this evidence, it is plausible that ER actions
integrated in lipid raft platforms may be affected by variations
in membrane lipid microenvironment that may ultimately alter
estrogen signaling and cell responses (Marin, 2011). In agreement
with this, lipid raft molecular analysis in cortical areas of post-
menopausal women have shown some changes in the levels of
cholesterol, cerebrosides, sterol esters, and PUFA as compared
to younger women controls (Canerina-Amaro et al., 2017).
Interestingly, a similar trend was reported in cortical lipid rafts
from women with AD, detecting an exacerbation of normal lipid
composition in these microdomains (Martín et al., 2010). Indeed,
the biochemical structure of lipid rafts in cortical areas appears to
be sufficient to discriminate between pre- and post-menopausal
women, observing in the latter group closer similarities to lipid
profiles than those characterized in lipid rafts from AD brains.
Furthermore, these changes are known to affect the physico-
chemical properties of lipid rafts that may subsequently alter
the proteins integrated in these domains. In this order of ideas,
ERα-related signalosome was altered in post-menopausal brains,
observing a displacement out of the raft of, both, ERα and IGF-
1Rβ as a consequence of caveolin-1 dissociation (Marin et al.,
2008; Canerina-Amaro et al., 2017). Taking into consideration
the requirement of caveolin-1 to initiate E2 signal transduction

at the membrane level (Boulware et al., 2007; Luoma et al.,
2008), these data suggest that ER-signalosome disruption may
affect neuroprotective intracellular responses. In this sense,
ERα/IGF-1Rβ/caveolin-1 disarrangement also enhanced the
redistribution of VDAC to non-raft fractions, in parallel with a
dephosphorylation of the channel, which may increase neuronal
vulnerability (Canerina-Amaro et al., 2017). Interestingly, ERα-
signalosome disarrangements are exacerbated in cortical and
hippocampal lipid rafts of AD brains (Ramirez et al., 2009),
thereby supporting the relationship between membrane ERα-
complex modifications and the process of aging and cognitive
decline.

Overall, anomalies in lipid raft matrix appear to be an early
event in neurodegenerative processes by modifying membrane
protein clustering that regulates intracellular physiological
responses. Consequently, preservation of membrane lipid
homeostasis may be a key factor for preventing or decelerating
neuronal dysfunction. In this sense, an emerging role of E2 has
been associated with brain lipid balance (Pellegrini et al., 2014).
These aspects are discussed in the next section.

ESTROGEN AS LIPOSTATIC AGENT IN
NEURONAL MEMBRANES

Emerging data suggest that E2 may play a role in lipid
homeostatic balance of lipid rafts (Marin et al., 2013b; Maselli
et al., 2015). These actions may take place through cross-talk
interactions between the hormone and distinct lipid classes that
play an important role in these microstructures’ dynamics, such
as PUFA and cholesterol. In this sense, based in nutrigenomic
approaches, cholesterol and PUFA diets affect the expression of
several genes involved in lipid raft formation (Puskas and Kitajka,
2006). Although still little explored, these estrogenic activities at
the cell membrane may be highly relevant regarding E2-related
activities for brain preservation.

The docosahexaenoic acid (DHA) is a PUFA highly abundant
in the human brain (25–30% of total fatty acids), where
it is a major component of cell membrane phospholipids.
Paradoxically, the brain has very poor capacity to produce DHA
(Pawlosky et al., 2001; Barceló-Coblijn andMurphy, 2009), which
is a main limiting factor to ensure an adequate supply of this
fatty acid to the nervous system. DHA plays a crucial role in
proper brain development and function (Calder, 2017). It has
been reported that a deficit of this PUFA increases the risk
of cognitive impairment and dementia, in particular, AD and
PD (Söderberg et al., 1991; Bazan et al., 2011; Salem et al.,
2015; Colin et al., 2016; Sun et al., 2017). Brain beneficial
actions of DHA take place at different levels, including: (i)
Variations in membrane fluidity, permeability and elasticity
due to its unsaturated conformation (Rawicz et al., 2000;
Stillwell and Wassall, 2003); (ii) Involvement in intracellular
signaling and apoptosis, and generation of neuroprotectins
(Bazan, 2003, 2006); (iii) Modulation of membrane protein
functioning (Calder, 2016); (iv) Regulation of the antioxidant
system factors (Casañas-Sánchez et al., 2014, 2015). In particular,
DHA appears to confer resilience against AD development rather
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than a general effect throughout the brain, a phenomenon that
may be related to the higher DHA turnover in regions involved
in synaptogenesis and synapsis plasticity in learning andmemory
activities (Denis et al., 2013; Yassine et al., 2016). Moreover,
although not particularly abundant in lipid rafts, DHA has a
significant impact in the structure of these microdomains, due
in part to the effects of this PUFA on cholesterol distribution
(Wassall and Stillwell, 2009). In this order of ideas, reduction
of DHA content in parallel with structural modifications of lipid
rafts have been reported in different dementias, such as AD, PD,
and DLB (Fabelo et al., 2011, 2014; Marin et al., 2017). DHA
detriment occurring with aging may be partially explained by
dietary deficits that may progressively affect the incorporation of
this essential fatty acid into the membrane phospholipids, which
are mainly replaced bymonounsaturated fatty acids (Fabelo et al.,
2012b, 2014). Thus, DHA supplementation has been associated
with lower cerebral amyloidosis, higher cognitive, and memory
performance, emotional disturbances, and cerebral vasculature
improving during brain aging (Yurko-Mauro et al., 2010; Vellas
et al., 2014; Boespflug et al., 2016).

An additional important factor in DHA turnover is associated
with E2 regulation at the brain level. It is worth mentioning that,
in addition to gonadal production, there is a local production
of estrogens in the hippocampus (Galea et al., 2006; Hojo
et al., 2008; Barker and Galea, 2009) although, at present, no
clear demonstrations have shown a reduction of endogenous
neurosteroids related to aging (Overk et al., 2013). Therefore,
it is plausible that estrogen effects in DHA homeostasis may
be the result of, both, local and peripheral estrogen origins.
In this sense, it has been demonstrated that DHA plasma
levels are about 15% higher in women than in men following
similar control diets. Administration of oral ethinyl estradiol in
women increased DHA by 42%. On the contrary, testosterone
administrated to female-to-male transsexual subjects provoked
a significant decrease (by 22%) in DHA concentrations (Giltay
et al., 2004). These data indicate that E2, but not testosterone may
enhance the synthesis of DHA from the diet precursor α-linolenic
acid (ALA). This biosynthesis takes place predominantly in the
liver, which counts on the expression of the different elongases
and desaturases needed to produce this PUFA (Cho et al., 1999).
Thus, these data indicate that the greater capacity of women
to convert ALA to DHA than do men (Burdge and Wootton,
2003) is related to E2 hormone. This E2 enhancer effect in DHA
production may have important consequences on homeostasis of
this fatty acid in the brain. Notably, despite the high abundance
of DHA in the brain, this organ has a very low capacity to
endogenous synthesis of this fatty acid (Plourde and Cunnane,
2007; Brenna et al., 2009). Yet it is generally accepted that neuron
and glial cells possess the genetic machinery to synthesize de novo
saturated and monosaturated fatty acids, and nerve cells are also
endowed with the enzymes to produce PUFA (Bazinet and Layé,
2014). However, PUFA content in the brain is mainly provided
by the blood, and the rate of PUFA uptake into the nervous
system is much higher than the local production. Thus, in vivo
studies in humans have demonstrated that only a 0.5% of ALA
is converted to DHA (Plourde and Cunnane, 2007). Moreover,
even though PUFA dietary supply appears to upregulate the

expression of the enzymes involved in DHA synthesis in the liver,
in contrast, enzyme levels remain static in the brain (Rapoport,
2013). In agreement with this, it has been recently reported that
dietary DHA supplementation in mice does not significantly
increase the local expression of the elongases and desaturates
involved in DHA synthesis in the hippocampus (Díaz et al.,
2016). Collectively, these results indicate that DHA content in the
brain depends on a constant supply from the peripheral blood.

Based upon these observations, it is plausible that the
combinatory effects of E2 and DHA factors may have significant
consequences in nerve cell biology and brain preservation. Likely,
the best characterized evidence of the DHA and E2 interplay
in humans is the demonstration of a higher prevalence rate
of depression following DHA deficiency and ovarian hormonal
dysregulation (Davis et al., 2010). Indeed, it has been reported
a synergistic antidepressant action of DHA and E2 in the
regulation of serotonergic neurotransmission through brain-
derived neurotrophic factor (BDNF) and inflammatory cytokines
(Jin and Park, 2015). These antidepressant-like effects were
specific of DHA since its precursor alpha-linolenic acid did not
show any effect in serotonergic circuits (Choi and Park, 2017).

Moreover, the combination of DHA-enriched diets and E2
treatment appears to be a key factor in maintaining lipid
homeostasis in the hippocampus (Díaz et al., 2016). These E2-
related lipostatic mechanisms involve the genetic regulation of
lipid biosynthetic pathways, which are crucial for hippocampal
maintenance against AD phenotype inmice, in particular, at early
stages of this pathology (Marin et al., 2013b; Díaz et al., 2016).
Other evidence of the importance of E2 in DHA bioavailability
in the brain has been reported during pregnancy, where there
is a preferential high demand of DHA for the fetal brain
formation. In this instance, it has been demonstrated that E2 is
the main factor of brain DHA uptake in both the maternal and
fetal brain, with a higher production of PUFA in the maternal
liver also observed (Fabelo et al., 2012a). These data suggest
that the hormone may play a role in, both, brain intake and
brain production of DHA. Other experiments in cultured cells
support the idea that E2 upregulates the metabolic production
of DHA from its precursors. Thus, in vitro experiments in
human neuroblastoma SHSY-5Y cells have reported that these
cells maintain the ability to convert a certain proportion of
ALA to DHA. Interestingly, E2, but not dehidroepiandrosterone,
upregulates the DHA production (by 50%), and its uptake
into the plasma membrane (Alessandri et al., 2008). This E2
mechanism involves the modulation of the Delta5-desaturase
expression (Extier et al., 2009). These observations suggest that
E2 may be an enhancer of the neuronal endogenous production
of this PUFA, and may satisfy to a certain degree meet the
neuronal membrane demands of DHA. However, the highest
proportion of DHA present in neuronal membranes comes
from diet sources. Furthermore, E2 and DHA modulation in
the brain may be dual, since dietary DHA intake conversely
potentiates E2 synthesis in the cerebral cortex, a factor that is
required to delay the onset and elongate the latency of epileptic
seizures (Ishihara et al., 2017). Overall, these studies reveal the
synergistic efficacy of E2 and DHA in physiological actions in the
brain.
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A big body of data has reported the role of membrane
cholesterol in the neuroprotective effects of E2 (Peri et al.,
2011). The brain contains about 25% of the total amount of
unesterified cholesterol content in the total body. Therefore,
it is plausible that cholesterol embedded into the neuronal
membranes, and not just its peripheral levels, may be a key
factor for brain maintenance and functionality (Yanagisawa,
2002). In this scenario, it has been reported that cholesterol
plays a multifactorial role in cell membranes. Thus, this molecule
is a key factor for lipid rafts microstructure and functionality
(Egawa et al., 2016), and its optimal amount may create a
protected barrier against toxic factors (Arispe and Doh, 2002).
Some studies also reported that raft cholesterol may have a
role in the biogenesis and catabolism of β-amyloid (Araki
and Tamaoka, 2015). In particular in lipid rafts, β-amyloid
formation may be influenced by cholesterol turnover that affects
the fluidity and structural properties of these microdomains.
Thus, a loss of neuronal membrane cholesterol facilitates β-
amyloid formation machinery (Abad-Rodriguez et al., 2004).
In accordance with this, low cholesterol levels have been
detected in cortical lipid rafts from AD patients in parallel
with increased levels of steryl/cholesteryl esters (Martín et al.,
2010).

Estrogens may play a preferential role for the control of
cholesterol synthesis and trafficking in the neuronal membranes.
Recent findings have indicated that the production of this fatty
acid is stimulated by estrogens. Some data has reported that
E2 affects cholesterol synthesis in the hippocampus, through
the modulation in expression of 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMG-CoAR) and acetyl-coenzyme A
acetyltransferase (ACAT) genes (Marin et al., 2013b; Díaz et al.,
2016). This actionmay be achieved by the intervention of seladin-
1 (for SELective Alzheimer’s Disease INdicator-1), a molecule
that plays a dual role as a neuroprotector agent as well as a
catalyzer of cholesterol formation from its precursor desmosterol
(Peri, 2016).

Another important level of interaction of E2 and lipid
transport in the brain takes place through the expression of
apolipoprotein ApoE. This lipoprotein is a crucial regulator
of cholesterol metabolism in the brain. Different ApoE forms
(ApoE2, ApoE3, and ApoE4) have been characterized. In this
sense, ApoE4 is the greatest genetic risk factor to develop
sporadic AD, and this risk is greater in women than men (Neu
et al., 2017). In particular, (Apo)E3 isoform is stimulated by
this hormone, to facilitate neurite outgrowth (Nathan et al.,
2004). Distinct regulation of ApoE isoforms by estrogens may
have an important role in neuroprotection against AD, since
hormonal administration at menopause have benefits in ApoE2
and ApoE3 production in women by decreasing extracellular
and soluble β-amyloid (Kunzler et al., 2014). These observations
suggest a distinct E2 modulation of Apo subtypes, which may
have important consequences in neuroprotection against AD (Shi
et al., 2014).

Overall, these data reflect the importance of E2 in lipid
synthesis and uptake in the brain throughout women’s
lifespan that can be affected as a consequence of hormonal
changes.

FUTURE PERSPECTIVES

As discussed throughout the different sections, a growing body
of evidence supports that E2 has a beneficial impact in the
brain by exerting multiple actions that work in conjunction
with neuronal membrane microenvironments. These actions are
summarized in Figure 1. In plasma membrane lipid rafts, E2
plays a dual action. On the one hand, it targets ERα clustered
in multimeric signalosomes formed by different molecules
that trigger neuroprotective signal transduction. On the other
hand, it contributes to the maintenance of the proper lipid
environment to promote healthy molecular interactions for
neuronal functioning. In particular, evidence indicates that
E2 modulates cell membrane intake of cholesterol and DHA
abundantly represented in the nervous system, and significantly
contribute to lipid raft structure (Su, 2010; Peri et al., 2011;
Marin et al., 2013b). Preservation of lipid homeostasis in these
microdomains appear to be crucial for protein stability and
interactions in signaling platforms, but it may also contribute
to enhance neuronal defenses against oxidative stress (Casañas-
Sánchez et al., 2014). It is worth mentioning that, although
still not fully demonstrated, steroid hormone contribution to
membrane molecular turnover may also take place at the
mitochondrial membrane level. Thus, lipid rafts have also
been identified in mitochondria, where they have important
implications in optimal assemblies of respiratory supercomplexes
and apoptosis regulation (Garofalo et al., 2015). In these
organelles, lipid rafts may participate in energetic and metabolic
capacity (Ray et al., 2016). Moreover, some reports have indicated
that particular lipid features of lipid rafts may promote specific
protein assemblies for mitochondrial functioning. In this order
of ideas, it has been demonstrated that DHA content modulates
the molecular architecture of cardiolipin-protein scaffolds, which
are the pivotal structure of mitochondrial lipid rafts (Shaikh et al.,
2015). Therefore, it is conceivable that lipid anomalies in lipid
rafts induced by estrogenic fluctuations may converge in reduced
energy production and cell exhaustion (Ferrer, 2009). However,
this possibility remains to be confirmed.

Given that E2 detriment occurring during menopause
enhances the risk of neuropathological events, estrogen
replacement therapy (ERT) may be considered a logical
intervention. Nevertheless, ERT approaches are still a matter of
controversy, because of the increased rates of stroke, coronary
heart disease, and breast cancer reported in menopausal
women following this preventive therapy (Prentice, 2014). A
major reason for these unsuccessful trials is lack of standard
criteria and optimization of the parameters for accurate
hormonal treatments. For instance, there remains much
to be learned concerning the optimal treatment guidelines
regarding formulation, dose and timing of intervention to avoid
unfavorable health consequences (Manson et al., 2013). However,
taking into account the potential benefits of this type of therapies
in nervous system preservation, further research to determine
the best ERT strategy is crucial, although remains still pending.

Some promising data accrued from human studies have

provided evidence that estrogen replacement therapies (ERT)
administrated to women at 50–63 years old might protect against
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FIGURE 1 | Schematic representation of multiple actions of estrogen associated with neuronal membrane microdomains. 1 Estrogen binding to ERs integrated in lipid

raft signalosomes triggers the rapid activation of rapid signal transduction, ultimately leading to the modulation of either anti-apoptotic or anti-inflammatory factors that

contribute to neuronal maintenance. 2 The hormone also contributes to membrane lipid homeostasis, such as DHA membrane uptake, thus promoting healthy protein

clustering and activities. 3 Estrogen is also an energetic and metabolic capacitor, through the participation in the mitochondrial membrane turnover and the regulation

of mitochondrial supercomplexes that regulate the cell bionergetic system.

cognitive decline occurring during normal aging (Henderson,
2014). Thus, it has been demonstrated that ERT improves
performance on tests of verbal, visual working and spatial
memory, and verbal fluency, as compared to non-users women
of similar age (Robinson et al., 1994; Kimura, 1995; Grodstein
et al., 2000; Miller et al., 2002; Sherwin and Henry, 2008).
However, there are multiple factors such as the particular
physiological features of each subject (age, health, hormone
status, etc.) that make ERT unsuitable for some women in long-
term basis (Marjoribanks et al., 2017). In addition, there is not
still consensus about the efficacy of hormone treatments in the
brain due to multifactorial parameters, including E2 origin, dose,
and timing of duration that may largely influence either efficiency
or adverse risk factors (Hogervorst et al., 2000). In this sense, a
proposed alternative strategy is the development of efficacious
NeuroSERM (specific SERMs designed for the brain) that may
avoid the peripheral adverse effects in other E2-targeted organs
(Zhao et al., 2005). However, this endeavor requires a better
knowledge of the orchestrated estrogen mechanisms of action at
the different subcellular compartments in nerve cells.

An alternative intervention that appears to alleviate the impact
of metabolic changes during menopausal periods is based on
nutritional supplementation with vegetable phytoestrogens (Villa
et al., 2017). Phytoestrogens have similar structures to those
of estrogen, possess estrogen-like activities, and show some
affinity for ERs (Brzezinski and Debi, 1999). Consequently,
supplementation with the most common phytoestrogens, such

as isoflavones (i.e., genistein), and stilbenes (i.e., resveratrol) is
a remedy used for a significant number of women to alleviate
some menopausal symptoms (Soni et al., 2014). Isoflavones are
abundant in soybean products (e.g., tofu), and resveratrol is
highly abundant in grape skin and berries. Interestingly, some
evidence indicates that supplementation with either isoflavones
or resveratrol to menopausal women in early stages (<10 years)
show some beneficial effects in memory and cognition, as well
as improved cerebral vascularization (Evans et al., 2016; Thaung
Zaw et al., 2017).

Furthermore, emerging data discussed in this review have
demonstrated a synergistic effect of, both, E2 and essential fatty
acids such as DHA in the maintenance of neural homeostasis
and preservation against neurodegeneration (Fabelo et al.,
2012a; Díaz et al., 2016). Based on these premises, future
potential interventions may include supplementation of, both,
hormonal treatments and selected lipid classes that may have
beneficial effects during menopausal periods. In particular,
specific nutritional supplements enriched in omega-3 fatty
acids abundantly found in fish oil (i.e., DHA) combined with
phytoestrogens may provide protection against cognitive aging.
In this sense, some promising studies in cancer cellular models
have indicated that diets rich in fish oils and soy isoflavones
may be a good complementary treatment against breast cancer
(Duncan et al., 2005), and osteoporosis (Kruger et al., 2015).
Indeed, the combination of these two compounds appear
to reduce breast cancer risk by enhancing anti-inflammatory
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pathways and lowering the pro-inflammatory effects induced by
prostanoids, cyclooxygenase-2 (COX-2), and arachidonic acid
(AA) activities (Horia and Watkins, 2007). In agreement with
this, other data have also shown that reduced levels of DHA as
a consequence of diets poor in this PUFA promote inflammation
in distinct neuropathologies (Sinclair et al., 2007; Zárate et al.,
2017). Moreover, the fact that studies in experimental mouse
models of AD have demonstrated a deleterious effect in the
hippocampus of low levels of, both, E2 and DHA, also supports
the existence of a PUFA/hormone synergistic neuroprotective
effect (McNamara et al., 2009). However, to the best of our
knowledge, no studies have addressed the potential beneficial
effects of dual supplementary intake of PUFA and phytoestrogen
in human nervous system.

In conclusion, we believe that nutritional-hormonal
interventions may be a potential therapeutic strategy to alleviate
some of the symptoms associated with, both, menopause and
age-related brain degeneration, particularly at the stage of

earliest recognizable symptoms. These strategies may act as
compensatory mechanisms to palliate the loss of essential
cell membrane lipids that ultimately may lead to neuronal
dysfunction and brain detriment. Notwithstanding these
encouraging results, further studies will be needed to tackle
optimal strategies to mitigate menopausal effects in the nervous
system.
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