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INTRODUCTION

The adipose tissue is no longer considered as a sluggish piece 
of fat. The white adipose tissue (WAT) is found to be involved 
not only in energy storage but also in various physiologic 
processes. Several proteins produced by the adipose tissue have 
been implicated in a multitude of pathologic conditions.[1,2]

These proteins are justifiably termed preferably as 
“adipocytokines”.

The various cell signaling proteins secreted by the mature 

adipocytes include adiponectin, tumor necrosis factor-α 
(TNF-α), resistin, retinol binding protein-4 (RBP-4), visfatin, 
plasminogen activator inhibitor 1 (PAI-1), leptin, omentin, 
interleukin-6 (IL-6) and monocyte chemoattractant protein-1 
(MCP-1).[3-5] Under basal conditions, only a restricted number 
of adipocytokines are released into the systemic circulation, of 
which, not many fall in the existing detection limits. They may 
be released as enzymes, hormones, growth factors, etc. These 
adipocytokines integrate a myriad of metabolic outcomes, 
hence the adipose is no less than an endocrine organ.[6] These 
molecules have endocrine, paracrine, autocrine or juxtacrine 
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modes of action.[7] Besides, they have been recently recognized 
as mediators of several inflammatory processes.[8] Their 
proinfl ammatory properties are responsible for elevated risks 
to several morbid conditions.[9] Organs of metabolic importance 
like, brain, liver, skeletal system, etc. are targets that receive 
signals from adipocytokines.[10] Lipid metabolism, insulin 
sensitivity (adiponectin, resistin), homeostasis (PAI-1), blood 
pressure regulation (angiotensinogen) and angiogenesis are a 
few physiologic processes implicated with adipocytokines.[11,12] 
It is also true that certain pathologic conditions also control the 
level of adipocytokines.[13] Altered production and secretion of 
several adipocytokines may be concerned with the pathogenesis 
of metabolic syndrome, as is suggested by some studies.[14,15] 
Within the central nervous system, adipocytokines are found 
to communicate with the blood brain barrier. They may thus be 
effecting a few neuroendocrine functions as well.[16] The mass 
of adipose tissue and its energy status is also regulated by the 
adipocytokines.[17] Since several adipocytokines are involved 
in the partial regulation of a battery of physiologic processes, 
they may also provide a connection toward the pathology 
involving the same physiologic processes [Figure 1]. They 
may thus provide molecular links between the development of 
obesity, insulin resistance, metabolic syndrome, cardiovascular 
diseases, type 2 diabetes mellitus, and so on. They may also 
be used as biomarkers in the diagnosis of pertinent diseases.[18]

Understanding the effects of adipocytokines in totality 
remains incomplete[10] and imperceptible when quite a lot 
of them remain to be discovered. However, due to such a 
herculean involvement in daily metabolic processes, there 
lays a vast ocean of latent resources to be explored as 
adipokine-maneuvered treatments. The current review thus 
converges upon the role and therapeutic potential of variety of 
adipocytokines. Favorably, the role of adipocytokines, with a 
special mention to adiponectin and resistin, will be dealt with, 
along with that of RBP-4, leptin and visfatin.

ADIPONECTIN

Adiponectin, discovered in 1996,[19] is a 244 amino acid 
long, 30 kDa polypetide, termed as Acrp30 or AdipoQ (also 
apM1 and GBP-28). It is structurally similar to complement 
1q with a C-terminal globular domain and an N-terminal 
collagen domain.[20] Forming characteristic multimers is 
a characteristic feature of this protein.[21] It has several 
oligomeric forms which are abundantly found in plasma.[22,23]

Two adiponectin receptors, AdipoR1 (skeletal muscle and 
heart) and AdipoR2 (liver), have been identifi ed, both of 
which belong to a new family of seven transmembrane 
receptors distinct from G-protein coupled receptors.
[24,25] T-cadherin (T-cad) is a perceptibly different 
extracellular The proposed mechanismsadiponectin 
b i n d i n g ,  d a m p e n s  A d i p o R 1 / R 2  s i g n a l i n g . [ 2 6 ]

AdipoR1 and AdipoR2 rapidly activate extracellular 
signal regulated kinases 1 and 2 (ERK1/2) through 
Ras-activation which is Src-dependent.[27] Adiponectin 
has been found to play a major role in regulating the 
metabolic effects within the body. Adiponectin itself 
has a lot of metabolic consequences like improving the 
blood glucose level and oxidation of muscle fat.[19,28]

Functionally, it is mainly involved in glucose regulation and 
fatty acid catabolism. It decreases gluconeogenesis, increases 
glucose uptake, stimulates β-oxidation and triglyceride 
clearance.[29,30] Expression of AdipoQ is found to be encrypted 
through APM1 gene,[29] which, in the visceral adipose tissue, 
is negatively controlled by glucocorticoids and TNF-α and 
positively by insulin and insulin derived growth factor-1 
(IGF-1).[31] Plasma concentrations of the protein show sexual 
dimorphism with two to threefold higher levels in females than in 
males. The oligomeric forms also show similar dimorphism.[25]

Serum levels of adiponectin are found to be in agreement 
with insulin sensitivity and the reduced levels of which are 
associated with the etiopathology of type 2 diabetes mellitus 
and obesity.[32] Adiponectin has been termed as a “potential 
biomarker” for metabolic syndrome.[33] It has been proved to 
increase insulin sensitivity.[34] Adiponectin reveals a deck of 
antiinfl ammatory properties. On the contrary, proinfl ammatory 
cytokines are found to decrease expression of adiponectin in 
the adipose tissue.[34,35] There are also a few conditions (like the 
Laron syndrome) which are associated with increased levels 
of adiponectin.[36]

Adiponectin, type 2 diabetes mellitus and insulin 
sensitization
Adiponectin, as stated above, is associated with the 
etiopathology of type 2 diabetes mellitus[33] and its levels are 
found to be decreased in the serum in patients with type 2 
diabetes mellitus.[37,38] Monkeys with decreased plasma levels 
of adiponectin (before the onset of diabetes) later developed 
type 2 diabetes mellitus and the data were in close correlation 
with those from humans.[37-40] On the contrary, high levels of 
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Figure 1: The roles of adipocytokines
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adiponectin were identifi ed to possibly thwart the development 
of type 2 diabetes.[40] Adiponectin was found to backslide the 
developed insulin resistance in mouse models of lipodystrophy 
and obesity.[41] Adiponectin has been shown to protect mice of 
respective specifi c strains from diabetes and atherosclerosis.[42]

Studies in the past decade have found analogy between low 
levels of adiponectin and insulin resistance. Also,  adiponectin 
has been reported to sensitize the body tissues toward actions 
of insulin. This insulin sensitizing activity of adiponectin was 
initially identifi ed by Yamauchi et al, Berg et al, and Fruebis 
et al, independently in 2001 and was later supported by other 
groups.[30,43,44]

The proposed mechanisms of action for adiponectin include:

a. Its insulin sensitizing effect which in turn regulates glucose 
metabolism through stimulation of AMP activated protein 
kinase (AMPK), a stress kinase[45]

b. Enhanced oxidation of muscle fat and glucose transport 
mediated through AMPK activation and acetylCoA 
carboxylase inhibition[46]

c. Inhibition of hepatic gluconeogenesis through decrease in 
the expression of phosphoenolpyruvate carboxylase and 
glucose6phosphatase[43,45]

d. Increased fatty acid combustion and energy consumption, 
partly through peroxisome proliferator activated receptor 
α (PPARα) activation, leading to decreased triglyceride 
content in skeletal muscles and liver.[42]

The high molecular weight oligomer of adiponectin is the 
chief form responsible behind the insulin sensitizing action 
of adiponectin.[47] Thiazolidinediones have been reported to 
upregulate the expression of adiponectin.[48] Predominantly, the 
high molecular weight oligomers (dodecamer or tridecamer) 
are increased in the circulation by the thiazolidinediones.[49]

Statnick et al, 2000, have shown that serum adiponectin levels 
are decreased in patients with type 2 diabetes.[32] Type 2 diabetes 
is associated with insulin resistance, which is ameliorated, in 
part, by the high circulating levels of endogenous adiponectin, 
especially the high molecular weight counterpart. The key 
players in this proceeding of adiponectin are AMPK activation 
and PPARα activation and their resulting metabolic effects. 
The adiponectin function is carried out through its binding 
with the AdipoR1/R2 receptors[24] and the signal transduction 
mechanisms that follow suit. Adiponectin oligomers (when 
purifi ed) may thus develop to be a promising candidate in the 
therapy of type 2 diabetes.

Obesity and insulin resistance
Adiponectin provides the required link between obesity 
and insulin resistance along with the involvement of other 
adipocytokines like leptin, visfatin, etc.[50] The induction 
of the insulin-resistant condition is closely associated with 
weight gain.[51] It has been shown that mice lacking adiponectin 

expression have reduced insulin sensitivity or are more likely 
to suffer from insulin resistance.[52-54] Favorably, adiponectin 
overexpression in ob/ob mice casts a dramatic improvement 
in the metabolic derangements.[55] Adiponectin levels are 
explicitly correlated with fat cell size and are found to be 
negatively related to basal metabolic index (BMI).[56] Without 
taking the body fat percentage into account, a low waist-to-
hip ratio is associated with superior levels of adiponectin in 
the plasma.[57] Adiponectin levels are signifi cantly lower in 
obese subjects.[37] This discovery is found to be consistent in 
animal studies as well. Plasma adiponectin concentrations 
and expression of adiponectin within the tissues are reduced 
in animal models of obesity like high-fat diet fed mice, 
leptin defi cient ob/ob mice and leptin resistant db/db mice.[30]

Prospective studies in Pima Indian (Arizonian ethnicity having 
the highest prevalence of obesity associated with insulin 
resistance and type 2 diabetes) children[58] have revealed 
a decisive role of adiponectin deficiency in obesity and 
insulin resistance.[59] Insulin sensitivity, which is reduced in 
obese individuals, is improved by the actions of adiponectin. 
Adiponectin, all in all, plays an important role toward 
amelioration of obesity and insulin resistance [Figure 2].

Adiponectin in relation to inflammation and 
atherosclerosis
Inflammation is considered to be a sine qua non in the 
induction of atherosclerosis.[60] Evidence is building to prove 
the involvement of several adipocytokines in the development 
of endothelial dysfunction, which is an early event in the 
atherosclerotic disease.[61] TNF-α and other cytokines, as well 
as high levels of glucose[25,62] are found to be associated with 
triggering of infl ammatory cascades. These cascades initiate 
leukocyte interactions, thereby stimulating the adhesion 
molecules (intracellular cell adhesion molecule [ICAM], 
vascular cell adhesion molecule [VCAM], etc.). All these 
effects consequently lead to a few of the early complications 
leading to atherosclerosis.[52] TNF-α induced expression of cell 
adhesion molecules was found to be inhibited by the binding 
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of adiponectin to aortic endothelial cells. Downregulation 
of cell adhesion molecules in the endothelium was one of 
the earliest vasoprotective actions reported for adiponectin 
toward modulation of vascular infl ammation.[63-65] Adiponectin 
defi cient mice show a considerable increase in the expression 
of cell adhesion molecules in the endothelium. These include, 
VCAM 1 and E-selectin.[52] They are highly involved in 
leukocyte traffi cking in the mesenteric tissue.[9] Adiponectin 
has been found to activate cAMP-dependent protein kinase A, 
thus inhibiting endothelial nuclear factor κβ (NF-κβ) signaling. 
This is one mechanism found to be responsible for attenuated 
expression of cell adhesion molecules.[65] Toll-like receptor-
mediated NF-κβ signaling in macrophages is also inhibited by 
adiponectin.[66] Adiponectin inhibits vascular smooth muscle 
migration and proliferation.[67,68] This action is effected on 
binding of adiponectin to platelet derived growth factor-BB 
(PDGF-BB) and thus inhibiting p42/44 ERK phosphorylation 
in PDGF-BB st imulated smooth muscle cel ls . [69]

The conversion of macrophages to lipid-laden foam cells is 
suppressed to a large extent by adiponectin.[70] Adiponectin 
defi cient mice have been reported to show a twofold increase 
in neointimal proliferation.[52] By suppressing the expression 
of class A scavenger receptor (SR-A), adiponectin reduces 
intracellular cholesteryl ester content of the macrophages. 
This is the chief action responsible holding the macrophage 
to foam cell transformation.[70] The ameliorative effects of 
adiponectin upon growth factors (PDGF, epidermal growth 
factor [EGF], heparin binding epidermal growth factor 
[HB-EGF]) and cell-adhesion molecules (VCAM 1, ICAM, 
etc.)[59] by retarding the progression of the atherosclerotic 
lesion, may be, in part, through direct stimulation of nitric 
oxide (NO) production.[71,72] This mechanism involves the 
phosphatidylinositol-3-kinase (PI3K) pathway involving 
phosphorylation of endothelial nitric oxide synthase (eNOS).[73]

Adiponectin stimulates the production of interleukin-10, 
which is an antiinfl ammatory cytokine.[74] Adiponectin may 
also inhibit the production of inducible nitric oxide synthase 
(iNOS), which is released under some pathologic conditions.[75]

Precisely, adiponectin confers salvaging actions against the 
progression of atherosclerosis through several mechanisms, 
the prime ones being antiinfl ammatory in nature.

RESISTIN

Resistin was identifi ed as an adipocytokine in 2001.[76] Resistin 
is expressed in the WAT, with a higher preference seen in the 
WAT of abdominal region and female gonadal adipose tissue.[77]

Placenta, pituitary, pancreatic islets, brown adipose tissue, etc. 
also show a signifi cant expression of resistin.[78] Resistin is a 
cysteine-rich, 114 amino acid long, polypeptide.[76] Resistin, 
also termed as FIZZ3 and “adipocyte-derived secretory factor” 
(ADSF), has been linked with many facets of the metabolic 
syndrome,[79,80] principally, obesity, insulin resistance and 

hyperlipidemia.[81] In murine models of genetic and diet-
induced obesity, resistin levels are found to be synchronously 
increased. Nullifi cation of resistin through specifi c antibodies 
improves insulin sensitivity and also lowers glucose levels in 
blood. The effect of resistin upon insulin resistance is mediated 
through increased expression of suppressor of cytokine 
signaling-3 (SOCS-3), which is a known inhibitor of insulin 
signaling. Mice injected with resistin showed insulin resistance. 
Resistin was thus found to attend endocrine functions that led 
to insulin resistance .[76] Increased expression of resistin was 
found to be associated with dyslipidemia and non-alcoholic 
fatty liver disease (NAFLD) in a few medical ranks. In patients 
with NAFLD, serum resistin levels were higher than those in 
control lean and obese patients. The presence of metabolic 
syndrome with elevated levels of plasma resistin is associated 
with increased cardiovascular risk.[82,83] Within the tissues, 
the levels of resistin are depreciated by insulin, somatotropin, 
fasting, estrogen, epinephrine, PPARγ, insulin-like growth 
factor 1 (IGF-1), etc. Its levels are amplifi ed by hyperglycemia, 
aging, neuropeptide Y, growth hormone, etc.[84] Clinically, 
resistin was found to be downregulated by the antidiabetic 
rosiglitazone and congeners troglitazone, darglitazone, etc.[85,86]

Resistin is anticipated in the development of endothelial 
dysfunction in subjects suffering from insulin resistance. 
CD40 ligand mediated endothelial cell activation is heightened 
by elevated levels of resistin. Also, the expression of tumor 
necrosis associated factor-3 (TRAF-3), a potent inhibitor of 
CD40 mediated endothelial cell activation, is inhibited by 
resistin in vitro. Besides, the expressions of VCAM-1 and 
MCP-1, instrumental in the development of the atherosclerotic 
lesion, are also increased by resistin. The proinfl ammatory 
effects of resistin on smooth muscle cells are found to play 
a role in the occurrence of restenosis of coronary arteries in 
diabetic patients.[9,87] The robust expression of resistin in the 
monocytes confi rms its proinfl ammatory role.[88,89]

Resistin in myocaridal infarction: Any therapeutic 
benefi t?
In a study by Gao et al, 2007, it was found that resistin 
offered protective effects against MI. Resistin was shown 
to protect against ischemia-reperfusion injury at a dose of 
10 nM.[78] It was found that pretreatment with resistin for 30 
minutes before 60 minutes of left anterior descending (LAD) 
coronary artery ligation, followed by 4 hours of reperfusion 
reduced the infarct size. This suggested a late preconditioning 
of resistin. This means that resistin plays its protective role 
before the development of infarction. Programmed cell death 
associated with ischemia-reperfusion in MI is also attenuated 
by resistin [Figure 3]. These cardioprotective effects occur 
by a PI3K/Akt (Protein Kinase B)/PKC (Protein Kinase C)ε/
KATP-channel-dependent pathway. Activation of PI3K leads 
to PKC which causes mitoKATP channel opening. This along 
with Akt phosphorylation was found to be responsible for the 
cardioprotective effect.[78] All these data have been gathered 
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from animal studies and need to be extrapolated to human 
populace.

Involvement in pathophysiology
Apart from its role in the development of metabolic syndrome, 
resistin is also accused of having a role in the evolution of liver 
damage and acute coronary syndromes. Contrary to the above 
fi ndings, resistin is strongly implicated in the pathogenesis of 
acute MI and atherosclerosis.[90,91] The liver damaging actions 
of resistin can be attributed to elevated expression of PAI-1 and 
enhanced activation of ERK 1/2.[92] These ultimately contribute 
to the increased activity of proinflammatory genes,[90] 
consequently leading to more damage. Kim et al, report 
that resistin is also involved in altering cardiac contractility 
and promoting cardiac hypertrophy, possibly via the insulin 
receptor substrate-1 (IRS-1)/mitogen activated protein kinase 
(MAPK) pathway.[93] It can be thus concluded that resistin 
affects the pathophysiology of several critical illnesses through 
its proinfl ammatory activities.

RETINOL BINDING PROTEIN-4, VISFATIN AND 
LEPTIN

Retinol binding protein-4
RBP-4 was established as an adipocytokine in the 1990s.[93,94] 
It is preferentially expressed in the visceral adipose tissue.[95] 
Elevated levels of the protein are seen in insulin resistance, 
type 2 diabetes mellitus, dyslipidemia and similar metabolic 
abnormalities.[96,97] RBP-4 is also concerned with hypertension.[98]

Adipose-Glut4/ mice show elevated expressions of RBP-4, 
as verifi ed in the serum. Several insulin resistant states in mice 
are also consistent with an elevation of serum RBP-4 levels. 
These fi ndings are reconcilable with those in humans. Also the 
reduction in serum RBP-4 levels improves insulin action. Mice 
on high fat diet and ob/ob mice show a 2.8-fold and 13-fold rise 
in basal serum RBP-4 levels, respectively.[96] Rosiglitazone, a 
thiazolidinedione, completely reverses insulin resistance and 
glucose intolerance in adipose-Glut4−/− mice.[99] The Rbp4 
mRNA levels in adipose tissue were reduced on treatment 

with rosiglitazone. This suggests a possible role for RBP-4 in 
the pathophysiology of diabetes mellitus.[96] Mohapatra et al.
(2009) have reported a positive correlation between 
upregulation of RBP-4 expression and low density lipoprotein 
(LDL)-cholesterol.[100] This shows the potential involvement of 
RBP-4 in the pathogenesis of obesity. Interventions that may 
improve insulin sensitivity like exercise, lifestyle modifi cations 
and gastric banding surgery were shown to reduce serum 
RBP-4 levels in humans.[97,101-103] However, further studies 
will be required to delineate the exact role of RBP-4 in the 
pathophysiology of metabolic syndrome.

Visfatin
Visfatin, initially termed as pre-B cell colony-enhancing 
factor (PBEF), was earlier supposed to have multiple 
biological actions.[104,105] It was later found to possess 
NAD (Nicotinamide Adenine Dinucleotide)  biosynthetic 
activity, which is essential for B-cell function.[106]

Visfatin, with its insulinomimetic actions, was identifi ed to 
be predominantly expressed in the visceral adipose tissue.[107]

Plasma visfatin was positively associated with BMI in one 
study,[108] but not in others.[109,110] Variable results were obtained 
regarding the relationship between visfatin and diabetes 
or insulin resistance.[109-112] Mohapatra et al. (2009) have 
shown that rimonabant (cannabinoid receptor antagonist), 
an antiobesity drug, signifi cantly reduced visfatin mRNA 
expression. This shows that visfatin might be involved in the 
development of obesity. Visfatin has also been described as an 
infl ammatory adipocytokine by several authors.[113] An increase 
in the expression of visfatin mRNA has been observed in 
infl ammatory conditions like atherosclerosis and infl ammatory 
bowel disease.[114,115] Besides, it has also been implicated in 
rheumatoid arthritis, where it is known to activate NF-κβ and 
other germane cytokines.[116] Yet, several possibilities remain 
to be explored, since the data found till date have several 
inconsistencies.

Leptin
Leptin was the fi rst of the adipocytokines discovered to have 
a role in the modulation of adiposity.[117-120] It is a 16-kDa 
protein, identifi ed in 1994 and is found to contain 167 amino 
acids.[121] Adipose tissue is the chief secretory tissue of leptin 
secretion. Leptin mainly regulates food intake and energy 
homeostasis.[122-124] It acts through a unique mechanism. Leptin 
receptor activation leads to repression of orexigenic pathways, 
involving neuropeptide-Y (NPY) and agouti-related peptide 
(AgRP). Simultaneously, it leads to activation of anorexigenic 
pathways, entailing pro-opiomelanocortin (POMC) and 
cocaine and amphetamine regulated transcript (CART). All 
these actions are mediated through the Janus activated kinase 
(JAK)/signal transducers and activators of transcription (STAT) 
pathway.[125] Leptin plays diverse roles in the regulation of 
cellular metabolism. It reverses hyperglycemia in ob/ob mice 
before a correction in body weight.[120] It improves glucose 
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homeostasis in lipodystrophic mice, which is consistent with 
the clinical data. It even improves insulin sensitivity,[126] 
which may be the resultant of improved glucose homeostasis 
and its role in ameliorating obesity. Such a study in mice 
needs further evaluation and refi nement so that it can be 
extrapolated to humans as well. Leptin has potential prooxidant 
and proinfl ammatory roles and hence it has also been linked 
to the development of cardiovascular disease, especially 
atherosclerosis. It promotes ET-1 (Endothelin 1) upregulation 
and reactive oxygen species (ROS) accumulation.[127,128] The 
proliferation and migration of vascular endothelial cells 
(VEC)[129] and vascular smooth muscular cells (VSMC)[130]

is also enhanced by leptin. It thus leads to endothelial 
dysfunction. Through a leptin receptor dependent pathway, 
it also stimulates platelet aggregation, thereby increasing 
the risk of CAD.[127,128] When increased levels of leptin are 
observed without signifi cant end-organ response, it can be 
termed as “leptin resistance”.[131] Studies with obese rodents 
have suggested an impairment of leptin transport across the 
BBB (Blood Brain Barrier) , reduction in JAK/STAT signaling 
and SOCS-3 induction in the development of resistance.[131,132] 
Concisely, leptin is the major “adipostat” interplaying with 
several other metabolic processes[10] and it has preponderance 
over other adipocytokines in the pathogenesis of cardiovascular 
disease.

THERAPEUTIC INTERVENTIONS

Lifestyle modifi cation is the only currently employed therapy 
to reduce the effect of pathogenic adipocytokines (resistin, 
TNF-α, RBP-4, PAI-1, etc). Lifestyle modifications like 
weight loss and regular exercise have attenuated the circulating 
levels of pathogenic adipocytokines.[9] However, there are 
also a few drugs that can decrease the levels of infl ammatory 
adipocytokines. These include thiazolidinediones, angiotensin 
receptor blockers (ARBs), ACE (Angiotensin Converting 
Enzyme) inhibitors, statins, etc.[9] Many of these drugs, like 
rosiglitazone in particular, reduce the proatherogenicity 
of the adipocytokines.[133] Rimonabant, a CB1 receptor 
antagonist, reduces visfatin mRNA expression, which might 
alleviate the infl ammatory effects of visfatin. Rimonabant 
has insulin sensitizing effects in ob/ob mice. These may 
involve a decrease in the expression of RBP-4 and TNF-α 
and a simultaneous increase in adiponectin levels.[113] 
Thiazolidinediones like pioglitazone and rosiglitazone reduce 
the expression of TNF-α in adipocytes and TNF-α induced 
expression of cell adhesion molecules (VCAM-1 and ICAM-
1) in endothelial cells.[9] Subtherapeutic doses of pioglitazone 
produced antiinfl ammatory effects via suppression of TNF-α 
and IL-6 in WAT. As suggested by Mohapatra et al, these 
antiinflammatory effects preceded the insulin-sensitizing 
effects that were seen at therapeutic doses in db/db mice.[134]

Resistin increases lipogenesis through an upregulation 

of lipogenic genes (sterol regulatory element binding 
protein [SREBP-1], hydroxy methyl glutaryl CoA receptor 
[HMGCoAR], diacylglycerol acyltransferase [DGAT2], etc).[81]

This may lead to steatosis and hyperlipidemia in ob/ob mice, 
which was ameliorated by insulin-sensitizing drugs.[126] 
This study can be extrapolated to hyperinsulinemic patients 
suffering from steatosis and/or hyperlipidemia through clinical 
investigations. Adiponectin too has been proposed to have a 
role in protection against steatosis in humans.[41] 

In obese patients, who underwent gastric partition surgery, an 
increase in the levels of adiponectin, a protective adipokine, 
was observed. This was accompanied by a reduction in BMI 
as well.[135] Mediterranean diet, soy protein and increased 
physical activity have been reported to increase adiponectin 
levels.[135,136] These results are consistent with studies carried 
out in wistar rats by Nagasawa et al, 2003,[136] but not with 
those carried out in obese KK-A mice.[137] Human studies 
show a positive result between PPARγ agonist treatment 
and improving adiponectin levels.[138] This may be one 
of the reasons for the effectiveness of thiazolidinediones, 
which are potent agonists of PPARγ. Pioglitazone improves 
lesions of nonalcoholic steatohepatitis and also increases 
adiponectin levels, suggesting a possible adiponectin effect.[139]

The C-terminal globular domain of adiponectin is 
pharmacologically active. Injection of recombinant adiponectin 
can reduce glucose levels, without having an effect upon the 
insulin levels.[43] Leptin may also be clinically applicable in 
near future, for the treatment of obesity. Co-administration 
of leptin with amylin restores hypothalamic sensitivity to 
leptin, thereby ameliorating leptin resistance. However, 
the confi rmation of this datum is pending in humans.[140]

Upon receipt of positive results, obesity pharmacotherapy may 
witness new dimensions.

There still remains a vast number of possibilities to be explored 
for amelioration of pathophysiologic states generated through 
adipocytokines. Evolving methodologies, in the near future, 
will have to focus keenly upon the forerunners of pathologic 
states of the adipocytokines.

ABBREVIATIONS

ICAM – intracellular cell adhesion molecule; VCAM – vascular 
cell adhesion molecule; AMPK – AMP activated protein kinase; 
PDGF – platelet derived growth factor; EGF – epidermal growth 
factor; HB-EGF – heparin binding epidermal growth factor; eNOS 
– endothelial nitric oxide synthase; iNOS – inducible nitric oxide 
synthase; MCP-1 – monocyte chemoattractant protein-1; IRS – insulin 
receptor substrate; MAPK – mitogen activated protein kinase; JAK 
– Janus activated kinase; STAT – signal transducers and activators 
of transcription; VEC – vascular endothelial cells; VSMC – vascular 
smooth muscular cells; SREBP – sterol regulatory element binding 
protein; HMGCoAR – hydroxymethyl glutaryl CoA receptor; DGAT 

Gandhi, et al.: Adipocytokines



Journal of Pharmacology and Pharmacotherapeutics  | January-June 2010 | Vol 1 | Issue 1 15

– diacylglycerol acyltransferase; WAT – white adipose tissue
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