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Abstract
The Hippo pathway plays a crucial role in cell proliferation and apoptosis and can regulate stem cell maintenance and
embryonic development. MOB kinase activators 1A and 1B (Mob1a/b) are key components of the Hippo pathway,
whose homozygous deletion in mice causes early embryonic lethality at the preimplantation stage. To investigate the
role of Mob1a/b in stem cell maintenance and differentiation, an embryonic stem cell (ESC) clone in which Mob1a/b
could be conditionally depleted was generated and characterized. Although Mob1a/b depletion did not affect the
stemness or proliferation of mouse ESCs, this depletion caused defects in differentiation into the three germ layers.
Yap knockdown rescued the in vitro and in vivo defects in differentiation caused by Mob1a/b depletion, suggesting
that differentiation defects caused by Mob1a/b depletion were Yap-dependent. In teratoma experiments, Yap
knockdown in Mob1a/b-depleted ESCs partially restored defects in differentiation, indicating that hyperactivation of
Taz, another effector of the Hippo pathway, inhibited differentiation into the three germ layers. Taken together, these
results suggest that Mob1a/b or Hippo signaling plays a critical role in the differentiation of mouse ESCs into the three
germ layers, which is dependent on Yap. These close relationship of the Hippo pathway with the differentiation of
stem cells supports its potential as a therapeutic target in regenerative medicine.

Introduction
Embryonic stem cells (ESCs) are derived from the

pluripotent inner cell mass (ICM) cells of the blastocyst-
stage embryo1. Because ESCs are capable of self-renewal
and can differentiate into every cell type in the animal
body, the properties of pluripotent stem cells have gen-
erated much interest for their use as potential therapies
for defects in developmental and regenerative processes in
human diseases. Recently, researchers have found that
pluripotent stem cells and progenitor cells can aggregate
and generate tissue structures known as organoids, which
resemble primary tissues in vivo2. Although the current

culture system of organoids does not include endothelial
or stromal cells, in vitro organoid models can provide
useful tools for basic research and clinical applications2.
Transcription factors and chromatin regulators are

important for maintaining the pluripotency of ESCs3. The
pluripotent state of ESCs is largely dependent on the core
transcription factors Oct4, Sox2 and Nanog4–7. Repro-
gramming of differentiated adult cells into induced plur-
ipotent stem cells is also possible through the expression
of a set of transcription factors, such as Oct4, Sox2, Klf4,
and Myc8. These core transcription factors activate the
expression of genes necessary to maintain ESC properties
and the pluripotent state of ESCs. They also contribute to
the repression of genes encoding cell-lineage-specific
regulators9–11. Many additional regulators for maintain-
ing stemness have been found by genetic and proteomic
screening12,13.
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In mammals, Yes-associated protein 1 (Yap) and WW
domain-containing transcription regulator protein 1 (Taz)
are negatively regulated by the activation of the core
components of the Hippo pathway14. These Hippo core
components are essential during early embryonic devel-
opment. Yap−/−:Taz−/− mouse embryos showed
embryonic lethality before the 16-cell morula stage and
lacked TE lineage specification15. Depletion of Nf2, Amot,
or Lats1/2 led to failure to develop ICM-derived linea-
ges16–18. The Hippo pathway has also emerged as a crucial
regulator of the stemness of ESCs. The Yap-Tead2 com-
plex can upregulate Oct4 and Nanog expression in mouse
ESCs19. Furthermore, overexpression of Yap prevents the
differentiation of ESCs, and knockdown of Yap leads to
the loss of the pluripotency of ESCs20. Taz is also required
for the translocation of Smad2/3/4 into the nucleus to
maintain TGFβ signaling and the pluripotent state of
human ESCs21. Therefore, the Hippo signaling pathway
plays a role in maintaining pluripotency and determining
cell fate specification either directly via the control of core
transcription factors (e.g., Oct4) or indirectly by mediat-
ing other signaling pathways (e.g., SMAD pathway) in
ESCs. Additionally, it was reported that increasing Yap
activity promoted stemness and inhibited differentiation
in many organs and tissues22, indicating that the Hippo
pathway could be a potential target for organ regeneration
and repair upon injury.
MOB1 is a regulator of mitosis in yeast23–26. Deletion of

the dMob1 gene triggers tumor development in Drosophila,
where dMob1 acts as a tumor suppressor27. In humans,
MOB1A and MOB1B are involved in cell proliferation, cell-
lineage specification, and mitotic exit28–31. MOB1A/B can
also activate NDR/LATS1 kinases32,33 and is a core com-
ponent of the Hippo pathway along with MST1/2, LATS1/
2, and SAV114. Phosphorylation of MOB1A/B by the
MST1/2 kinase is required for the interaction of MOB1A/B
with the NDR/LATS kinases34–36. Binding of MOB1A/B to
the LATS1/2 kinase fully activates LAST1/2 activity, which
in turn phosphorylates YAP and TAZ, inhibiting their
activity37. Therefore, Mob1a/b is an essential core compo-
nent of the Hippo pathway that prevents indiscriminate
Yap/Taz hyperactivity.
In this study, we generated and characterized a mouse

ESC clone in which Mob1a/b could be conditionally
depleted to investigate whether the stemness or differ-
entiation potency of ESCs was modulated by Mob1a/b.
We found that Mob1a/b could control the differentiation
of mouse ESCs into the three germ layers, which was
dependent on Yap.

Materials and methods
Generation of Mob1a and Mob1b knockout mouse
A 15-kb DNA fragment containing exons of the murine

Mob1a and Mob1b genes was retrieved from BAC clones

(bMQ-423L2 and 240C9, respectively) into a pBluescript
phagemid system using a previously reported procedure38.
The generation of targeted ES cell clones and germline
transmission of the Mob1apuro and Mob1bpuro alleles are
described in Supplementary Fig. 1. Targeting strategies of
Mob1aflox and Mob1bflox alleles were performed as
described previously39 and in Supplementary Fig. 2. All
mouse strains were backcrossed for more than six gen-
erations to C57BL/6J. This study was reviewed and
approved by the Institutional Animal Care and Use
Committee of the National Cancer Center Research
Institute.
To generate ESC lines, embryos during the blastocyst

stage were harvested from the uterus of a pregnant female
mouse using M2 medium (Sigma-Aldrich). Individual
embryos were transferred to mitomycin C (Sigma-
Aldrich)-treated primary mouse embryonic fibroblast
(MEF) feeders and cultured in ESC medium, which con-
sisted of high glucose Dulbecco’s modified Eagle’s med-
ium (Welgene, Republic of Korea), 15% serum
replacement (Gibco), 2 mM L-glutamine (Gibco), 1% non-
essential amino acids solution (Gibco), 0.1%
β-mercaptoethanol (Gibco), 5% penicillin–streptomycin
(Gibco) and 0.01% recombinant mouse LIF protein
(Chemicon). After 7 days, cells were incubated with
medium supplemented with 3 μM CHIR99021 (Sigma-
Aldrich) and 1 μM PD035901 (Selleckchem) for 1 or
2 weeks. The genotype of each clone was identified fol-
lowing PCR as described in Supplementary Fig. 2.

Culture and differentiation of mESCs
Undifferentiated mouse ES cells were routinely main-

tained on a tissue culture plate coated with mitomycin C-
treated primary MEF feeder in ESC medium at 37°C in a
humidified atmosphere containing 5% CO2 as previously
described. For depletion of Mob1a/b, Mob1af/f:Mob1bf/f:
CAGGCre-ERTM mouse ESCs were treated for at least
3 days with 0.5 µM 4-hydroxytamoxifen (Sigma-Aldrich)
diluted in ethanol.
For differentiation experiments, feeders were depleted

by a 30-min incubation on the tissue culture plate, fol-
lowed by gentle agitation for purifying ESCs. Embryoid
bodies (EBs) were generated using the hanging drop
method. Cells were incubated (5×102 cells per 35 µl) on
the lid of a tissue culture dish in differentiation media.
The EBs were maintained in suspension culture for 4 days
(2 days as hanging drops and 2 days in bacteriological-
grade Petri dishes), and on day 5, EBs were plated on
tissue culture plates coated with 0.1% gelatin for attach-
ment and spreading for 2 days.

Immunoblot analysis
Harvested ESCs were lysed with RIPA buffer (GenDe-

pot) containing Xpert proteinase inhibitor cocktail and
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phosphatase inhibitors (GenDepot). The protein con-
centration in each lysate was quantified with a protein
assay dye reagent (Bio-Rad). Fifteen micrograms of lysate
was fractionated on an 8–13% gradient sodium dodecyl
sulfate-polyacrylamide gel and electroblotted on nitro-
cellulose membranes (Bio-Rad). Blots were incubated
with primary antibodies in 0.05% Tween-20/TBS (TBST)-
based solution at 4 °C overnight on a shaker and corre-
sponding horse radish peroxidase-conjugated secondary
antibodies (GenDepot) at room temperature for 40 min
on a shaker. Chemiluminescence detection was per-
formed with the standard protocol. Antibodies are listed
in Supplementary Table 1.

Histology and immunohistochemistry
Teratomas were isolated and fixed at 4 °C overnight

with fresh 4% paraformaldehyde in phosphate-buffered
saline (PBS) and then embedded in paraffin. Five-
micrometer paraffin sections were prepared using a
microtome and stained with hematoxylin and eosin. For
immunohistochemical staining, the sections were
deparaffinized and rehydrated using the standard pro-
tocol. Antigen retrieval was performed in a solution
(10 mM trisodium citrate, pH 6.0/0.05% Tween-20) by
boiling for 10 min in a microwave oven. The tissue
sections were incubated with blocking solution (10%
goat serum, 1% bovine serum albumin/Tris-buffered
saline (BSA/TBS) for 1 h at room temperature and
reacted with anti-Taz antibody (Sigma-Aldrich) at 4 °C
overnight and corresponding biotinylated secondary
antibody diluted 1:500 in 1% BSA/TBS at room tem-
perature for 1 h. The slides were incubated in 0.3%
hydrogen peroxide in TBS for 15 min to block endo-
genous peroxidase. An ABC avidin-biotin-DAB detec-
tion kit (Vector Labs, Burlingame, CA, USA) was then
used for the detection and visualization of staining
according to the supplied protocol. Finally, slides were
counterstained with hematoxylin and dehydrated for
coverslip mounting. Images were obtained using
Observer.Z1 or Imager.M1 (Zeiss).

RNA isolation, complementary DNA synthesis, and
semiquantitative/quantitative PCR
Total RNA was isolated from cells using TRIzol®

reagent (Life Technologies) with phase separation by
chloroform and ethanol precipitation. The RNA pellet
was dissolved in diethyl pyrocarbonate water (500 ng/µl).
Total RNA was reverse transcribed using ReverTra Ace®
qPCR RT Master Mix (Toyobo). Semiquantitative PCR
with reverse transcription (semi-RT-qPCR) was per-
formed using EmeraldAmp GT PCR Master Mix
(Takara). RT-qPCR was performed in triplicate for each
sample using SYBR® Premix Ex Taq TM II (Takara) on a
LightCycler® 480 Real-Time PCR System (Roche)40.

Sequences of oligonucleotides are listed in Supplementary
Table 2. PCR primers for the Mob1a/b alleles were
designed to identify the chromosomal regions deleted by
Cre-loxP-mediated recombination.

Alkaline phosphatase staining
Cells were fixed in −20 °C methanol for 10 min and

stained using the Alkaline Phosphatase kit (Vector)
according to the manufacturer’s instructions.

Cell cycle analysis
Cells were fixed overnight in 70% ethanol (EtOH) at

4 °C and washed with PBS and incubated in 0.5 mg/ml
RNase A solution (Sigma-Aldrich) at 37 °C for 10min.
Then cells were stained with 50 μg/ml propidium iodide
(Sigma-Aldrich) for 30min41. Cell cycle distribution was
assessed by a BD FACSCaliburTM (BD Biosciences).

Lentiviral infection
To generate the Yap-knockdown cells, mouse ESCs

were infected with lentivirus containing short hairpin
RNA (shRNA) targeting Yap. Lentiviral packaging plas-
mids pLP1, pLP2, and pLP/VSVG and pLKO.1-Blas-
ticidine or pLKO.1-puromycin construct were
cotransfected into 293FT cells using JetPEI (Polyplus-
transfection). At 48 h after transfection, viral supernatant
was supplemented with 10 µg/ml polybrene, filtered
through a 0.45 µm filter, and used to infect mouse ESCs.
The next day, the media were changed with fresh ESC
medium, and at 48 h after infection, the cells were selected
with 20 µg/ml blasticidin and 2 µg/ml puromycin (Sigma-
Aldrich). The target sequences used in the knockdown
experiments were as follows. shYap, 5′-TGA GAA CAA
TGA CAA CCA ATA-3′; shTaz #1, 5′-GAT GAA TCC
GTC CTC GGT G-3′; shTaz #2, 5′-CAG CCG AAT CTC
GCA ATG AAT-3′; shTaz #3, 5′-CCT GCA TTT CTG
TGG CAG ATA-3′; shLats1 #1, 5′-GCC CAA CAG GAA
CAG TCA TAA-3′; shLats1 #2, 5′-GCA ACA TTC AAT
TAA CCG AAA-3′; shLats1 #3, 5′-CCT ATT CAA CAG
CCC GTG AAA-3′; shLats2 #1, 5′-CTC TCA GGG AAA
TCC GAT ATT-3′; shLats2 #2, 5′-CGC AAG AAT AGC
AGA GAT GAA-3′; shLats2 #3, 5′-CGC CTT CTA TGA
GTT CAC CTT-3′.

Teratoma formation assay
For the teratoma formation assay, mouse ESCs (1.5 ×

106 cells) suspended in 50 µl of PBS were mixed with 50 μl
of Matrigel (Corning), and then subcutaneously injected
into BALB/c nude mice (Orient Bio, Korea). Teratomas
were recovered by dissection with surrounding tissue at
6 weeks after injection. Tumors were fixed in 4% paraf-
ormaldehyde and embedded in paraffin. Five-micrometer
tissue sections were prepared using a microtome and
stained with hematoxylin and eosin.
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Statistical analysis
Statistical analysis (unpaired two-tailed Student’s t test)

was performed using GraphPad Prism 5 software. For all
experiments with error bars, data are presented as the
mean ± SEM. A value of p < 0.05 was considered to be
significant; *p < 0.05, **p < 0.01, and ***p < 0.001.

Results
Depletion of Mob1a/b causes early embryonic lethality in
mice
To explore the physiological function of Mob1a/b in

embryonic development, we generated conditional-
knockout Mob1a and Mob1b alleles by gene targeting in
mouse ESCs. In the gene targeting strategy, exon 2 of the
Mob1a allele and exon 3 of the Mob1b allele were flanked
by two loxP sequences, which were recognized and
removed by Cre recombinase. Consequently, only the first
75 of the 651 nucleotides of Mob1a and 216 of the 651
nucleotides of Mob1b were correctly transcribed. These
aberrant messenger RNA transcripts contained premature
stop codons and were degraded by the nonsense-mediated
decay pathway (Supplementary Fig. 2). Because single-
homozygous mutants (Mob1a−/−:Mob1b+/+ or Mob1a+/+

:Mob1b−/−) were viable and did not show any abnorm-
alities until more than 18 months after birth, we generated
the double-homozygous mutant (Mob1a−/−:Mob1b−/−).
Double-homozygous mutants from heterozygote inter-
crosses were not viable and showed embryonic lethality
before E8.5 (Table 1a, b). These results indicated that
Mob1a and Mob1b have mutual redundancy and that one
of the two proteins is required for early embryogenesis in
mice.

Depletion of Mob1a/b has little effect on the maintenance
of stemness/pluripotency or proliferation of mouse ESCs
To investigate whether the failure of embryogenesis

under Mob1a/b gene deletion is caused by loss of
stemness or aberrant differentiation of stem cells, we
generated Mob1af/f:Mob1bf/f:CAGGCre-ERTM mouse
ESCs in which the Mob1a/b genes could be deleted by 4-
hydroxytamoxifen (4-OHT) treatment and evaluated the
effects of Mob1a/b depletion on markers of pluripotency
and differentiation. Mob1a/b proteins were nearly
depleted after 3 days of 4-OHT treatment (Fig. 1a).
Mob1a/b depletion caused a decrease in Yap-S112
phosphorylation and upregulation of Taz protein levels
(Fig. 1a and Supplementary Fig. 3), which confirmed
that Lats1/2 kinase activity, Yap phosphorylation, and
Taz protein expression are modulated by Mob1a/b in
mouse ESCs. The levels of the pluripotency-related
markers Oct4 and Nanog in Mob1a/b-depleted ESCs
were similar to those of the control (Fig. 1b). The
expression levels of differentiation-related markers
(Gata6, Gata4, Sox17, Eomes, T-brachyury, Nestin, and

Fgf5) were also unchanged following Mob1a/b depletion
(Fig. 1c).
We next investigated whether the in vitro maintenance

of mouse ESCs was influenced by Mob1a/b depletion.
Mob1a/b-depleted ESCs were maintained for 1 week,
followed by observing the ES cell morphology and
visualizing the pluripotency using alkaline phosphatase
staining. Consistent with the marker analysis (Fig. 1b), the
cell morphology and alkaline phosphatase activity of the
Mob1a/b-depleted ESCs were similar to those of the
control (Fig. 1d). Mob1a/b depletion also did not affect
cell cycle progression (Fig. 1e). These results suggest that
Mob1a/b depletion does not affect the maintenance of
stemness/pluripotency or proliferation of mouse ESCs.

Mob1a/b is required for the differentiation of mouse ESCs
into the three germ layers
Because Mob1a/b gene deletion showed little effect on

the maintenance of stemness and proliferation of mouse
ESCs, we investigated whether Mob1a/b depletion affec-
ted the differentiation of mouse ESCs. EB formation is
typically used as a tool to initiate spontaneous differ-
entiation of ESCs into the three germ layers. The

Table 1 Depletion of Mob1a/b causes early embryonic
lethality in mice: (a) The number and genotypes of pups
from Mob1a+/−:Mob1b+/− intercrosses. (b) No Mob1a/b-
null embryos were observed from Mob1a+/−:Mob1b−/−

intercrosses (upper, designated as Mob1b−/− background)
or Mob1a−/−:Mob1b+/− intercrosses (bottom, designated
as Mob1a−/− background)

(a)

Mob1a Mob1b No. (%) of mice

+/+ +/+ 4 (2.8)

+/− +/+ 12 (8.5)

−/− +/+ 6 (4.2)

+/+ +/− 19 (12.8)

+/− +/− 36 (25.7)

−/− +/− 26 (18.5)

+/+ −/− 10 (7.1)

+/− −/− 18 (20.0)

−/− −/− 0 (0)

(b)

+/+ +/− −/−

E8.5d (Mob1b−/− background) 4 8 0

E10.5d (Mob1a−/− background) 6 10 0
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outgrowth of EBs after attachment to a tissue culture dish
indicates the expansion of the endodermal-lineage
cells42,43. In this experiment, we generated EBs using the

hanging drop method and then performed the EB
migration assay. After plating the EBs on a tissue culture
dish coated with 0.1% gelatin, the outgrowth and
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Fig. 1 Mob1a/b has little effect on the maintenance of stemness and proliferation in mouse ESCs. a Immunoblot analysis for Mob1a/b and p-
Yap (S112) in lysates from Mob1af/−:Mob1bf/f:CAGGCre-ERTM mouse ESCs harvested at the indicated times after 4-OHT treatment. Gapdh served as a
loading control. b Immunoblot analysis for Mob1a/b, Oct4, Nanog, and Yap in lysates from Mob1af/−:Mob1bf/f:CAGGCre-ERTM mESCs harvested at the
indicated times after 4-OHT treatment. GAPDH served as a loading control. c Semiquantitative PCR for Mob1a, pluripotency markers (Oct4, Sox2, and
Nanog), and differentiation markers (Gata6, Gata4, Sox17, Eomes, T-brachyury, Nestin, and Fgf5) in Mob1af/−:Mob1bf/f:CAGGCre-ERTM ESCs.
d Representative images of alkaline phosphatase staining of Mob1af/−:Mob1bf/f:CAGGCre-ERTM ESCs on the seventh day after 4-OHT treatment. Scale
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migration of Mob1a/b-depleted EBs were dramatically
reduced compared to the control, suggesting that Mob1a/
b-depleted ESCs were defective in the differentiation into
the endodermal lineage (Fig. 2a).
To further characterize Mob1a/b-depleted EBs, we

performed RT-qPCR for the pluripotency markers Oct4,
Sox2, and Nanog. While the expression levels of Oct4,
Sox2, and Nanog dramatically decreased by 39.5%, 56.7%,
and 69.1%, respectively, in the control EBs under differ-
entiation conditions, they were not changed in the
Mob1a/b-depleted EBs (Fig. 2b, c). We also investigated
the differentiation status of the Mob1a/b-deficient EBs
using RT-qPCR for markers of the three germ layers. The
expression of the endoderm lineage markers (Gata6,
Gata4, Sox17, FoxA1, and Pdgfra) increased 10- to 20-fold
on days 4 and 6 of EB formation in the control. In con-
trast, the expression of these markers did not increase in
the Mob1a/b-depleted EBs (Fig. 3a, b). The expression
levels of the mesoderm lineage markers (Hand1, T-
brachyury, Twist2, Mesp1, and MixL1) increased 40- to

120-fold on days 4 and 6 of EB formation in the control,
but were not induced during differentiation of the
Mob1a/b-depleted ESCs (Fig. 3a, c). Furthermore, the
ectoderm markers (Fgf5, Otx2, and Pax6) in the Mob1a/b-
depleted EBs were induced to a lesser extent during dif-
ferentiation compared to the control (Fig. 3a, d). In the
experiments with Lats1/2-knockdown ESCs, we also
observed an in vitro defect in the differentiation into the
three germ layers (Supplementary Fig. 4). These results
suggest that Mob1a/b or Lats1/2 depletion in mouse ESCs
causes a defect in the differentiation of ESCs into the early
three germ layers in vitro.

The differentiation defects caused by Mob1a/b depletion
are Yap-dependent
Mob1a/b is a scaffold protein that activates the Lats1/2

kinases, which phosphorylate and inactivate the Yap
transcriptional activity by nuclear delocalization, cyto-
plasmic sequestration, and induction of proteasomal
degradation37. We investigated the levels of Yap protein
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Fig. 3 Mob1a/b knockout causes a defect in the differentiation of mouse ESCs. a Quantitative PCR for germ layer markers (endoderm: Gata6,
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and S112 phosphorylation upon differentiation of mouse
ESCs (Supplementary Fig. 3). Phosphorylation of Yap-
S112 increased upon EB formation of wild-type ESCs,

indicating that Yap activity was inhibited upon differ-
entiation of mouse ESCs into the three germ layers. The
depletion of Mob1a/b caused a decrease in Yap-S112
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phosphorylation (i.e., Yap hyperactivation), suggesting
that Yap activity or its phosphorylation was modulated by
Mob1a/b.
Therefore, we hypothesized that the defects in ESC

differentiation caused by Mob1a/b depletion were due
to the hyperactivation of Yap, and these defects would

be rescued by Yap knockdown. To investigate this
hypothesis, we knocked down Yap expression using
shRNA gene silencing in Mob1a/b-depleted ESCs
(Fig. 4a) and then performed EB formation and migra-
tion assays to evaluate the differentiation potency of
these mouse ESCs.
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Fig. 5 Mob1a/b is required for the differentiation of mouse ESCs in vivo. a, b Representative images of hematoxylin and eosin staining images
of a teratoma originating from Mob1af/f:Mob1bf/f:CAGGCre-ERTM ESCs. Teratomas were recovered by dissection with the surrounding tissue 6 weeks
after mouse ESC injection. Scale bar, 200 μm. c Immunoblot analysis for Yap and Taz in lysates of Mob1af/f:Mob1bf/f:CAGGCre-ERTM ESCs after shYap
treatment. Gapdh served as a loading control. d Representative images of immunohistochemical staining of a teratoma using an anti-Taz antibody.
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Until the fourth day of EB formation, Yap knockdown
had little effect on the morphology of Mob1a/b-depleted
mouse ESCs. On day 6, Yap knockdown increased the
outgrowth of the Mob1a/b-depleted EBs (Fig. 4b). These
data suggested that Yap knockdown could restore the
defects in EB outgrowth caused by Mob1a/b depletion.
Next, we analyzed the stem cell and germ layer markers
using RT-qPCR in ESCs treated with 4-OHT, shYap, or
both at day 6 of EB formation (Fig. 4c). Under differ-
entiation conditions, Yap knockdown reduced the
expression levels of Oct4, Sox2, and Nanog and increased
the markers of the three germ layers in the Mob1a/b-
depleted cells (Fig. 4d, e). These results support the
hypothesis that Mob1a/b depletion causes defects in the
differentiation of ESCs into the three germ layer lineages
in a Yap-dependent manner.

Mob1a/b is required for the differentiation of mouse ESCs
in vivo
To identify whether Mob1a/b is required for sponta-

neous differentiation into tissues of the three germ layers
in vivo, which is Yap-dependent, we performed teratoma
formation assays. Teratomas are tumors commonly
composed of multiple cell types and tissues derived from
more than one germ layer. Teratomas generated with
wild-type ESCs were composed of endodermal, meso-
dermal, and ectodermal tissues. In contrast, teratomas
formed from Mob1a/b-depleted ESCs were composed of
tissues made up of undifferentiated cells that did not have
any of the structural characteristics of the three germ
layer cells, indicating that Mob1a/b is required for the
differentiation of mouse ESCs into the three germ layers
in vivo (Fig. 5a). Furthermore, downregulation of Yap in
the Mob1a/b-depleted ESCs resulted in the formation of
teratomas comprised of differentiated tissues that were
smaller than in the teratomas generated with wild-type
ESCs (Fig. 5b). These results suggest that Yap and addi-
tional factor(s) are involved in the in vivo defects in the
differentiation of Mob1a/b-depleted ESCs into the three
germ layers.
The transcriptional coactivator Taz is a closely rela-

ted paralog of Yap and has functional redundancy with
Yap in early embryos and cardiac growth and regen-
eration15,44. It also shares transcriptional targets with
Yap45,46. Taz was upregulated in Yap-knockdown ESCs
(Fig. 5c). In the teratoma formation assay with wild-
type ESCs, we found that Taz was primarily localized to
undifferentiated cells that did not show any structural
characteristics of the three germ layers (Fig. 5d). In the
Mob1a/b-depleted teratomas, there was extensive Taz
expression in most of the tissues containing undiffer-
entiated cells or partially differentiated cells (Fig. 5d).
These results support our assumption that relatively
high Taz expression is one of the critical causes of the

differentiation defects observed upon Mob1a/b
depletion.
Taz expression was significantly increased in Mob1a/b-

depleted ESCs upon differentiation (Supplementary Fig. 3).
To investigate the role of Taz and Yap in the differ-
entiation of mouse ESCs, we knocked down Taz or Taz/
Yap expression using shRNA gene silencing in Mob1a/b-
depleted ESCs (Supplementary Fig. 5). Downregulation of
Taz or Taz/Yap in mouse ESCs had little effect on Oct4
expression, alkaline phosphatase activity, or colony mor-
phology in the undifferentiated state. However, down-
regulation of these two proteins individually or together in
Mob1a/b-depleted ESCs overcame the in vitro differ-
entiation defects, at least in part, caused by Mob1a/b
depletion. These results were similar to those obtained
with shYap ESCs and suggest that Taz and Yap have a
redundant function in the differentiation of mouse ESCs
into the three germ layers.
Taken together, these results suggest that Mob1a/

b–Yap signaling (i.e., the Hippo signaling pathway) plays a
critical role in the formation of differentiated tissues or
cells from ESCs as well as the specification of the three
germ layers.

Discussion
Because Mob1a/b is a negative regulator of Yap32 and

the pluripotency of ESCs requires hyperactive Yap20, we
hypothesized that Mob1a/b depletion would cause little
change in ESCs. As expected, the self-renewal and plur-
ipotency of mESCs were well maintained despite com-
plete depletion of Mob1a/b. In contrast, Yap must be
suppressed during the differentiation of mouse ESCs.
Indeed, Yap overexpression prevents ESC differentia-
tion20. Thus, Mob1a/b is likely to play an essential role in
differentiation as a negative regulator of Yap.
Whereas Lian et al.20 reported that the protein level of

Yap was significantly decreased in the differentiation
condition and Yap knockdown resulted in the loss of ESC
characteristics, we observed that Yap-S112 phosphoryla-
tion was increased in the differentiation condition with
little change in the protein level of Yap (Supplementary
Fig. 3). Moreover, Yap knockdown had little effect on
colony formation, alkaline phosphatase staining, or Oct4
level in mouse ESCs (Fig. 4a and Supplementary Fig. 5).
Different studies have used different mouse ESC lines and
feeder cells. Whereas Lian et al.20 used ESC line and
feeder cells derived from the 129/Sv strain, we established
an ESC line from C57BL/6 blastocysts and used C57BL/6-
derived MEF cells. We suggest that the use of mouse ESC
lines and feeder cells derived from different mouse strains
could result in these conflicting results of the two
groups47–49.
In this study, depletion of Mob1a/b prevented the dif-

ferentiation of mouse ESCs into the three germ layers. In
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the process of the differentiation of Mob1a/b-depleted
ESCs, the levels of stem cell and germ layer markers did
not change and were similar to those in undifferentiated
wild-type ESCs (Figs. 2c and 3a). These results are dif-
ferent from a previous report, which showed that only
primitive endoderm markers were significantly sup-
pressed in Mob1a/b-depleted EBs30. In the time-
dependent EB formation assays of our study, each dif-
ferentiation marker was upregulated at different differ-
entiation stages or days. For example, T-brachyury
expression was the highest on day 4 after EB formation,
but Hand1 expression was the highest at day 6 (Fig. 3c).
These results suggest that the differences between wild-
type and Mob1a/b-deficient EBs are dependent on which
differentiation stages are set as the criteria.
In the teratoma formation assay, teratomas generated

with Mob1a/b-depleted ESCs did not show any structural
characteristics of the three germ layer cells (Fig. 5a). In
addition, Yap knockdown in the Mob1a/b-depleted ESCs
showed only partial restoration of differentiation into the
three germ layers compared to the control (wild-type or
Yap-knockdown ESCs) (Fig. 5a, b). These results indicate
that Yap downregulation together with the up- or
downregulation of an additional factor(s) is required to
rescue the in vivo defects in differentiation observed in
Mob1a/b-depleted ESCs. Based on our observation of
elevated Taz levels in Mob1a/b-depleted teratomas,
downregulation of both Yap and Taz could restore the
normal differentiation of mouse ESCs into the three germ
layers in vivo.
Recent studies have shown that activation of Yap is

sufficient to change differentiated cells to stem or pro-
genitor cells in adult organs and tissues, especially airway
epithelium and liver50,51. Yap activity was also required for
the regeneration of adult tissues following injury44,52–55.
These results suggest that therapeutic suppression of
Hippo signaling or elevation of Yap activity can ther-
apeutically improve the efficiency of tissue regeneration
and repair upon injury. However, pharmacological
manipulation of Yap activity for practical application in
regenerative medicine must be developed to transiently
activate Yap and reduce the detrimental side effects by its
activation because Yap is known as an oncogenic protein,
and failure to suppress its activity has been reported in a
broad range of human cancers56. Because Mob1a/b is the
core component of the Hippo pathway, targeting Mob1a/
b as well as other Hippo signaling components may be
beneficial in developing the pharmacological manipula-
tions of Yap activity in regenerative medicine.
In summary, we found that depletion of Mob1a/b, the

core component of the Hippo pathway, caused a defect in
the differentiation of mouse ESCs into the three germ
layer lineages, which is dependent on Yap. These results
suggest a close relationship between the Hippo pathway

and the differentiation of stem cells and its potential as a
therapeutic target for tissue regeneration and repair.
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