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Abstract

Background: Genomic datasets generated by new technologies are increasingly prevalent in disparate areas of
biological research. While many studies have sought to characterize relationships among genomic features,
commensurate efforts to characterize relationships among biological samples have been less common.
Consequently, the full extent of sample variation in genomic studies is often under-appreciated, complicating
downstream analytical tasks such as gene co-expression network analysis.

Results: Here we demonstrate the use of network methods for characterizing sample relationships in microarray
data generated from human brain tissue. We describe an approach for identifying outlying samples that does not
depend on the choice or use of clustering algorithms. We introduce a battery of measures for quantifying the
consistency and integrity of sample relationships, which can be compared across disparate studies, technology
platforms, and biological systems. Among these measures, we provide evidence that the correlation between the
connectivity and the clustering coefficient (two important network concepts) is a sensitive indicator of
homogeneity among biological samples. We also show that this measure, which we refer to as cor(K,C), can
distinguish biologically meaningful relationships among subgroups of samples. Specifically, we find that cor(K,C)
reveals the profound effect of Huntington’s disease on samples from the caudate nucleus relative to other brain
regions. Furthermore, we find that this effect is concentrated in specific modules of genes that are naturally
co-expressed in human caudate nucleus, highlighting a new strategy for exploring the effects of disease on sets of
genes.

Conclusions: These results underscore the importance of systematically exploring sample relationships in large
genomic datasets before seeking to analyze genomic feature activity. We introduce a standardized platform for this
purpose using freely available R software that has been designed to enable iterative and interactive exploration of
sample networks.

Keywords: Sample networks, Sample network analysis, Huntington’s disease, Clustering coefficient, cor(K,C),
Standardized C(k) curve, Data pre-processing, Microarrays, Gene expression
Background
Genomic studies capture an enormous amount of informa-
tion about the molecular organization of biological sys-
tems. Understanding this organization poses a challenge
for biologists. In most genomic studies, the number of fea-
tures (gene expression levels, methylation status, protein
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abundance, etc.) far exceeds the number of biological sam-
ples under investigation. Consequently, while network
methods are often used to illuminate patterns among pair-
wise relationships of genomic features, the rich information
contained in the connectivity patterns among samples
remains comparatively untapped. However, patterns of co-
variation in genomic feature activity ultimately reflect het-
erogeneity among biological samples. It is therefore critical
to understand the extent of sample heterogeneity before
analyzing genomic feature activity, and whenever possible
to relate sample heterogeneity to known sample traits,
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which may include both biological and technical sources of
variation. In practice, biologists’ efforts to explore sample
relationships in genomic studies are an integral component
of data pre-processing, yet they are often performed in a
perfunctory fashion using platform-specific and qualitative
criteria.
A popular approach for exploring sample relationships

is cluster analysis. Cluster analysis is appealing for its in-
tuitive nature, and is typically used for sample outlier de-
tection, identification of globally distinct subgroups of
samples, and identification of distinct subgroups of sam-
ples using pre-selected lists of features (e.g. genes, vox-
els, etc.) [1-4]. Although widely used, cluster analysis
suffers from several shortcomings that are often under-
appreciated by biologists. Besides depending on the
measure used to quantify similarities among samples,
the results of cluster analysis can depend heavily on the
specific clustering algorithm that is employed. For ex-
ample, dendrograms produced by hierarchical clustering
algorithms acting on the same data may look quite differ-
ent depending on whether single, average, or complete
linkage is used to calculate distances between clusters
[2,5,6]. Other clustering procedures may involve additional
parameter choices that can have a substantial effect on
cluster assignments (e.g. the choice of k in k-means cluster-
ing) [1,5]. Finally, cluster analysis can be impractical for
very large datasets, in which the sheer number of samples
obscures the organization and characteristics of a dendro-
gram and produces ambiguous cluster boundaries.
In this study we explore alternative means of describing

sample relationships in topological terms by transforming
a (dis-)similarity matrix into a network adjacency matrix.
Our correlation-based sample network can be interpreted
as a polynomial kernel, which implies that the symmetric
adjacency matrix is positive semi-definite. Many methods
exist to address the challenge of mapping biological and
genomic information to kernel matrices [7,8]. Kernel meth-
ods involving genomic similarity measures are the basis of
many statistical analytic methods such as nonparametric
regression, mixed models, hierarchical regression models,
score statistics, and support vector machines [9]. Our pri-
mary approach in this study uses a signed weighted correl-
ation network, since the resulting kernel i) works well in
practice, as shown in our applications, and ii) allows for a
geometric interpretation of network concepts [10].
The approach we describe here is a useful complement

to cluster analysis, but does not actually require that cluster
analysis be performed. A novel feature of our approach is
that we show how distinctions among subgroups of sam-
ples can be identified using topological measures (both glo-
bally and for subsets of genes), which are based on
network concepts. Network concepts include the connect-
ivity (which quantifies the strength of each node’s connec-
tions with its neighbors) and the clustering coefficient
(which quantifies the strength of each node’s neighbors’
connections with each other) [11]. The definitions of these
and many other important network concepts are reviewed
below and elsewhere [10,12,13].
We illustrate our approach using microarray data gen-

erated from multiple human brain regions of control
(CTRL) subjects and patients with Huntington’s disease
(HD) [14]. HD is a progressive and incurable neurode-
generative disorder characterized by preferential destruc-
tion of medium spiny neurons in the striatum [15] and
caused by a CAG-repeat expansion in the coding region
of the huntingtin gene, which is thought to confer a
toxic gain-of-function to the mutant huntingtin protein
[16]. Alterations in gene expression are considered a
central feature of HD pathology, and the extent to which
specific gene expression changes precede disease path-
ology is an area of active investigation [14,17-20]. Our
results indicate that HD exerts a profound effect on
sample network topology in the caudate nucleus relative
to other (less affected) brain regions. Specifically, we find
that the relationship between the standardized sample con-
nectivity and the standardized sample clustering coefficient
follows a simple scaling law in unaffected brain regions,
but undergoes a sharp transition for HD caudate nucleus
samples that reflects the degradation of sample correlation
network structure in this brain region. By restricting sam-
ple network construction to modules (subsets) of genes
that are naturally co-expressed in human caudate nucleus
[21], we find that this degradation is most significant in a
neuronal signal transduction module. Our findings demon-
strate that sample networks can enhance the results of
cluster analysis not only with respect to relatively simple
tasks such as outlier identification, but also with respect to
more complex challenges such as group comparisons.

Results
The approach we describe in this study formalizes and
expands upon a strategy that has previously been used to
identify outlying samples in microarray data generated from
human brain tissue [21]. Our approach is applicable when-
ever a dissimilarity or similarity measure can be defined be-
tween samples (see Additional file 1). A major advantage of
defining a network adjacency measure between samples (as
opposed to a general similarity measure) is that it permits
specification of network concepts. In our implementation,
we define adjacencies among samples as signed weighted
correlations with values that approximate the underlying
correlations when these correlations are large, as is usually
the case in sample networks (Methods). A signed weighted
correlation network is attractive since it preserves sign in-
formation, is robust with respect to the soft threshold
(power) parameter (β), and preserves the continuous nature
of correlations (i.e. the result is a fully connected network
in which all nodes are neighbors with one another) [22]. In



Oldham et al. BMC Systems Biology 2012, 6:63 Page 3 of 18
http://www.biomedcentral.com/1752-0509/6/63
addition, a signed correlation network is equivalent to a
network based on the Euclidean distance between scaled
vectors (as described in Additional file 1).

Dataset
The proposed framework for sample network explor-
ation (Methods) was used to analyze microarray data
from “the HD study” [14]. These data were generated
from brain samples of patients with HD (n=44 individuals)
and unaffected controls (n=36 individuals, matched for
age and sex) [14]. The authors of this study used Affyme-
trix U133A microarrays to survey gene expression in caud-
ate nucleus (CN), cerebellum (CB), primary motor cortex
(Brodmann’s area 4; BA4), and prefrontal cortex (Brod-
mann’s area 9; BA9) in the CTRL group and across five
grades of HD severity, which were scored between 0 (least
severe) and 4 (most severe) using Vonsattel’s neuropatho-
logical criteria [23]. HD causes extensive neurodegenera-
tion in the CN, where medium spiny neurons are
preferentially destroyed in early stages of the disease
[15,23]; comparatively, the other analyzed brain regions are
relatively spared. In addition to disease status and severity,
sample information included age, sex, the country where
the experiment was performed (samples were processed in
the United States and New Zealand), and the microarray
hybridization batch (Additional file 2) [14]. In light of these
myriad biological and technical sources of variation, this
dataset presents a challenging analytical task.

A motivational example
Below we provide an example that illustrates how net-
work concepts can be used to distinguish samples when
hierarchical clustering cannot. Figure 1A depicts a subset
of samples from BA9 of CTRL subjects from the HD study.
As seen in this example, visual inspection of the dendro-
gram is sufficient to discern the outlying sample
(BA9_91_C). However, it is illustrative to consider an alter-
native depiction of sample relationships using the network
concept of standardized connectivity. Standardized con-
nectivity (Z.K; Methods) is a quantity that describes the
overall strength of connections between a given node and
all of the other nodes in a network. As seen in Figure 1C,
the standardized connectivity of sample BA9_91_C is sig-
nificantly lower than all of the other samples, confirming
its status as an outlier in the group. It is important to note,
however, that the distribution of standardized connectiv-
ities is independent of the choice or use of clustering
procedures.
Figure 1B shows the dendrogram produced by hier-

archical clustering of another subset of samples from the
HD study (CB of CTRL subjects). Here the dendrogram
is more complex, with at least two samples (CB_80_C
and CB_H123_C) that appear to be outliers, and others
that are questionable. If the same samples are depicted in
terms of Z.K (Figure 1D), it is evident that three samples
(CB_80_C, CB_H123_C, and CB_67_C) have Z.K values
that are significantly lower than the other samples in the
group. However, note that CB_H110_C, which is indistin-
guishable from CB_67_C in the dendrogram above
(Figure 1B), has much higher Z.K than CB_67_C, indicat-
ing that CB_67_C is an outlier whereas CB_H110_C is
not. By establishing a threshold (e.g. Z.K=−2), standar-
dized connectivity distributions can be used in a quantita-
tive and unbiased fashion to identify and remove outlying
samples, which may reflect hidden factors that can influ-
ence the results of genomic experiments [24] (this approach
is particularly useful when the number of samples is large,
making it difficult to distinguish outlying samples in a den-
drogram). Analogously, one can also make use of other net-
work concepts as described below.

Degradation of sample network topology in caudate
nucleus by Huntington’s disease
We used the SampleNetwork R function to process all 201
samples from the HD study simultaneously. As seen in
Figure S1 (Additional file 1) and our R tutorial (Additional
file 3 and http://www.genetics.ucla.edu/labs/horvath/Coex-
pressionNetwork/SampleNetwork), we observed a domin-
ant effect of brain region on gene expression that was
driven largely by the fact that gene expression in each non-
cortical (CN and CB) brain region was quite distinct from
gene expression in cortical (BA4 and BA9) brain regions, as
has been described previously [25-28]. In light of the strong
effect of brain region on gene expression, as well as the fact
that HD preferentially targets CN relative to the other ana-
lyzed brain regions, we next used SampleNetwork to exam-
ine samples from each brain region separately. Within each
brain region, we analyzed CTRL and HD samples as a sin-
gle cohort, but note that alternative strategies (e.g., analyz-
ing CTRL and HD samples as separate cohorts) may be
desirable, depending on the downstream application.
After constructing sample networks for each brain re-

gion (as described in Additional file 3), we examined the
relationship between the standardized sample connectiv-
ity (Z.K) and the standardized sample clustering coeffi-
cient (Z.C) for all samples in each brain region. We refer
to this relationship as the standardized C(k) curve. As
discussed below, (unstandardized) C(k) curves have been
used to study the topological properties of scale-free net-
works and other large complex networks [29-32]. We
propose using the Spearman correlation to measure the
standardized C(k) curve since it is invariant with regard
to monotonically increasing transformations. In particu-
lar, the Spearman correlation between Z.K and Z.C
equals that of the unstandardized measures, which is
why we denote it simply by cor(K,C) (Methods). In the
following, we will demonstrate that the standardized C
(k) curve is a valuable tool for i) assessing the overall
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Figure 1 Network concepts provide a natural framework for describing relationships among samples in high-dimensional biological
datasets. A motivational example. (A) Dendrogram produced by average linkage hierarchical clustering using 1 – ISA (intersample adjacency) for
a subset of samples (prefrontal cortex [BA9] of CTRL subjects) from ref. [14]. (B) Dendrogram produced by average linkage hierarchical clustering
using 1 – ISA for another subset of samples (cerebellum [CB] of CTRL subjects) from ref. [14]. (C) Standardized sample connectivities (Z.K) provide
a different view of the BA9 CTRL samples. BA9_91_C (red) exhibited significantly lower connectivity than the other samples in this group,
consistent with the dendrogram (A). (D) Standardized sample connectivities for the CB CTRL samples. Three samples (CB_80_C, CB_H123_C, and
CB_67_C, in red) had Z.K values that were significantly lower than the others. Note that CB_67_C had much lower connectivity than CB_H110_C
(blue), yet these two samples were indistinguishable in the dendrogram above (B). Black horizontal lines in (C) and (D) correspond to an optional
Z.K threshold (here −2) for outlier removal; CTRL = control.
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consistency of sample behavior within a dataset, ii) iden-
tifying distinct groups of samples, and iii) identifying im-
portant subsets of features (e.g. genes).
For samples from prefrontal cortex (Figure 2A), motor

cortex (Figure 2B), and cerebellum (Figure 2C), we observed
that Z.K and Z.C formed nearly perfect inverse relation-
ships, with no obvious distinctions between CTRL and HD
subjects. In contrast, samples from the caudate nucleus
exhibited clear segregation according to diagnosis, with
CTRL and HD subjects forming two distinct groups
(Figure 2D). This segregation indicates that cor(K,C) is a
useful network concept that measures an important aspect
of the global architecture in weighted sample networks.
Interestingly, cor(K,C) for HD CN samples differed when
brain regions were analyzed together (cor(K,C) = 0.77,
P=1.7e–08; Figure S1D; Additional file 1) and when they
were analyzed apart (cor(K,C)=−0.78, P=4.0e–08; Figure 2D),
suggesting that the relationship between the node-based
measures Z.K and Z.C depends upon properties of the net-
work as a whole, a topic that has been the subject of recent
investigations [33].

Understanding the properties of the standardized C(k)
curve
As discussed below, the C(k) curve has been studied pri-
marily in biological networks in which nodes correspond to
gene products [30,32]. In contrast to the negative relation-
ship observed in sample networks (Figure 2), we observed
that Z.K and Z.C tended to exhibit a positive relationship in
gene-based networks (e.g. Figure S2A,B; Additional file 1).
A positive relationship was observed for genes that are
naturally co-expressed in human caudate nucleus [21] (cor
(K,C) = 0.7, P<2.2e-16; Figure S2A,C; Additional file 1), as
well as for genes that were selected at random (cor
(K,C) = 0.83, P< 2.2e-16; Figure S2B,D; Additional file 1).
To understand why cor(K,C) is often positive in gene-
based networks but negative in sample networks, consider
that in most microarray studies, and in particular when
analyzing similar biological specimens, samples are highly
correlated with one another (e.g. r > 0.95 when measured
across all genes). In contrast, most genes exhibit moderate
to weak correlations with other genes, such that the mean
correlation in a typical gene co-expression network is
close to 0 and follows an approximately normal distribu-
tion (e.g. Figure S2D; Additional file 1). Even for a module
of co-expressed genes, when compared with sample net-
works, the distribution of pairwise correlations is shifted
towards smaller values (e.g. Figure S2C; Additional file 1).
Therefore, we hypothesized that the contrasting relation-
ships between Z.K and Z.C in sample networks and gene
networks might relate to differences in the global topo-
logical organization of each network.



Figure 2 Sample network concepts reveal the profound effect of Huntington’s disease in caudate nucleus. Comparison of standardized
sample connectivities (Z.K) and standardized clustering coefficients (Z.C) between control subjects (CTRL) and subjects with Huntington’s disease (HD)
in prefrontal cortex (A; n = 9 CTRL and 16 HD), motor cortex (B; n = 16 CTRL and 14 HD), cerebellum (C; n = 23 CTRL and 34 HD), and caudate nucleus
(D; n = 31 CTRL and 35 HD). Networks were constructed over all probe sets (n= 18,631) using all samples (CTRL and HD) from each brain region.
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To test this hypothesis, we conducted a simulation study
to explore the properties of cor(K,C) by systematically vary-
ing the network topology (mean node adjacency) and net-
work size (number of nodes). For simulated networks with
low mean node adjacency (i.e. mostly weak connections
among nodes, like most gene co-expression networks), we
observed values of cor(K,C) approaching 1 (Figure 3), indi-
cating a nearly perfect positive linear relationship between
Z.K and Z.C. As the strength of connections among nodes
(i.e. mean node adjacency) began to increase, cor(K,C)
began to shift, while also revealing a dependence on net-
work size (i.e. number of nodes; Figure 3). This shift accel-
erated dramatically as simulated networks began to consist
of mostly strong connections among nodes, producing a
“waterfall” effect reminiscent of a percolation transition
[33] (Figure 3). When simulated networks possessed very
high mean node adjacency (like most sample networks),
cor(K,C) approached −1 (Figure 3), indicating a nearly per-
fect negative linear relationship between Z.K and Z.C.
Collectively, these observations suggest that the divergence

of cor(K,C) for HD CN samples relative to CTRL samples
and other brain regions (Figure S1D [Additional file 1],
Figure 2D) reflects a degradation of global sample net-
work topology in CN by HD. To visualize this degrad-
ation more directly, we compared the distributions of
pairwise sample adjacencies between CTRL and HD
subjects for each brain region. The distributions of sample
adjacencies exhibited the greatest difference between
CTRL and HD subjects in CN, where HD sample adjacen-
cies were markedly degraded (Figure S3; Additional file 1).
Thus, degradation of global sample network topology by
HD in CN has shifted cor(K,C) for HD CN samples. This
relationship has begun to invert (i.e. it is “in the waterfall”
[Figure 3]), indicating that HD has initiated a percolation-
like transition in the global network topology of CN
samples.
Sample network topology reveals strong effects of
Huntington’s disease on specific gene co-expression
modules in human caudate nucleus
The degradation of global sample network topology by
HD in CN (Figures S1D, 2D, S3) was observed across all
analyzed probe sets (n = 18,631). We hypothesized that
this effect might vary for specific subsets of genes
involved in disparate biological processes, which in turn
might implicate specific biological processes in connec-
tion with HD pathology. By focusing on pre-selected gene
sets (informally referred to as modules), we illustrate below
how the standardized C(k) curve can be used to identify
clinically important subsets of features (i.e. genes). Toward
this end, we make use of a second R function called



Figure 3 cor(K,C) depends upon network topology and network
size. The Spearman correlation (cor(K,C); z-axis) between the
connectivity and the clustering coefficient as a function of network
density (mean node adj. [adjacency]; x-axis) and network size (nodes;
y-axis). Signed networks (β = 2) were simulated using the
simulateModule function from the WGCNA R package [34]. The seed
module eigengene (ME) consisted of 5,000 random, normally
distributed features (mean=0, sd= 1). The function parameters
“corPower” and “propNegativeCor” were set to 0.75 and 0, respectively.
The function parameter “minCor” was iteratively reduced from .95 to .05
by increments of .05, progressively degrading the strength of node
connections; for each iteration, cor(K,C) was calculated for module
networks of various sizes (n=10 to 100, by=10).
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ModuleSampleNetwork (and refer to the resulting sample
networks as “module sample networks”).
We have previously shown that the transcriptome of

normal human CN is organized into modules of co-
expressed genes, many of which relate to specific cell types
and functional processes [21]. For example, gene co-
expression modules corresponding to oligodendrocytes,
astrocytes, neurons, mitochondrial function, synaptic
function, immune response, gender differences, and the
subventricular neurogenic niche have been described in
human CN [21]. Subsequent work in rodents has con-
firmed that striatal gene co-expression network architec-
ture is robust across disparate strains of mice [35]. The
inherent organization of the CN transcriptome provides a
natural framework in which to study the effects of HD on
sample network topology. Therefore, we sought to deter-
mine the extent to which variation in sample network top-
ology was associated with particular gene co-expression
modules in CN. Specifically, we constructed sample net-
works in CN for each of the 23 gene co-expression mod-
ules that were previously identified in this brain region in
humans [21]. The 23 gene co-expression modules are
labeled by colors (e.g. the “palegreen” module), with pertin-
ent functional characterizations taken from ref. [21].
To assess the effects of HD on module sample network

topology, we calculated cor(K,C) for CTRL and HD sub-
jects in every module (Figure 4A). Based upon the relation-
ship observed between Z.K and Z.C for CTRL and HD
subjects in BA9, BA4, and CB (Figure 2A–C), we hypothe-
sized that in the absence of an effect of HD on module
sample network topology, cor(K,C) CTRL should approxi-
mately equal cor(K,C) HD. In addition, for module sample
networks characterized by strong connections among
nodes, we expected cor(K,C) to approach −1 (Figure 3).
The majority of modules clustered along the diagonal, indi-
cating relative preservation of cor(K,C) between CTRL and
HD subjects; however, a handful of modules were clearly
distinguished as outliers (Figure 4A). Among the outliers,
the difference in cor(K,C) between CTRL and HD subjects
was most significant for the salmon module (M8C), fol-
lowed by the black (M11C; Figure S4; Additional file 1),
royalblue (M36; Figure S5; Additional file 1), and red
(M19C; Figure S6; Additional file 1) modules (Figure 4B).
These results indicate that cor(K,C) is a useful measure for
highlighting differences in sample network topology among
subsets of genes.
In the original HD study [14], the authors determined

that a large fraction (~20%) of transcripts showed differen-
tial expression (DE) in post-mortem CN between CTRL
and HD subjects. DE in HD is thought to reflect both cell-
intrinsic changes in gene expression (i.e. changes in gene
expression induced by the mutant huntingtin protein), as
well as changes at the cellular population level due to neur-
onal cell death and subsequent astrogliosis [14,17,20]. In
light of such widespread changes, we asked whether par-
ticular gene co-expression modules were associated with
DE. As shown in Figure 4C, many modules were signifi-
cantly associated with DE. This result is perhaps not sur-
prising, inasmuch as cellular stoichiometry is altered by
HD and many modules have been shown to be enriched
with cell type-specific genes [21]. We next sought to relate
the extent of modular DE with the extent of modular deg-
radation in sample network topology. As shown in
Figure 4D, the salmon module was the most significant in
both of these dimensions, followed by the black and royal-
blue modules. Overall, however, the relationship between
these two measures was weak (r = 0.41, P=5.2e–02). In-
deed, one module (red) exhibited a very significant differ-
ence in cor(K,C) between CTRL and HD subjects, with no
significant evidence of differential expression (Figure 4D).

cor(K,C) can distinguish sample groups in the absence of
differential expression
To explore the basis for this observation, we conducted a
simulation study to determine whether cor(K,C) could dis-
tinguish subsets of samples in the absence of differential



Figure 4 Huntington’s disease exerts strong effects on specific gene co-expression modules in human caudate nucleus. Analysis of
human caudate nucleus (CN) sample network properties for each of 23 gene co-expression modules previously identified in CN; colors
correspond to the original gene co-expression module labels from [21]. (A) For each module sample network, the Spearman correlations cor(K,C)
are plotted for control (CTRL) and Huntington’s disease (HD) subjects. Each point corresponds to a module. Black line: y = x. (B) The log-
transformed P–value of the difference between cor(K,C) for CTRL and HD subjects is reported for each module (Methods). (C) The extent of
differential expression (DE) between CTRL and HD was assessed for each module by using Student’s t-test of DE for the module eigengene (ME;
i.e. the first principal component obtained by singular value decomposition of the module expression matrix) between CTRL and HD. (D)
Comparison of the module significance levels reported in (B) and (C); linear least squares regression line in black. p.Diff.cor(K,C) denotes the
P-value for testing the differences of cor(K,C) between the CTRL and HD module sample networks. (B–D) Blue lines: P= .05; red lines: Bonferroni
correction for multiple comparisons.
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expression. Specifically, we simulated a set of 500 genes
and 100 samples (referred to as a “module”), using the real
structure of the red module as an approximate guide
(Methods). Samples were assigned to one of three groups
using a simulated sample trait (referred to as “disease sta-
tus”), with 50 samples corresponding to control status, 25
samples corresponding to moderate disease status, and 25
samples corresponding to severe disease status (Methods).
The simulation model assumed i) that 60% of the module
genes were not related to the disease and ii) that these
noise genes had lower mean values than the 40% of (signal)
genes that were down-regulated by the disease. Figure 5A
depicts the dendrogram produced by hierarchical cluster-
ing of sample adjacencies for the simulated module. As
seen in Figure 5B, the observed module eigengene was not
related to disease status (P=0.18, Kruskal-Wallis test). In
contrast, cor(K,C) clearly delineated the control samples
from the affected samples (Figure 5C), despite inconsistent
gene expression differences among the three sample
groups (Figure 5D). These results provide further evidence
that cor(K,C) can distinguish meaningful groups of samples
in certain situations where differential expression analysis
cannot.

A neuronal signal transduction module is profoundly
degraded by Huntington’s disease
Figure 6 depicts the results of sample network construction
for the CN salmon module (similar depictions for the
black, royalblue, and red modules can be found in Figures
S4, S5, and S6, respectively). Hierarchical clustering of



Figure 5 cor(K,C) distinguishes sample subgroups in the absence of differential expression. Analysis of a simulated gene expression
module consisting of 500 genes and 100 samples. Samples were assigned to one of three subgroups based on simulated disease status: “control”
(n = 50; darkgreen), “moderate” (n = 25; red), or “severe” (n = 25; turquoise) (Methods). (A) Average linkage hierarchical clustering of samples using
1 – ISA (intersample adjacency) as a dissimilarity measure. (B) Distributions of module eigengene (ME) values by sample subgroup. Note that
these distributions are not significantly different (P= 0.18, Kruksal-Wallis test), indicating that there is no differential expression associated with
disease status at the modular level. (C) When depicted in terms of Z.K and Z.C, control and affected subjects segregated into two distinct groups
(linear least squares regression lines in black [control] and red [affected]). (D) Heat map of simulated gene expression levels. Rows correspond to
genes and columns correspond to samples. Green = low expression; red = high expression.

Oldham et al. BMC Systems Biology 2012, 6:63 Page 8 of 18
http://www.biomedcentral.com/1752-0509/6/63
sample adjacencies produced a dendrogram with two large
branches (Figure 6A). The first branch formed a cluster
comprised exclusively of HD samples (cluster 1), 85% of
which were Vonsattel grade 2 or higher (i.e. later stages of
disease progression). The second branch subdivided to
produce two sample clusters. 91% of the samples in cluster
2 corresponded to unaffected individuals, with the remain-
der consisting of grade 1 (n= 2) or grade 0 (n=1) HD sam-
ples. Cluster 3 was comprised almost exclusively of HD
samples, all of which were grade 2 or below (i.e. earlier
stages of disease progression).
Examination of the distribution of Z.K among samples in

the salmon module (Figure 6B) also revealed a distinction
among grades of HD severity. Grade 1 and a subset of
grade 2 HD samples possessed Z.K values that were com-
parable to those of unaffected individuals; however, a ma-
jority of grade 2 samples and grade 3 samples possessed Z.
K values that were substantially lower than all other sam-
ples (Figure 6B). In contrast, examination of Z.C revealed a
monotonic arrangement of samples, with CTRL>grade
1> grade 2 > grade 3 (Figure 6C). When plotted in both of
these dimensions, samples formed two distinct lines that
clearly delineated CTRL and HD subjects (Figure 6D).
Interestingly, three HD samples (two grade 1 and one
grade 0) fell upon the same regression line as the CTRL
samples (Figure 6D, black line); these were the same sam-
ples that belonged to cluster 2 in Figure 6A. It is possible
that the intermingling of some early stage HD samples
with CTRL subjects could reflect the continuum of neuro-
degeneration that spans from normal aging to neurodegen-
erative disease. We also observed that the distribution of
HD samples along their regression line tended to reflect
their grade of severity (Figure 6D, red line). These results
provide visual confirmation of the significant distinction
between CTRL and HD subjects in the salmon module
reported above (Figure 4A,B). In addition, multivariate lin-
ear regression using the salmon module eigengene (i.e. the
first principal component of gene expression in the salmon
module) as outcome confirmed an extremely significant ef-
fect of diagnosis (Dx) on gene expression in this module,
as well as significant independent effects for grade and age
(Figure 6E). The effect of diagnosis on gene expression was
evident when gene expression in the salmon module was
visualized directly (Figure 6F).



Figure 6 Caudate nucleus samples exhibit significant segregation by diagnosis in gene co-expression module M8C (salmon). Analysis of
caudate nucleus (CN) sample network properties for genes comprising the CN salmon co-expression module M8C [21]. (A) Average linkage
hierarchical clustering of samples using 1 – ISA (intersample adjacency) as a dissimilarity measure. Colors denote control (CTRL) subjects
(darkgreen; n = 31) and Huntington’s disease (HD) subjects with varying grades of disease severity: HD grade 0 (black; n = 2), HD grade 1 (red;
n = 11), HD grade 2 (turquoise; n = 16), HD grade 3 (blue; n = 5), and HD grade 4 (brown; n = 1). Standardized sample connectivities (Z.K; B) and
standardized sample clustering coefficients (Z.C; C). (D) HD and CTRL samples segregated into two distinct groups when depicted in terms of Z.K
and Z.C (linear least squares regression line in black [CTRL] and red [HD]). (E) Multivariate linear regression revealed a highly significant effect of
diagnosis (Dx) on the salmon module eigengene. Blue line: P= .05; red line: Bonferroni correction for multiple comparisons. (F) Heat map of
expression levels for genes comprising the salmon co-expression module M8C. Rows correspond to probe sets (genes) and columns correspond
to samples. Green= low expression; red = high expression. Samples in (B–D, F) are colored as in (A).
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As can be seen in Figure 6F, the vast majority of genes
in the salmon module showed decreased expression
levels with increasing severity of HD, which would be
expected as a consequence of neuronal cell death (not-
withstanding cell-intrinsic changes in gene expression
induced by the mutant huntingtin protein). When it was
originally described, the salmon gene co-expression
module in human CN was found to be enriched with
genes that are preferentially expressed in neurons, genes
that encode synaptic proteins, and genes involved in
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signal transduction [21]. Analyses of differential expres-
sion, functional enrichment, and membership strength for
all genes in the salmon module are summarized in
Additional file 4. To dissociate changes in gene expression
caused by altered cellular stoichiometry in HD from
changes in gene expression caused by cell-intrinsic effects
of the mutant huntingtin protein, we cross-referenced CN
module composition with a set of genes that has been
found to be dysregulated in primary neuron models of HD
[20]. In the study by Runne et al., the effects of mutant
huntingtin on gene expression were measured before cell
death in primary striatal neurons cultured from rat brains
[20]. We observed that the salmon module was significantly
enriched with this set of dysregulated genes, and more so
than any other module (Figure S7; Additional file 1). We
also note that a number of genes in the salmon module
were previously found to be differentially expressed in
laser-microdissected striatal neurons of CTRL and HD
human subjects [14] (Additional file 4).
Lastly, we used Ingenuity Pathways Analysis (IPA) to de-

termine whether the salmon module was enriched with
annotated functional categories of genes. Out of more than
500 annotated functional categories of genes in the IPA
database, the two categories that showed the most signifi-
cant enrichment with genes from the salmon module were
“dyskinesia” (FDR P=1.4e–24) and “Huntington”s disease”
(FDR P=1.6e–24) (Additional file 5).

Discussion
To the best of our knowledge, this work provides the
first formal demonstration that network methods can
distinguish biologically meaningful relationships among
samples in genomic datasets. We have shown that sam-
ple networks can identify outlying samples when hier-
archical clustering procedures cannot, and even when
hierarchical clustering procedures are not used at all.
We have described a novel network statistic, cor(K,C),
and shown that it can be used to i) evaluate sample
homogeneity, ii) identify sample characteristics (e.g.
diagnosis) with global effects, and iii) enable compari-
sons among groups of samples using pre-selected lists of
features (e.g. gene co-expression modules). By applying
the latter approach to microarray data generated from
human brain tissue, we have identified a neuronal signal
transduction module that is an epicenter of transcrip-
tional dysregulation in striatal samples from individuals
with HD. The advantages of using network methods for
describing sample relationships in genomic datasets are
summarized below.
A major advantage of constructing sample networks is

that individual samples can subsequently be described using
established node-based network concepts such as the con-
nectivity and the clustering coefficient. These concepts are
independent of the choice or use of clustering algorithms
and depend only on the adjacency measure used to
construct the network. The distributions of standardized
node-based network concepts provide an unbiased and
quantitative framework for identifying samples that “be-
have” differently, even if the underlying causes of this be-
havior are unknown. Intuitively, if the connectivity for a
given sample (when measured over all genes) is significantly
lower than all other sample connectivities from the same
biological system, it suggests that there is something differ-
ent about that sample compared to the others. The investi-
gator must ask him/herself whether the observed difference
is likely to reflect biological or technical variation. In light
of the multiple steps that comprise a typical genomic ex-
periment, each of which may introduce technical variation,
a conservative approach is to exclude aberrant samples if
there are no obvious biological factors that might explain
their discordant behavior.
Compared with other methods for identifying outlying

samples in genomic data, our approach offers several
additional advantages. First, because sample relation-
ships are defined with respect to a correlation matrix, it
is platform-agnostic and does not require access to raw
data (although in practice it is preferable to process raw
data in a consistent fashion). Second, it is easily applied
to very large datasets, in contrast to clustering proce-
dures that rely upon visual inspection of dendrograms to
identify outlying samples. Third, it produces a battery of
measures for summarizing the consistency and integrity
of genomic datasets (e.g. mean intersample adjacency
[ISA, or density], decentralization, homogeneity, etc.),
which can be compared across disparate studies, tech-
nology platforms, and biological systems. Such measures
are especially useful for meta-analyses, where objective as-
sessment of data quality is highly desirable before seeking
to pool or compare results across studies. Finally, as imple-
mented in SampleNetwork and described in Additional file
3, our approach is both flexible and efficient, enabling users
to move quickly through large datasets in an iterative fash-
ion, specifying groups of samples for processing, identifying
and removing outliers, testing the significance of sample
covariates, and performing data normalization. To enhance
user-friendliness, we have also incorporated the R function
ComBat [36], which is an effective tool for removing batch
effects (Additional file 1). At each stage, relevant output
files are produced and exported automatically.
At the same time, there are several important caveats

associated with our proposed approach for using net-
work concepts to identify outlying samples in genomic
data. It should be noted that our approach works best
for datasets with large numbers of samples (e.g. more
than 10). It is also important to note that standardized
network concepts such as Z.K are relative measures
whose interpretation depends on context. For example,
in a relatively homogeneous sample network (e.g. mean
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ISA > 0.97), a Z.K value of −2.5 implies higher adjacen-
cies for the sample in question than it would in a more
heterogeneous sample network (e.g. mean ISA< 0.9). In
light of these considerations, it can be helpful to have
“targets” in mind, such as an expectation of what the
mean ISA should approach for a given biological system,
technology platform, and adjacency measure. These tar-
gets can be guided by prior experience (for example,
cancer datasets often exhibit substantial sample hetero-
geneity) or by the use of technical and biological repli-
cates. Lastly, although we have focused primarily on Z.K
and to a lesser extent Z.C as intuitive indicators of outly-
ing status, it is possible that other node-based network
concepts (or indeed, other measures of adjacency) could
produce different results.
Beyond facilitating relatively simple tasks such as outlier

identification, sample networks provide a novel perspec-
tive on more complex challenges such as group compari-
sons. Our results indicate that the standardized C(k) curve
in weighted sample networks is a powerful tool for identi-
fying sample characteristics with global effects on genomic
activity. The stark divergence of cor(K,C) for HD CN sam-
ples motivated us to explore how cor(K,C) would be
affected by other network topologies, leading to the
observation that cor(K,C) undergoes a percolation-like
transition that is related to network density and size. Al-
though cor(K,C) was inversely related to network density
in our simulations, we note that cor(K,C) is invariant if
one scales all off-diagonal adjacencies by a constant.
Therefore, it is more accurate to consider cor(K,C) as an
indicator of network heterogeneity (or homogeneity;
Additional file 1). In the special situation of an exactly fac-
torizable network, we find that cor(K,C) is determined by
the network heterogeneity (Methods). One practical impli-
cation of these findings is that cor(K,C) can serve as a use-
ful indicator of data “cleanliness”: with each iteration of
sample outlier removal or data normalization performed
using SampleNetwork, cor(K,C) should approach −1.
We note that our findings with respect to the

percolation-like transition for cor(K,C) are also applic-
able to unweighted (binary) networks. We have observed
a similar transition for cor(K,C) in unweighted gene net-
works as the threshold for dichotomizing the adjacency
matrix is progressively increased (Figure S8; Additional file 1).
At permissive (low) thresholds, which produce net-
works in which most nodes are connected, cor(K,C)
is negative; as the threshold is raised, producing net-
works in which most nodes are not connected, the rela-
tionship begins to invert, becoming positive at more
stringent (high) thresholds (Figure S8; Additional file 1).
In unweighted networks, the relationship between the

(unstandardized) connectivity and (unstandardized) clus-
tering coefficient of network nodes, i.e. the C(k) curve, has
previously been reported to follow a scaling law: C ffi k α
[29,31]. It has been shown that the value of the scaling ex-
ponent α is not universal, but negative values approaching
−1 have been observed in biological systems [30,32]. The
inverse relationship for the C(k) curve has been interpreted
as evidence of hierarchical modularity in network structure
[30,31]. Specifically, it has been suggested that in hierarch-
ically modular networks, nodes with low connectivity form
small, densely connected clusters, while nodes with high
connectivity serve to bridge these many small clusters into
one large, integrated network [31]. However, the C(k) curve
has primarily been studied in the context of metabolic,
protein interaction, and gene regulatory networks, as well
as other non-biological networks [30,32,37].
To the best of our knowledge, a percolation-like transi-

tion in the C(k) curve has not previously been reported.
However, prior work has revealed that global topological
properties of unweighted networks, such as those em-
bodied in the C(k) curve, can be predicted by knowledge of
local motif structure, and vice versa [33]. Motifs, or sub-
graphs, describe basic interaction patterns among small
groups of nodes [38,39]. In unweighted networks, it has
been shown that subgraphs naturally segregate into two
classes: highly abundant type I subgraphs, which are
sparsely interconnected, and less abundant type II sub-
graphs, which are densely interconnected [33]. It has also
been shown that a phase boundary separating type I and
type II subgraphs can be accurately predicted using global
network topological properties, including the C(k) curve
[33]. Therefore, we propose that the transition in the stan-
dardized C(k) curve observed in our analysis reflects a con-
comitant transition in local motif structure, which in turn
reflects the degradation of sample network topology in CN
by HD. Although motifs have been studied almost univer-
sally in the context of unweighted networks, we are aware
of at least one study that has presented an approach for
generalizing motif scoring to weighted networks [40]. Our
results suggest that future research investigating the rela-
tive strengths of distinct motifs in weighted networks and
their relationship to global network topological properties
is warranted.
The effect of HD on the standardized C(k) curve for CN

samples was initially observed over all genes, which is con-
sistent with the large impact that HD exerts on the CN
transcriptome [14,17,19,20,41]. Because the transcriptomes
of human brain regions, including CN, are organized into
biologically meaningful gene co-expression modules [21],
we reasoned that constructing sample networks for previ-
ously identified CN modules might expose variation in the
standardized C(k) curve, which in turn might implicate
specific biological processes in connection with HD path-
ology [42]. This approach constitutes a novel strategy for
exploring the effects of disease on sets of genes. We identi-
fied several modules that exhibited highly significant differ-
ences in cor(K,C) between CTRL and HD subjects in CN.
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One potential drawback of our approach is that relatively
small differences in cor(K,C) can appear significant as |cor
(K,C)| approaches 1; for example, M34 was significant
despite a relatively small difference between CTRL (cor
(K,C) =−0.98) and HD (cor(K,C) =−0.91) subjects. For the
four most significant modules, however, the differences in
cor(K,C) were > 1, indicating that the standardized C(k)
curve had flipped from negative (CTRL) to positive (HD).
As illustrated above, differences between standardized

C(k) curves are not simply a proxy for differences in net-
work density, but also relate to network size and hetero-
geneity. We have also observed that small numbers of
samples that are highly discordant (i.e. severe outliers) can
have a large impact on the standardized C(k) curve (M.C.
O. and S.H., unpublished observations). Thus, the standar-
dized C(k) curve is an aggregate measure, and one that
may be used to complement existing strategies for con-
ducting both unsupervised and supervised analyses. We
also note that in the present study, the overall relationship
between differential expression (DE) and differences be-
tween the standardized C(k) curves of CTRL and HD sub-
jects was weak. For example, although the salmon module
(which exhibited the most significant difference in cor(K,C)
between CTRL and HD) was strongly associated with DE,
the red module (which also exhibited a significant differ-
ence in cor(K,C) between CTRL and HD) was not. Further-
more, our simulation study confirms that situations may
exist in which cor(K,C) can distinguish meaningful sample
subgroups in the absence of DE. These findings deserve
additional study.

Conclusions
As genomic technologies proliferate and genomic studies
grow ever larger, it is critical that methods to assess sample
heterogeneity evolve in parallel. We have presented a stan-
dardized approach for sample network analysis that can
detect outlying samples in the absence of hierarchical clus-
tering. We have also described a novel network statistic,
cor(K,C), and demonstrated that it can be used to assess
sample homogeneity, identify sample traits with global
effects, and facilitate supervised comparisons among
groups of samples using pre-selected subsets of features.
Application of the latter approach to microarray data gen-
erated from human brain tissue identified a neuronal signal
transduction module as an epicenter of transcriptional dys-
regulation in striatal samples from individuals with HD. To
the best of our knowledge, these findings provide the first
formal demonstration that network methods can distin-
guish biologically meaningful relationships among samples
in genomic datasets. The dataset analyzed in this study,
along with the SampleNetwork and ModuleSampleNetwork
R functions and a comprehensive tutorial illustrating their
usage, are available on our web site (http://www.genetics.ucla.
edu/labs/horvath/CoexpressionNetwork/SampleNetwork).
Methods
R software implementation
We have implemented the sample network approach in a
freely available, custom R software function called Sample-
Network. SampleNetwork has been designed to facilitate
detailed exploration of sample relationships and expedite
genomic data pre-processing decisions via sample network
analysis. SampleNetwork enables semi-automatic, inter-
active sample network construction and network concept
calculations. Network concepts include node-based mea-
sures such as the standardized sample connectivity (Z.K)
and the standardized sample clustering coefficient (Z.C), as
well as network-based measures such as cor(K,C) and
the mean inter-sample adjacency (ISA, or density). These
concepts and many others are defined below and in Supple-
mentary Methods (Additional file 1). By calculating the dis-
tributions of node-based sample network concepts,
SampleNetwork enables the user to identify and remove
outlying samples in an iterative and interactive fashion; by
calculating network-based sample network concepts, Sam-
pleNetwork enables the user to gauge overall progress to-
wards data cleanliness and sample homogeneity. These
features are described in detail in our online tutorial (see
below and Additional file 3). SampleNetwork also enables
significance testing of sample covariates with respect to
sample metrics, and data normalization. Data normalization
may be performed pursuant to outlier removal using the
quantile normalization method proposed in ref. [43].
Because sample networks often reveal groupings of sam-

ples that reflect batch effects (technical variation), which
are typically not removed by standard normalization pro-
cedures, we have also incorporated existing methods that
allow the user to automatically correct for batch effects.
Specifically, we have found that the R function ComBat
created by Johnson and colleagues [36] is quite adept at
removing batch effects. Consequently, if batch effects are
present, the user has the option of correcting for them by
calling ComBat from within SampleNetwork, which
automates its execution. SampleNetwork also requires in-
stallation of the following R (http://www.r-project.org/)
and Bioconductor (http://www.bioconductor.org/) packages:
affy [44], cluster, impute [45], preprocessCore, and WGCNA
[34]. With each successive round of data processing,
SampleNetwork produces and exports the results of
sample network analysis automatically (e.g. Figure S1;
Additional file 1).
We have also created a companion R software func-

tion called ModuleSampleNetwork to explore the prop-
erties of sample networks when formed over subsets of
features. In our application, subsets of features corres-
pond to modules of co-expressed genes [21], but we
note that subsets can be defined by the user according
to any criteria. ModuleSampleNetwork does not enable
outlier testing and removal or data normalization, but

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/SampleNetwork
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/SampleNetwork
http://www.r-project.org/
http://www.bioconductor.org/
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instead seeks to compare module sample network prop-
erties between subgroups of samples (e.g. Figure 6) and
across modules (e.g. Figure 4). An example workflow
would involve using SampleNetwork to pre-process a
microarray dataset, then using WGCNA [34] to identify
modules of co-expressed genes, and finally using Modu-
leSampleNetwork to explore sample network properties
at the modular level.
While both SampleNetwork and ModuleSampleNetwork

are user-friendly, they are interactive and require judicious
feedback from the user (for example, regarding thresholds
for outlier removal). To illustrate how the software can be
used in practice, we provide a detailed, annotated tutorial
with R code (Additional file 3) highlighting the required in-
put files, parameter choices, user interactions, and resulting
output files. The beneficial effects of outlier detection and
removal, data normalization, and correction for batch
effects, as implemented using SampleNetwork, are clearly
delineated by significance testing of sample covariates with
respect to sample metrics, analysis of differential expres-
sion, and analysis of network concepts with each successive
round of data processing, as described in the online tutor-
ial. This tutorial, (Additional file 3) along with the required
input files and the SampleNetwork and ModuleSample-
Network R functions, is available on our web site (http://
www.genetics.ucla.edu/labs/horvath/CoexpressionNet-
work/SampleNetwork).

Microarray data pre-processing
Raw microarray data (.CEL files) [14] were downloaded
from Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE3790). Detailed information
on sample characteristics and sample processing can be
found in [14]. A summary of sample characteristics can also
be found in Additional file 2. To eliminate non-specific and
mis-targeted probes prior to generating expression values,
a mask file (“HG-U133A”) was obtained from http://
masker.nci.nih.gov/ev/ [46] and applied to the raw micro-
array data using the R (http://www.r-project.org/) package
“ProbeFilter” [47] (http://arrayanalysis.mbni.med.umich.
edu/MBNIUM.html#ProbeFilter). After applying the mask
file, only probe sets with at least seven remaining probes
were retained for further analysis (n = 18,631). Expression
values were generated in R using the “expresso” function
of the “affy” package (http://www.bioconductor.org/) [48]
with “mas” settings and no normalization, followed by
scaling of arrays to the same average intensity (200).

Sample networks based on general similarity or
dissimilarity measures
The input of most clustering procedures is a similarity or
dissimilarity measure. In Additional file 1, we define these
measures and describe general approaches for turning a
similarity or dissimilarity matrix into a sample network.
Defining sample adjacency
To construct sample networks, a measure of connection
strength, or adjacency, is defined for each pair of samples i
and j and denoted by aij. A mathematical constraint on aij
is that its values must lie between 0 and 1. In our imple-
mentation, we defined the adjacency between (microarray)
samples Si and Sj as follows:

aij ¼
cor Si; Sj

� �þ 1

2

� �β

where β = 2. Technically, aij is a signed weighted adjacency
matrix [22,49]. A major advantage of defining a network
adjacency measure (as opposed to a general similarity
measure) between samples is that it allows specification of
network concepts (see below). Our proposed sample adja-
cency measure (based on β = 2) also has several other
advantages. First, it preserves the sign of the correlation
(although in most applications negative correlations among
samples are unlikely to occur). Second, it preserves the
continuous nature of the correlation information; alterna-
tive approaches based on thresholding the correlation coef-
ficient may lead to information loss. Third, while any other
power β could be used, the choice of β = 2 results in an ad-
jacency measure that is close to the correlation when the
correlation is large (e.g. larger than 0.6, which is often the
case among samples in microarray data).
We note that SampleNetwork also allows the user to de-

fine sample adjacencies using Euclidean distance, which
may be desirable in some applications. Future efforts may
seek to compare the properties of sample networks using
these and other adjacency measures.

Network concepts
After constructing an adjacency matrix, nodes (samples)
can be characterized in terms of a number of existing net-
work concepts (see refs. [10,12] for comprehensive over-
views of network concepts). Several of these concepts are
reviewed briefly below, including the connectivity (also
known as degree in unweighted networks) and the cluster-
ing coefficient, which we find to be particularly useful in
the context of sample networks.

Connectivity
The connectivity (k) of the i-th network node is defined
by:

ki ¼ ∑
j≠i
aij:

The maximum connectivity is defined as:
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http://masker.nci.nih.gov/ev/
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The scaled connectivity Ki of the i-th network node is
defined as:

Ki ¼ ki
kmax

:

The standardized connectivity Z.Ki of the i-th network
node is defined as:

Z:Ki ¼ Ki−mean Kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Kð Þp

Sample network interpretation of the connectivity:
Using our proposed measure of sample adjacency
(signed weighted network with β = 2), we find that

ki≈∑i≠jcorðSi; SjÞ

if all sample correlations are > 0.6. In other words, samples
with high connectivity tend to be highly positively corre-
lated with other samples. The connectivity is the most
widely used concept for distinguishing the nodes of a net-
work. As illustrated in the motivational example above
and as detailed in our R tutorial (Additional file 3), sam-
ples with low connectivity may represent outliers.

Clustering coefficient
The clustering coefficient (C) of node i measures the
density of local connections, or “cliquishness” [11]. For
weighted networks, 0 ≤ aij ≤ 1 implies that 0≤Ci ≤ 1 [22]:

Ci ¼ ∑l≠i∑m≠i;lailalmami

∑l≠iailð Þ2−∑l≠i ailð Þ2� � :
The standardized clustering coefficient Z.Ci of the i-th

network node is defined as:

Z:Ci ¼ Ci−mean Cð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Cð Þp

Sample network interpretation of the clustering coeffi-
cient: The higher the clustering coefficient of a sample,
the higher is the average pairwise correlation among its
closest neighbors. If all of a sample’s closest neighbors
have pairwise correlations of −1, the clustering coeffi-
cient will be zero.

Density and mean intersample adjacency (ISA)
We find it useful to characterize sample networks using
the mean (off-diagonal) adjacency measure, i.e.

mean Að Þ ¼ ∑i∑j≠iaij
n n−1ð Þ

where A= [aij]. The mean adjacency is also known as the
density of the network. In sample networks, we often
refer to the density as the mean intersample adjacency
(ISA).
Sample network interpretation of the density: Using our

proposed measure of sample adjacency (signed weighted
network with β = 2), we find that

mean Að Þ≈∑i∑i≠jcor Si; Sj
� �

n n−1ð Þ

if all sample correlations are > 0.6. Thus, the mean adja-
cency is roughly equal to the mean correlation in sample
networks.

The standardized C(k) curve and cor(K,C) network concept
Empirical results obtained through application of the Sam-
pleNetwork R function to many datasets indicated that as
outlying samples are removed, data are normalized, and
technical artifacts (e.g. batch effects) are corrected, Z.K and
Z.C exhibit a progressively linear, inverse relationship. A
similar relationship has been observed in unweighted (bin-
ary) networks, where the relationship between the (unstan-
dardized) connectivity and (unstandardized) clustering
coefficient of network nodes, i.e. the C(k) curve, has previ-
ously been reported to follow a scaling law (C ffi k α

[29,31]), with values approaching −1 often observed for the
scaling exponent α in biological systems [30,32]. It has been
suggested that this relationship may emerge as a conse-
quence of hierarchically modular networks, where nodes
with low connectivity form small, densely connected clus-
ters, and nodes with high connectivity serve to bridge these
many small clusters into one large, integrated network [31].
We define the standardized C(k) curve as a scatter plot

between Z.K and Z.C where Z.K and Z.C denote the stan-
dardized sample connectivity and the standardized sample
clustering coefficient, respectively. We also introduce a new
network concept, cor(K,C), which we define as the Spear-
man correlation between Z.K and Z.C. We note that other
measures of correlation could also be used (e.g. Pearson
correlation). Since the Spearman correlation is invariant
with respect to a monotonically increasing transformation
(e.g. standardization), we find that

cor K ;Cð Þ ¼ cor Z:K ;Z:Cð Þ ¼ cor k;Cð Þ;

where k denotes the unscaled connectivity. As described in
Results, we find that cor(K,C) is inversely related to the
density (i.e. mean adjacency) in simulated networks. How-
ever, because cor(K,C) is invariant if one scales all off-
diagonal adjacencies by a constant, it is more accurate to
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consider cor(K,C) as an indicator of network heterogeneity.
The network concept Heterogeneity is defined as:
Let us briefly consider the special case of an exactly

factorizable network in which the network adjacency
factors into node-specific contributions (aij=CF(i) CF(j))
[10,50]. In this case, we have shown that the Spearman
correlation cor(K,C) is actually determined by the net-
work heterogeneity:

cor K ;Cð Þ ≈ 0:96−2:19
∑
i
ki

� �2

n∑
i
k2i

¼ 0:96−2:19
1

1þ Heterogeneity2
:

Thus, cor(K,C) close to 1 indicates that network het-
erogeneity is high. Divergence of cor(K,C) from 1 (in a
negative direction) implies increasing homogeneity; once
a critical level of homogeneity in the network is breached
(analogous to a percolation transition [33]), cor(K,C)
becomes negative. In practice, however, the relationship
described above does not generalize to non-factorizable
networks. In our real data applications that involve non-
factorizable networks, cor(K,C) also exhibits a dependence
on the network size n.

Identification of significant differences between cor(K,C)
Differences in standardized C(k) curves may distinguish
biologically interesting groups of samples. For example,
assume two sample networks (corresponding to two
groups of samples) and two corresponding measures of
cor(K,C). To identify significant differences in cor(K,C)
between two sample networks, we use a test for asses-
sing the significance of differences in correlations from
samples of different sizes. First, cor(K,C) for each sample
group is transformed using the Fisher transformation:

zk¼ 0:5 � log
1þ cor K ;Cð Þk
1−cor K ;Cð Þk

� �

where k indexes the sample networks being compared.
For the comparison between groups (sample networks)
1 and 2, the difference between the resulting z-scores is
divided by the joint standard error:

zdiff ¼ z1−z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1−3ð Þ þ 1
n2−3ð Þ

q

where n1 and n2 represent the number of samples in
groups 1 and 2, respectively. Under the null hypothesis
of equal cor(K,C), zdiff follows asymptotically a normal
distribution (under weak assumptions). Therefore we
calculate significance levels (P-values) for zdiff based
upon the standard normal distribution.
Simulation model for illustrating the ability of cor(K,C) to
distinguish sample groups in the absence of differential
expression
To further illustrate the utility of cor(K,C), we simulated a
set of 500 genes (referred to as a “module”) with the fol-
lowing properties: i) the first principal component (the
observed module eigengene [ME]) exhibited no relation-
ship to a simulated sample trait (referred to as “disease sta-
tus”), and ii) cor(K,C) distinguished “control” subjects from
those with “moderate” or “severe” disease status. The mod-
ule was simulated to contain two unrelated sub-modules of
200 and 300 genes, respectively. The first sub-module con-
tained a signal for the simulated sample trait, while the sec-
ond sub-module contained noise genes with no relation to
disease status. The first sub-module was simulated in two
steps. First, we used a seed ME as input for the simulate-
Module function from the R package WGCNA [34]. This
function simulates genes with varying correlations around
the seed ME and exports standardized gene expression
values (i.e. each gene has mean=0 and variance= 1). Sec-
ond, we added a mean value to each module gene. Import-
antly, the mean gene expression values depended on the
value of the seed ME. For subjects whose seed ME values
were above the median, mean expression values were
drawn from a normal distribution with mean=2 and
standard deviation=2. For subjects whose seed ME values
were below the median, mean expression values were 2/3
those of the control subjects (i.e. it was assumed that the
disease lowered the mean gene expression values in sub-
module 1). Analogously, we simulated the expression
values for the second sub-module. However, we assumed
that the mean gene expression values were derived from a
normal distribution with mean=2/3 and standard devi-
ation=2/3 (i.e. the mean values of these genes tended to
have lower expression values than those of the first sub-
module). The sample trait was simulated by thresholding
the seed ME of the first sub-module. We assumed that
healthy control subjects have a high value of the seed ME.
Specifically, we simulated 100 individuals, with 50 desig-
nated as “control” subjects (darkgreen), 25 designated as
“moderate” disease status (red), and 25 designated as “se-
vere” disease status (turquoise), as indicated in Figure 5. In
practice, the seed ME was not known. Instead, the
observed ME for the entire module was obtained as the
first principal component of the set of 500 genes.

Additional network concepts for sample networks
In addition to characterizing sample networks via the con-
nectivity and the clustering coefficient, it is also possible to
characterize sample networks using additional network
concepts. Such concepts include decentralization and
homogeneity, as well as summaries of node-based measures
such as the mean correlation, mean connectivity, mean
clustering coefficient, mean intersample adjacency (or
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density), and mean maximum adjacency ratio (MAR).
When applied to sample networks, these concepts provide
a battery of measures for comparing the consistency of
sample behavior within and across datasets. These network
concepts are calculated automatically by SampleNetwork
and are discussed further in Additional file 1 and our R tu-
torial (Additional file 3).

Differential expression analysis
To determine whether specific CN gene co-expression mod-
ules were associated with DE in HD, for each CN module
we calculated the ME (i.e. the first principal component
obtained by singular value decomposition), which is a vector
that summarizes the characteristic expression pattern of a
module [10]. We then used Student’s t-test to determine
whether the mean expression levels of the ME differed be-
tween groups (distinguished by HD diagnosis). An advantage
of this approach is that the extent of modular DE can be
summarized by a single P-value. Future efforts may seek to
incorporate higher-order representative features (beyond the
first principal component) to explore additional relationships
between gene co-expression modules and disease status [51].
Differential gene expression in CN between CTRL and HD
subjects (Additional file 4) was assessed using Student’s t-test
on log2-transformed expression values. The resulting P-
values were corrected for multiple comparisons by control-
ling for the false-discovery rate [52]. The resulting local
false-discovery rates (referred to as Q-values), along with
mean expression levels for CTRL and HD, are reported for
all genes in the salmon module in Additional file 4.

Ingenuity pathways analysis
Ingenuity Pathways Analysis (IPA; http://www.ingenuity.
com/) was used to determine whether gene co-expression
modules identified in [21] were enriched with functional
interactions among their constituent genes. For each mod-
ule, probe sets that were positively correlated with the
module eigengene (P<0.001) were used to search for en-
richment. Network construction was restricted to experi-
mentally verified, direct physical interactions. IPA reported
false-discovery rate (FDR)-corrected P-values for the 500
most enriched functionally annotated categories of genes
in each module. Results for the salmon module are
reported in Additional file 5.

Additional files

Additional file 1: Supplementary information. PDF file containing
Supplementary Methods, Supplementary References, and Supplementary
Figures (1–8).

Additional file 2: Sample information. XLS table that summarizes
sample information, including Gene Expression Omnibus (GEO:
http://www.ncbi.nlm.nih.gov/geo/) sample ID, sample labels, diagnosis,
severity grade, age, sex, individual ID, hybridization date, hybridization
batch assignment, and country of processing, as described in ref. [14].
Additional file 3: SampleNetwork R tutorial. DOC file containing
annotated R code and detailed instructions for executing the
SampleNetwork and ModuleSampleNetwork R functions. The datasets
that are referenced in the tutorial and analyzed in this study can be
downloaded from: http://www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/SampleNetwork.

Additional file 4: Summary of differential expression, functional
enrichment, and module membership for genes in the salmon
module. XLS table that summarizes the extent of differential expression,
functional enrichment, and membership strength for the salmon module.
Differential expression analyses include CTRL vs. HD human caudate
nucleus samples [14], CTRL vs. HD human laser-microdissected striatal
neurons [14], and wild-type mice vs. a mutant mouse model of HD
cultured primary striatal neurons [20]. Functional enrichment categories
included G-protein coupled receptors, phosphatidylinositol signaling,
calmodulin binding, ion transport, and calcium ion binding; all of these
categories were significantly enriched in the salmon module [21]. Module
membership values and corresponding P-values are taken from ref. [21].

Additional file 5: Ingenuity Pathways Analysis of salmon module
genes. XLS table that reports false-discovery rate (FDR)-corrected P-
values for the 500 most enriched functionally annotated categories of
genes in the salmon module from Ingenuity Pathways Analysis (IPA;
http://www.ingenuity.com/).
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