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1  | INTRODUC TION

In view of food industry and human health, prevention of lipid ox-
idation and generation of free radicals in the foodstuff and living 
body tissue are important for control of quality of food and diseases 
(Zhang et al., 2016, 2019). Antioxidants are often used in food for-
mulation to eliminate the effects of free radicals and to inhibit lipid 
oxidation (Zhang et al., 2016). The use of synthetic antioxidants 
(BHA and BHT) has serious limitations due to the potential toxic ef-
fects on human health. Therefore, many studies are necessary on 
production and application of antioxidants from natural sources 

without side effects on human health (Jin, Liu, Zheng, Wang, & He, 
2016; Nasri, 2017).

Diabetes mellitus is serious metabolic disease and characterized 
by high level of blood glucose (Bhandari, Jong-Anurakkun, Hong, & 
Kawabata, 2008; Vilcacundo, Martínez-Villaluenga, & Hernández-
Ledesma, 2017). One approach in the management of diabetes is 
slowing down the absorption of glucose through the inhibition of 
α-glucosidase and α-amylase in hydrolysis of carbohydrates (Alu'datt 
et al., 2012; Bhandari et al., 2008; Connolly, Piggott, & FitzGerald, 
2014). α-Amylase and α-glucosidase inhibitors can inhibit both 
enzymes activities and decrease rate of digestion of starch and 
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Abstract
In the present work, defatted corn germ was hydrolyzed by three proteases and fur-
ther separated by sequential ultrafiltration with different molecular weight cutoff 
(100, 10, 2 kDa). Corn germ protein hydrolysate (CGPH) and their fractions were 
investigated for antioxidant activity, α-glucosidase, α-amylase, and DPP-IV inhibi-
tory activity. The degree of hydrolysis (DH) after 2 hr was 17.5%, 11.14%, and 2.05% 
for alcalase, trypsin, and flavourzyme, respectively. Trypsin hydrolysate showed the 
highest DPPH and ABTS+ radical scavenging and Fe2+ chelating activity, but a lower 
α-glucosidase inhibitory activity. F1 fraction (<2 kDa) exhibited highest radical scav-
enging and α-glucosidase inhibitory activity. While F2 fraction (2–10 kDa) showed the 
higher Fe2+ chelating and α-amylase inhibitory activity, F1 fraction of flavourzyme 
showed the highest α-glucosidase inhibitory and F2 fraction of alcalase and flavour-
zyme exhibited highest α-amylase inhibitory activity. Hydrolysate and F1 fraction of 
alcalase and F2 fraction of trypsin showed the highest DPP-IV inhibitory activity. RP-
HPLC results showed that trypsin hydrolysate had higher levels of high-hydrophobic 
peptides. The amino acid composition of the F1 fractions showed high levels of hy-
drophobic amino acids. Thus, CGPHs may be used as a potential source of antioxidant 
and antidiabetic peptides in food industry and pharmaceutical application.
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disaccharides to glucose, and as results, less glucose is absorbed in 
the small intestine (Vilcacundo et al., 2017). Another approaches for 
control of diabetes are through inhibition of dipeptidyl peptidase-IV 
(DPP-IV) activity that increases the half-life of total circulating 
GLP-1 (peptides that stimulates glucose-dependent insulin secretion 
in pancreatic β-cells) by preventing it from degradation and inacti-
vation. Thereafter, prolonged secretion of insulin resulted in more 
absorption of glucose by the tissues and decreased in plasma glu-
cose (Estrada-Salas, Montero-Morán, Martínez-Cuevas, González, & 
Barba de la Rosa, 2014; Vilcacundo et al., 2017; Zambrowicz et al., 
2015). Hence, in the past few years, enzyme inhibitors have de-
veloped for control of the type 2 diabetes. In this concept similar 
to α-amylase and α-glucosidase inhibitor, concern about synthetic 
drugs and toxicity and side effect should be noticed and using of nat-
ural and safe inhibitors as antidiabetic agents is considered (Wang 
et al., 2019).

Other than nutritional properties, protein hydrolysates and bio-
peptides have various biological activities such as antioxidant, an-
tibacterial, antihypertensive, and antidiabetic potential depending 
on amino acid composition, sequencing, hydrophobicity, and chain 
length (Nasri, 2017). In recent years, various food protein hydro-
lysates have been reported to be antioxidant and antidiabetic po-
tential in barley (Alu'datt et al., 2012), Palmaria palmata (Harnedy & 
FitzGerald, 2013), egg yolk protein (Zambrowicz et al., 2015), pinto 
beans (Ngoh & Gan, 2016), and cumin seeds (Siow & Gan, 2016).

Defatted corn germ (DCG) is by-product of the corn oil indus-
try. Its goes mainly into animal feed, and very low amount has been 
used as ingredient in food formulations (Barbieri & Casiraghi, 1983). 
Production of hydrolysate from corn germ and evaluation of anti-
hypertensive activity has been studied (Parris, Moreau, Johnston, 
Dickey, & Aluko, 2008). However, limited information is available on 
antioxidant and antidiabetic properties of DCG hydrolysate. So, in 
this study, the ability of three proteases (alcalase, flavourzyme, tryp-
sin) to generation hydrolysate from corn germ protein was evaluated 
and then antioxidant activity and DPP-IV, α-amylase and α-gluco-
sidase inhibitory activity of hydrolysates, and their fractions were 
investigated.

2  | MATERIAL S AND METHODS

2.1 | Materials

Corn germ was obtained from Glucosan Ind Co. DPPH 
(2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis (3-eth-
ylbenzthiazoline-6-sulfonic acid) diammonium salt)), ferrozine 
(3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′′-disulfonic acid so-
dium salt), PNPG (4-nitrophenyl α-d-glucopyranoside), PAHBAH 
(4-hydroxybenzhydrazide), trolox (6-hydroxy-2,5,7,8-tetramethyl-
chroman-2-carboxylic acid), 1,10-phenanthroline, acarbose, chro-
mogenic substrate Gly-Pro-p-nitroaniline (Cat no. G0513) were 
purchased from Sigma-Aldrich company. l-Histidine (Cat no. 104351) 
was purchased from Merck company. Diprotin A (Ile-Pro-Ile) was 

purchased from Cayman chemical company. All other chemicals 
were of analytical grade.

Enzymes: Alcalase 2.4 L (Protease from Bacillus licheniformis), 
trypsin from porcine pancreas (Cat no. T4799), porcine pancreatic 
α-amylase (Cat no. A3176), rat intestinal α-glucosidase (Cat no. 
I1630), and dipeptidyl peptidase-IV (DPP-IV) (Cat no. 317640-M) are 
obtained from Sigma-Aldrich. Flavourzyme 500 MG from Aspergillus 
oryzae (Cat no. P6110) was purchased from Novozymes company.

2.2 | Preparation of corn germ protein hydrolysate 
(CGPH)

Ground samples of corn germ were defatted with n-hexane using 
soxhlet apparatus and dried at room temperature overnight. The 
dried material was ground and sieved through a 0.4 mm sieve 
(Mesh no. 40). The DCG was hydrolyzed according to the method 
of He, Girgih, Malomo, and Aluko (2013) with alcalase, flavourzyme, 
and trypsin enzymes. DCG suspension (5% w/v) was heated to the 
appropriate temperature and pH of each enzyme (alcalase pH 8 at 
50°C, flavourzyme pH 7 at 50°C, and trypsin pH 7 at 50°C), and 
enzymes were added based on protein content of DCG at 1:20 ratio. 
The reaction continued with pH-stat method for 2 hr, and then en-
zymes were inactivated by heating at 95°C for 15 min and finally, 
samples centrifuged at 10,000 g for 15 min and supernatant was 
freeze-dried as CGPH.

2.3 | Degree of hydrolysis (DH)

The pH-stat method of Adler-Nissen (1986) was used for measuring 
and calculating degree of hydrolysis (DH).

The htot of this equation was 7.75 meq/g (Zhang, Pang, & Xu, 
2011).

2.4 | Reversed-phase chromatography 
separation of CGPH

The hydrophobicity of peptides from CGPHs was determined using 
an Azura HPLC system (Knauer). CGPHs were dispersed (10 mg/
ml) and filtered through 0.2 μm cellulose acetate filters. RP-HPLC 
was carried out following the procedure reported by Connolly et al. 
(2014) with some modifications. In brief, the samples were sepa-
rated on Eurosil Bioselect column (250 × 4.6 mm ID, 5 μm particle 
size, 300 Å pore size) using solvent A (0.1% (v/v) trifluoroacetic acid 
(TFA) in water) and solvent B (0.1% (v/v) TFA in acetonitrile) under 
gradient conditions. The column was equilibrated using 100% A sol-
vent. Elutions were performed as follows: 0–30 min, 0%–60% B; 
30–35 min, 60% B; 35–45 min, 60%–10% B, and 45–50 min, 10% 

DH (%)=B×Nb∕
(

�×Mp×htot
)

×100



     |  2397KARIMI et Al.

B. The UV-Vis photodiode-array detector (DAD 2. one langmuir, 
Knauer) was set at 214 nm for measuring absorbance.

2.5 | Fractionation of hydrolysates

CGPH was fractionated by the ultrafiltration membranes with the 
molecular weight cutoff (MW) of 100, 10, and 2 kDa (Sartorius 
-VivaFlow 200) subsequently and namely F1, F2, F3, and F4. F1 cor-
responds to peptide with molecular weight lower than 2 kDa, F2 to 
peptide with MW between 2 and 10 kDa, F3 to peptides with MW 
between 10 and 100 kDa and F4 to undigested proteins and other 
compounds fragments with MW more than 100 kDa. All fractions 
were lyophilized and stored at −20°C for using all analysis.

2.6 | Determination of antioxidant activities

2.6.1 | DPPH radical scavenging activity

The DPPH radical scavenging effect of CGPH and fractions were 
measured according to the method of Zheng et al. (2015). The DPPH 
solution (500 μl) of each samples (0.5 mg/ml) was added to 500 μl 
DPPH in methanol (0.1 mM) and left for 30 min in dark place at 25°C. 
The ability of samples to scavenge of DPPH free radicals was meas-
ured at 517 nm with the UV–visible spectrophotometer (Agilent-
Carry 60). Trolox concentrations ranging from 20 to 200 µmol/L 
were used for calculation of scavenging activity of the hydrolysates 
and results expressed as µmol trolox/g dry matter of samples.

2.6.2 | ABTS+ radical scavenging activity

The scavenging effect of CGPH and fractions on ABTS+ radical were 
performed according to the method of Ngoh and Gan (2016). The 
ABTS solution (980 µl) was added to 20 µl of samples (2.5 mg/ml) 
and mixed vigorously and then incubated in the dark at 25°C for 
10 min and absorbance was measured at 734 nm. The result was 
expressed as µmol trolox equivalents (concentrations ranging from 
50 to 1,100 µmol/L) per g dry matter of samples.

2.6.3 | Hydroxyl radical scavenging activity

The hydroxyl radical scavenging effect of CGPH and fractions were 
measured following the method of Wang et al. (2014). Briefly, 200 μl 
samples (5 mg/ml), 100 μl FeSO4 (1.865 mM), and 100 μl of 1,10-phenan-
throline solution (1.865 mM) were mixed thoroughly and were allowed 
to stand for 10 min and then 100 μl of H2O2 (0.03% v/v) was added to 
the mixture. The mixture was then incubated at 37°C for 60 min, and 
after that, the absorbance was measured at 536 nm. Histidine was used 
as a standard curve (300–4,000 μmol/L). The result was expressed as 
µmol of histidine equivalents/g dry matter of samples.

2.6.4 | Ferrous ion chelating activity

Chelation of Fe2+ ions by hydrolysates and fractions was estimated 
by the method of Sarteshnizi, Sahari, Gavlighi, Regenstein, and 
Nikoo (2019). The sample solutions of 5 mg/ml hydrolysate and frac-
tions (500 μl) were mixed with 1,850 μl H2O and 50 μl FeCl2 (2 mM). 
After 3 min, 100 μl of 5 mM ferrozine aqueous solution was added 
and the mixture was allowed to react for 20 min. The absorbance of 
complex was measured at 562 nm. A standard curve was obtained 
by using EDTA (20–250 μmol/L). The result was expressed as µmol 
EDTA equivalents/g dry matter of samples.

2.6.5 | α-Glucosidase inhibition assay

Inhibition of α-glucosidase (rat intestinal) by CGPH hydrolysates and 
fractions were measured using the method of Connolly et al. (2014) 
with some modifications. After extraction of the enzyme from rat 
intestinal acetone powders, the resulting solution was diluted to 
90 mU/ml. One hundred microliter of sample solution (20 mg/ml) 
was mixed with 200 μl of α-glucosidase and incubated at 37°C for 
10 min. After preincubation, 5 mM PNPG solution (100 μl) was 
added and incubated at 37°C for 30 min and the absorbance of the 
solution was scanned every 2 min at 405 nm. The phosphate buffer 
was used as a control instead of sample solution. The IC50 value of 
acarbose was used as the positive control. The following equation 
was used to assess percentage inhibition of α-glucosidase activity:

where As and Ac represent the slope of curve for absorbance of sam-
ples and control, respectively.

2.6.6 | α-Amylase inhibition assay

α-Amylase inhibition was determined according to the method of 
Alu'datt et al. (2012) with some modifications. Briefly, 100 μl of sam-
ple solution (10 mg/ml) and 100 μl of α-amylase solution (0.5 U/ml) 
were incubated at 37°C for 5 min. After preincubation, 100 μl of 0.5% 
(w/v) starch solution was added. Then, the reaction mixture was in-
cubated for 20 min at 37°C. In the following, reaction mixture was 
heated at 100°C for 10 min and then cooled down to room tempera-
ture and centrifuged for 2 min at 16060 g to separate the undigested 
starch. Twenty microliters of supernatant was mixed with 1 ml of 
PAHBAH and heated to 70°C for 10 min. Finally, solution was cooled 
at room temperature and absorbance was measured at 410 nm. The 
IC50 value of acarbose was used as the positive control. The follow-
ing equation was used to assess percentage inhibition of α-amylase 
activity:

inhibition of� − glucosidase (%)=
[

Ac−As∕Ac
]

×100

inhibition of� − amylase (%)=
[

1−
(

As−Ab
)

∕Ac
]

×100
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where As, Ab, and Ac represent the absorbance of sample, blank (phos-
phate buffer, enzyme, sample), and control (starch, buffer, enzyme), 
respectively.

2.6.7 | Dipeptidyl peptidase-IV (DPP-IV) 
inhibition assay

DPP-IV inhibition was determined following the procedure reported 
by Nongonierma and FitzGerald (2013). Briefly, 25 μl sample solution 
(5 mg/ml) was mixed by 25 μl of Gly-Pro-pNA, as substrate (0.2 mM) 
and incubated for 10 min at 37°C. The reaction was started by the ad-
dition of DPP-IV (final concentration 0.0025 units/ml) for 1 hr at 37°C 
and the absorbance of p-nitroaniline released was read at 405 nm. The 
IC50 value of diprotin A was used as positive control. The inhibitory 
activity of sample on DPP-IV was calculated by the following equation:

where As, Asb, Ac, and Acb represent the absorbance of sample, sam-
ple blank (sample, buffer, substrate), control (enzyme, substrate, buf-
fer), and control blank (buffer, substrate), respectively.

2.7 | Amino acid composition

Samples were hydrolyzed with 6 M HCl at 110°C for 24 hr. 
Subsequently, the digested samples were lyophilized. Amino acid 
profile of the samples was determined using an OPA method by 
HPLC (Knauer), RP-C18 Hypersil ODS column (250 × 4.6 mm, par-
ticle size 5 µm), and fluorometric detector RF-530 (Shimadzu-japan) 
(Nikoo, Benjakul, Yasemi, Gavlighi, & Xu, 2019).

2.8 | Statistical analysis

All analyses were carried out in triplicate and data presented as 
mean ± SD. Data analysis was carried out with JMP 10 statistical 
software using one-way analysis of variance and Tukey's test to com-
pare differences between samples (p < .05).

3  | RESULTS AND DISCUSSION

3.1 | Degree of hydrolysis (DH)

DH of all enzymes treated DCG was increased sharply within the 
initial 30 min of reaction. Thereafter, the rate of DH was decreased 
(Figure 1). The reduction in hydrolysis rate over time may be related 
to decreased availability of cleavable peptide bonds within the 
substrate (Kumar, Chatli, Singh, Mehta, & Kumar, 2016). The high-
est DH value of hydrolysates was 17.5 ± 0.2%, which was obtained 
by alcalase, while that of the CGPH produced by flavourzyme was 

the lowest (2.05 ± 0.4%). Different DH value of each enzyme was 
due to different cleavage sites of the protease enzymes (Wang 
et al., 2019). Alcalase is an endo-peptidase with a broad specific-
ity, which favorably cleaves hydrophobic amino acid (tryptophan, 
phenylalanine, leucine, isoleucine, valine, and methionine) residues 
of peptide bonds, and higher DH value can be achieved with longer 
enzymolysis time. Flavourzyme is an exo-peptidase that breaks 
the N-terminal of peptide chains. While trypsin cleaves exclu-
sively C-terminal to arginine and lysine (Ambigaipalan, Al-Khalifa, 
& Shahidi, 2015; Wang et al., 2019), this result indicates that alca-
lase is the most efficient for corn germ protein hydrolysis. Similar 
results were obtained for whey protein (Lin, Tian, Li, Cao, & Jiang, 
2012), rapeseed protein (He et al., 2013), camel milk casein (Kumar 
et al., 2016), hemp seed protein (Ren et al., 2016), quinoa and ama-
ranth proteins (Lina, Omar, Kamal, Kilari, & Maqsood, 2019), and 
buffalo and bovine caseins (Shazly et al., 2019). DH could be effect 
on functionality and bioactive properties of hydrolysate, so it is im-
portant to control DH in production of new food products (Mudgil, 
Omar, Kamal, Kilari, & Maqsood, 2019).

3.2 | Reversed-phase chromatography 
separation of CGPH

The ratio of hydrophilic to hydrophobic peptide groups is one of 
most important parameters that can effect on functional proper-
ties. Reversed-phase HPLC was separated peptides based on the 
hydrophobic or hydrophilic character that resulted in later elution 
of hydrophobic peptide compared hydrophilic peptides (Zhang, 
Mu, & Sun, 2014). The RP-HPLC profiles of CGPH (Figure 2) by 
trypsin showed a higher concentration of high-hydrophobic pep-
tides. Flavourzyme hydrolysate showed a lower concentration of 
high-hydrophobic peptides. This effect is probably related to the 
specific function of each enzyme. The hydrophobicity of hydro-
lysates and peptides plays an important role in antioxidant activity, 

Inhibition of DPP − IV (%)=
[(

Ac−Acb
)

−
(

As−Asb
)

∕
(

Ac−Acb
)]

×100

F I G U R E  1   Degree of hydrolysis of corn germ with different 
enzymes (CGPH with alcalase ●, flavourzyme ▲, trypsin ■). Values 
represent the average of two independent hydrolysis
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(Zambrowicz et al., 2015). An increase in hydrophobicity (As can be 
seen in Figure 2 for trypsin) will increase their solubility in hydro-
phobic phase and can improve their interaction with hydrophobic 
targets, thereby enhancing bioavailability and exhibiting enhanced 
interaction especially with radical species (Li, Jiang, Zhang, Mu, & 
Liu, 2008). Moreover, hydrophobic peptides tend to donate protons 
to reactive radicals and convert free radicals to more stable prod-
ucts and terminate radical chain reaction (Jin et al., 2016; Siow & 
Gan, 2016).

3.3 | Antioxidant activities of samples

Due to high turbidity of F3 and F4 fractions and made problem in 
antioxidant and antidiabetic tests, these fractions were excluded. 

Antioxidant peptides are new source of natural antioxidant com-
pound that show activity through radical scavenging, metal chelating, 
hydroperoxide reduction, and inactivating reactive oxygen species 
(Zambrowicz et al., 2015). The DPPH radical scavenging activity (RSA) 
of CGPH and fractions showed distinct differences for the hydro-
lysates obtained by different proteases (Figure 3a). Trypsin hydrolysate 
was the most active against DPPH radical (64.7 µmol trolox eq/g sam-
ple) followed by flavourzyme and alcalase with least activity (p < .05). 
Hydrolysates prepared using trypsin had the highest ABTS+ RSA 
with 267 µmol trolox eq/g sample, while flavourzyme hydrolysates 
showed the lowest values (167 µmol trolox eq/g sample) (Figure 3b). 
The similar results were observed by Shazly et al. (2019) on higher 
ABTS+ RSA of buffalo and bovine caseins hydrolysates of trypsin than 
alcalase, papain, and pepsin. Hydrolysates prepared using flavour-
zyme showed the highest OH RSA (289 µmol histidine eq/g sample), 

F I G U R E  2   RP-HPLC of CGPHs with different enzymes (alcalase, flavourzyme, trypsin). Samples (20 μl) were injected and separated on a 
Knauer 25EK Eurosil Bioselect column (C18, 250 × 4.6 mm, 5 μm)
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while trypsin and alcalase hydrolysates significantly had the lower ac-
tivity (Figure 3c). Hydrolysates prepared using flavourzyme showed 
the lowest chelation activity (39.2 µmol EDTA eq/g), while trypsin had 
the highest chelation activity (47.5 µmol EDTA eq/g) (Figure 3d). In 
general, the antioxidant activity of CGPHs was influenced by the type 
of enzymes in hydrolysates. Enzyme specificities differences, varying 
DH, size of molecules, amino acid composition, and sequence could 
be reason of varying in antioxidant activity observed among differ-
ence hydrolysate (Mudgil et al., 2019).

Fractionation of the CGPHs led to improved DPPH RSA and frac-
tioned of all enzymes with lower than 2 kDa (F1) had higher activity 
than the higher molecular weight. ABTS+ RSA was also increased 
after separation with UF membranes. ABTS+ RSA was observed in 
all fractions. F1 and followed by that F2 fraction showed the higher 

ABTS+ RSA than hydrolysates. F1 fraction of alcalase exhibited the 
highest activity against ABTS+ radical (333.84 µmol trolox eq/g) 
compared with other fractions (p < .05). Similar results were ob-
tained and F1 fraction showed significantly higher (p < .05) OH RSA. 
However, there was no significant difference between trypsin and 
flavourzyme (Figure 3). The higher content of small peptides in hy-
drolysates may have higher radical scavenging activity than those 
with lower contents. This low molecule fractions can easily react 
with free radical and terminate the radical chain reaction (Agrawal, 
Joshi, & Gupta, 2019). Similar studies on chickpea protein (Li et al., 
2008), corn gluten meal (Zhuang, Tang, & Yuan, 2013), rapeseed pro-
tein (He et al., 2013), wheat gluten (Choi, Lim, He, & Hwang, 2019), 
and perilla seed protein (Kim, Liceaga, & Yoon, 2019) had shown that 
short peptides are the most efficient antioxidants.

F I G U R E  3   DPPH (a), ABTS+ (b), hydroxyl (c) radical scavenging, and Fe2+ chelating (d) activity of CGPH obtained from hydrolysis by 
different enzymes (alcalase , flavourzyme , trypsin ) and their ultrafiltration fractions. F1, F2, and HC indicate fractions MW < 2, 
2–10 kDa and unfractionated hydrolysate, respectively. Test concentration for DPPH, ABTS+, hydroxyl radical scavenging, and Fe2+ chelating 
activity was 0.5, 2.5, 5, and 5 mg/ml respectively. The data marked with different letters are significantly different (p < .05)
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Hydrolysate and F2 fractions exhibited the stronger chelating 
capacity than F1 (p < .05). Decreasing chelating activity may be at-
tributed to the inability of small peptides to form the complex with 
metals (Noman et al., 2019). Similar results were observed by He 
et al. (2013) and Tang, Wang, and Yang (2009) on hemp and rape-
seed protein hydrolysate. The synergistic effects of higher number 
of amino acid residues from higher molecular weight of peptides 
compared with the lower molecular weight peptides could be reason 
of stronger metal chelating.

Type of amino acid present in hydrolysates also could influence 
antioxidant activity. The amino acid composition of the F1 of trypsin 
hydrolysate (the highest DPPH and OH RSA), F1 of alcalase hydroly-
sate (the highest ABTS+ RSA), and F1 of flavourzyme hydrolysate (the 
highest OH RSA) is described in Table 1. As can be seen, higher RSA 
of these fractions may be related to high levels of hydrophobic amino 
acids such as leucine, isoleucine, valine, and proline. Li et al. (2008) and 
Pownall, Udenigwe, and Aluko (2010) reported similar results with the 
strongest scavenging activity contained slightly higher amounts of hy-
drophobic amino acids. The presence of hydrophobic amino acids in 
peptides increases their solubility in hydrophobic or lipid phase, which 
simplify the interaction between peptides and donate protons to rad-
ical species. Hydrophobic interaction among hydrophobic amino acid 
residues might enhance the antioxidant activity of peptides (Jin et al., 
2016; Ngoh & Gan, 2016; Zambrowicz et al., 2015).

The higher Fe2+ chelating abilities of peptides from F2 trypsin hy-
drolysate may return to high content of acidic and basic amino acids 
of peptides (glutamic acid and glutamine (Glx), aspartic acid, aspar-
agine (Asx), arginine, and lysine) (Table 1). Ambigaipalan et al. (2015) 
reported that an increased concentration of carboxylic groups and 
amino groups in branches of the acidic and basic amino acids could 
enhance metal ion binding and removing metal ions from the system 
(Ambigaipalan et al., 2015).

3.4 | α-Glucosidase inhibition

As can be seen in Figure 4, all of the hydrolysates from three pro-
teases had a significant difference inhibitory on the α-glucosidase 
enzyme. The highest inhibition was related to flavourzyme hydro-
lysate (37.1%) whereas the lowest inhibitory was obtained by trypsin 
enzyme (12.8%). This can be due to the specificity of this enzyme 
and the presence of arginine in the peptide structure. Connolly et al. 
(2014) reported trypsin hydrolysate of brewers' spent grain protein 
had the highest amount of inhibition of α-glucosidase enzyme. As 
can be expected, the α-glucosidase inhibitory activity of acarbose 
(IC50 = 110 μg/ml) was higher than CGPH (20 mg/ml). Since synthetic 
inhibitors are pure compounds but CGPHs are mixtures of proteins 
and peptides (Connolly et al., 2014).

TA B L E  1   Amino acid profile of protein hydrolysates produced by alcalase, flavourzyme, and trypsin (g/100 g protein)

Amino acid F1 (alcalase) F1 (flavourzyme) F1 (trypsin) F2 (alcalase) F2 (trypsin)

Hydrophilic

Aspartic acid + asparagine 4.69 ± 0.01 6.85 ± 0.22 5.1 ± 0.04 3.21 ± 0.04 2.42 ± 0.09

Glutamic acid + glutamine 22.01 ± 0.05 21.99 ± 0.27 24.08 ± 0.68 29.6 ± 0.92 28.01 ± 0.87

Serine 13.74 ± 0.15 12.05 ± 0.21 11.31 ± 0.09 10.1 ± 0.15 10.65 ± 0.12

Glycine 17.86 ± 0.01 15.23 ± 1.09 15.09 ± 0.09 18.21 ± 0.96 18.19 ± 0.27

Histidine 1.23 ± 0.04 1.27 ± 0.07 0.46 ± 0.06 0.67 ± 0.03 0.25 ± 0.08

Arginine 2.02 ± 0.04 2.78 ± 0.35 2.13 ± 0.04 3.01 ± 0.02 2.51 ± 0.04

Threonine 0.28 ± 0.03 0.55 ± 0.17 0.58 ± 0.05 0.07 ± 0.02 0.68 ± 0.06

Cysteine 0.48 ± 0.02 0.13 ± 0.07 1.2 ± 0.09 0.41 ± 0.02 0.3 ± 0.04

Tyrosine 3.01 ± 0.04 2.57 ± 0.04 2.84 ± 0.1 1.7 ± 0.03 2.61 ± 0.12

Lysine 4.41 ± 0.1 6.02 ± 0.38 5.18 ± 0.65 6.1 ± 0.01 6.53 ± 0.11

 69.73 ± 0.88 69.44 ± 0.71 67.97 ± 0.69 73.08 ± 0.94 72.15 ± 0.74

Hydrophobic

Alanine 4.89 ± 0.02 3.65 ± 0.15 3.69 ± 0.22 4.04 ± 0.06 4.66 ± 0.16

Proline 5.8 ± 0.01 6.5 ± 0.12 7.06 ± 0.09 7.93 ± 0.07 7.16 ± 0.05

Valine 6.3 ± 0.19 6.45 ± 0.27 4.01 ± 0.05 5.1 ± 0.04 5.48 ± 0.08

Methionine 0.51 ± 0.05 0.69 ± 0.17 0.56 ± 0.07 0.43 ± 0.19 0.47 ± 0.03

Isoleucine 2.21 ± 0.03 3.43 ± 0.21 6.67 ± 0.1 1.39 ± 0.04 2.12 ± 0.09

Leucine 8.4 ± 0.04 8.44 ± 0.29 8.1 ± 0.13 6.01 ± 0.02 6.21 ± 0.08

Phenylalanine 2.16 ± 0.12 1.56 ± 0.09 1.89 ± 0.12 2.03 ± 0.03 1.89 ± 0.03

Tryptophan – – – – –

 30.27 ± 0.51 30.72 ± 0.49 32.08 ± 0.3 26.93 ± 1.12 27.99 ± 0.35
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Ultrafiltration fractions exhibited vary α-glucosidase inhibitory 
activities and fractionation improved inhibitory activity. F1 of flavour-
zyme showed the highest inhibitory effect (41.3%). However, the least 
inhibition was related to F2 of trypsin (15.9%). These results indicate 
that short peptides are more potent inhibiting α-glucosidase activity. 
Similar results were obtained by Uraipong and Zhao (2018) on rice bran 
proteins and Mejía, Batista, Fernández, and Fernandes (2019) on beans 
that reported smaller MW peptides in the digests had greater α-gluco-
sidase inhibitory activities than the larger peptides.

Inhibitory activity of peptides may be influenced by the compo-
sition of the amino acid residues (Di Stefano, Oliviero, & Udenigwe, 
2018; Ibrahim, Bester, Neitz, & Gaspar, 2018). The inhibitory pep-
tides are thought to interact more with the active site of α-glucosi-
dase via hydrogen bonds and electrostatic interactions. Therefore, 
the presence of amino acids with hydroxyl groups (serine, threonine 
and tyrosine) or basic amino acids (lysine and arginine) at the amino 
end of the peptides could play a critical role in alpha-glucosidase in-
hibition. Hence, the effect of enzymatic inhibition of fractions in this 
study could be attributed to the presence of higher amount of amino 
acids such as serine and lysine (Table 1).

3.5 | α-Amylase inhibition

One of the effective approaches to control of type 2 diabetes is con-
sidered via inhibition of α-amylase. CGPH obtained by all tree en-
zymes exhibited the strongest α-amylase inhibitory activity in which 
higher than 50% (Figure 5). After ultrafiltration, maximum α-amylase 
inhibition in the F2 fraction was observed, while F1 fraction showed 
the lowest inhibition. F2 fraction of alcalase showed the highest in-
hibitory effect (71.3%). However, the least inhibition was observed 
in F1 fraction of trypsin (37.50%). The proposed mechanism of ac-
tion of the α-amylase by bioactive peptide was suggested to interact 
or bind with the enzyme active site and inhibit the interaction be-
tween the enzyme and the substrate. Therefore, smaller interaction 
surface to the substrate occurred and less contact to the multiple-
attack action of amylases occurred (Ngoh & Gan, 2016). Another 
proposed inhibitory mechanism of biopeptides is the binding of pep-
tides to the allosteric site of the enzyme in the enzyme structure 

(like calcium and chloride ion site) and create an unstable confor-
mation. This conformation change can restrict the displacement of 
the enzyme on substrate (Admassu, Gasmalla, Yang, & Zhao, 2018; 
Siow & Gan, 2016). Calcium ions often have crucial roles in structure, 
function, and stability of α-amylases, and the removal of calcium ions 
from some α-amylase can inactivate the enzyme (Liao et al., 2019). 
Amylases are often inhibited by chelating reagents such as EDTA 
(Hagihara et al., 2001). The strong correlation between the metal ion 
chelating and α-amylase inhibitory of this study (r = .7) could confirm 
that the interaction of metal ion chelator peptides with calcium ion 
in the enzyme structure is one of the reasons for its further decrease 
in enzyme activity by F2 fraction.

Amino acids found in peptides such as arginine, lysine, aspartic 
acid + asparagine, glutamic acid + glutamine, proline, leucine, glycine 
phenylalanine, serine, tryptophan, and tyrosine likely to bind to ac-
tive domains and have a potential to inhibit the enzyme (Admassu 
et al., 2018; Ngoh & Gan, 2016; Siow & Gan, 2016). In our study, 
the higher enzymatic inhibitory of higher molecular weight fractions 
was probably due to the higher amounts of some amino acids such 
as proline, glutamic acid + glutamine, aspartic acid + asparagine, leu-
cine, lysine, and glycine.

3.6 | Dipeptidyl peptidase-IV (DPP-IV) inhibition

Inhibition of DPP-IV proteinase and enhanced insulin secretion 
is another approach to lowering postprandial serum glucose. The 
DPP-IV inhibitory ability of CGPH and its fractions is shown in 
Figure 6. Alcalase hydrolysate had the greatest DPP-IV inhibition 
(45.9%) while trypsin and flavourzyme hydrolysates showed the 
lower inhibition (30.7% and 34.5%). Cheung and Li-Chan (2017) 
and Mojica and de Mejia (2016) also obtained similar results 
that inhibition can vary by type of enzymes. In fact, fractions 
of alcalase and flavourzyme from CGPHs were not significantly 
higher DPP-IV inhibitory activity. But the F2 fraction of trypsin 
hydrolysate showed the stronger inhibition than hydrolysate and 
F1 fraction. Li-Chan, Hunag, Jao, Ho, and Hsu (2012) examined 
inhibitory activity of fractions of hydrolysate obtained from at-
lantic salmon skin gelatin hydrolyzed by different enzymes and 

F I G U R E  4   α-Glucosidase inhibitory 
activity of CGPH obtained from 
hydrolysis by different enzymes (alcalase, 

 flavourzyme , trypsin ) and 
ultrafiltration fractions. F1, F2, and HC 
indicate fractions MW < 2, 2–10 kDa, and 
unfractionated hydrolysate, respectively. 
Test concentration was 20 mg/ml. 
Acarbose was used as positive control 
(IC50 = 110 μg/ml). Different letters 
indicate significant differences among 
samples (p < .05)
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reported that the fraction smaller than 1 kDa had the highest 
DPP-IV-inhibitory activity. Our results (Figure 6) shown that 
small molecular is not main reason for DPP-IV inhibition effect 
and inhibitory activity varied by difference in amino acid com-
position and length. Similar findings were also reported for hy-
drolysates generated from Lesser mealworm (Lacroix, Dávalos 
Terán, Fogliano, & Wichers, 2019) and dairy protein (Lacroix & 
Li-Chan, 2012).

4  | CONCLUSIONS

It was demonstrated that DH and antioxidant and antidiabetic po-
tential of CGPHs can vary depending on the enzymes used. RP-
HPLC chromatograms showed that trypsin hydrolysate had higher 
levels of high-hydrophobic peptides, which may be related to its 
higher antioxidant effect. F1 fraction exhibited highest radical 
scavenging and α-glucosidase inhibitory activity. While F2 frac-
tion showed the higher Fe2+ chelating and α-amylase inhibitory 
activity, hydrolysate and F1 fraction of alcalase and F2 fraction of 
trypsin showed the highest DPP-IV inhibitory activity. The amino 
acid composition of the F1 fractions showed high levels of hydro-
phobic amino acids such as valine, isoleucine, leucine, and pro-
line. In general, CGPH could be considered as a natural source for 

ingredients in the functional food and medicinal industries with 
antioxidant and antidibetic potential.
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