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Abstract: Mounting evidence confirms the compartmentalized structure of evolutionarily conserved
3′–5′-cyclic adenosine monophosphate (cAMP) signaling, which allows for simultaneous participation
in a wide variety of physiological functions and ensures specificity, selectivity and signal strength.
One important player in cAMP signaling is soluble adenylyl cyclase (sAC). The intracellular
localization of sAC allows for the formation of unique intracellular cAMP microdomains that
control various physiological and pathological processes. This review is focused on the functional
role of sAC-produced cAMP. In particular, we examine the role of sAC-cAMP in different cellular
compartments, such as cytosol, nucleus and mitochondria.
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1. Introduction

Even though 3′–5′-cyclic adenosine monophosphate (cAMP) was discovered more than half
a century ago, it still remains an object of scientific interest. cAMP signaling plays an important
role in a wide variety of physiological processes: transcription regulation [1,2], metabolism [3,4],
cell migration [5,6], mitochondrial homeostasis [7–11] (reviewed in Reference [12]), as well as cell
proliferation [13] (reviewed in Reference [14]) and cell death [15] (reviewed in Reference [16]). The
importance of cAMP signaling is underlined by the fact that this pathway is evolutionarily conserved
and can be found in all species from microorganisms to mammals [17–19].

There are two main sources of cAMP in the cell: Transmembrane (tmAC) and intracellularly
localized soluble adenylyl cyclases (sAC). In mammalian cells, nine genes encode tmAC and one
gene encodes sAC. The structural organization of tmAC is common for all members of this subfamily
(9 tmAC) and the activity of tmAC is controlled by hormones and neurotransmitters [20,21]. Two
important properties characterize the principal difference between tmAC and sAC: First, Gs, Gi,
Gαi/o, Gßγ and Gq proteins regulate tmAC activity [22,23], whereas sAC activity is regulated by
bicarbonate [24]; second, tmAC’s localization is restricted to the plasma membrane, while sAC is
widely distributed within the cell and organelles [25]. The distinct spatial distribution of the two main
cAMP sources leads to the formation of multiple intracellular cAMP compartments, thereby enabling
the specificity and selectivity of cAMP signaling.

The specificity of cAMP signaling is further achieved through the restriction of cAMP diffusion
due to physical barriers, i.e., mitochondria [26], and phosphodiesterases (PDEs) [27–29]. Therefore,
with the exception of a rare internalization of tmAC [30], cAMP produced by tmAC under physiological
conditions is mainly localized close to the plasma membrane. In contrast, sAC builds cAMP pools
within various cellular compartments, e.g., cytosol, mitochondria, nucleus or the subplasmalemmal
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compartment [31–33]. In this review, we focus on sAC-dependent cAMP signaling, with a particular
focus on its role in mitochondrial biology.

2. Structure and Regulation of sAC Activity

2.1. Structure

Mammalian sAC shows structural and functional similarities with cyanobacterial sAC [24],
which argues for a bacterial origin of mammalian sAC that has been strongly conserved throughout
the process of evolution [34]. The structure of the sAC catalytic core has a typical Class III
pseudo-heterodimer arrangement of structurally similar C1 (residues 34–219) and C2 (residues 288–463)
domains positioned at the N-terminus and connected by a linker [35]. The C-terminal region of
sAC starts with a small motive, mediating auto-inhibitory effect [36], that most likely acts together
with the neighboring putative NTPase domain [37]. Additionally, the C-terminal region contains a
heme-binding domain that can bind nitric oxide (NO), carbon monoxide, and other potential gaseous
signaling molecules [38]. Active cyclase is a heterodimer of two catalytic domains [19]. sAC is encoded
by a single functional sAC gene in the human genome (ADCY10), comprising of 33 exons covering
approximately 104 kb of genomic DNA [39,40]. sAC mRNA undergoes extensive alternative splicing
which leads to smaller splice variants [41]. In mammalian cells the predominant isoform is a 50 kDa
truncated sAC (sACt) which is categorized as a splice variant of the full-length enzyme. sACt is
restricted to the N-terminal part of the full-length protein covering C1 and C2 [42]. sACt shows a
higher activity than the full-length enzyme, as the activity of the latter is suppressed by the small
auto-inhibitory module at the C-terminal [36]. More splice sAC variants have also been identified
in human somatic tissue. These isoforms predominantly consist of C2 domain and require a partner
protein to become active due to a missing or incomplete C1 domain [19,43].

2.2. Posttranslational Regulation of sAC

sAC is insensitive to heterotrimeric G-protein regulation due to a missing or modified Gsα and
Gßγ binding region, which is important for the activation of tmAC [44]. A recent study performed by
Hebert-Chatelain et al., however, challenged this paradigm of sAC insensitivity to G proteins. The
authors demonstrated that the activation of mitochondrial Gαi proteins through cannabinoid receptors
inhibits mitochondrial sAC [45]. However, the authors investigated the role of sAC applying the sAC
inhibitor KH7, which may have also led to sAC-independent effects on the mitochondria [9,46]. The
results could also be explained by an indirect downregulation of sAC activity.

sAC activity requires divalent metal cations in the catalytic active site of the enzyme in order to
coordinate the binding and cyclizing of ATP. sAC is most active in the presence of Mn2+, however
it is not clear whether the physiological intracellular Mn2+ concentration would support sAC
activity [47]. Mg2+ and Ca2+ concentrations within the expected intracellular range 1–10 mmol/L
for Mg2+ and 2–1200 nmol/L for Ca2+ make significant contributions to the regulation of sAC
activity [43]. Furthermore, sAC serves as an intracellular ATP sensor because its activity is dependent
on physiological changes in ATP concentrations. When the ATP level is reduced, sAC shows decreased
activity due to substrate limitation [48].

A unique property of sAC is its activation through bicarbonate binding, which makes sAC the only
protein with enzymatic activity regulated by bicarbonate. Bicarbonate directly binds to and activates
sAC in a pH-independent manner [24]. The EC50 for the bicarbonate stimulation of mammalian sAC
is within the 10–25 mmol/L range, which is appropriate for sensing physiological bicarbonate levels
of 2–25 mmol/L [24]. It is also worth mentioning that sAC activity increases synergistically in the
presence of bicarbonate and Ca2+ [43,49].
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2.3. Pharmacological Regulation of sAC

sAC is involved in a wide variety of physiological processes, including metabolism, proliferation,
apoptosis, differentiation, migration development, ion transport, pH regulation and gene expression
(reviewed in [16,47]). It is also involved in different pathologies such as hyperproliferative skin
disease, hypercalciuria, type 2 diabetes glaucoma and prostate cancer [40,50–55]. Therefore, the
pharmacological inhibition or activation of sAC may be considered for the treatment of the pathologies
and the maintenance of the physiological processes mentioned above. Although the search for potential
sAC activators remains unsuccessful, several inhibitors have been discovered. Catechol estrogens (CEs)
are physiologically occurring steroid derivatives that can inhibit mammalian AC enzymes. 2-hydroxy
estradiol (2-CE) and 4-hydroxy estradiol (4-CE) inhibit purified mammalian sAC (IC50 2–8 µmol/L)
as well as some purified tmAC isoforms with comparable potency [44,56]. CEs are postulated to be
non-competitive inhibitors of AC that bind to a pocket near the enzyme’s active site [57].

Another potent sAC inhibitor is (E)-2-(1H-Benzo[d]imidazol-2-ylthio)-N′-(5-bromo-2-
hydroxybenzylidene) propanehydrazide (KH7) (IC50~3 µmol/L) [58]. KH7 shows good membrane
permeability and has no significant effect on tmACs, GC or PDEs up to a concentration of
100 µmol/L [56]. KH7 has been used as a pharmacological tool in a large number of studies and
seems to be a promising compound for drug development. Unfortunately, KH7 exhibits an intrinsic
fluorescence and is therefore of limited use when studies involve fluorescence-based live cell cAMP
sensors, according to our own observations and research [9]. In addition, KH7 leads to mitochondrial
uncoupling in a sAC-independent manner [9,46]. Therefore, KH7 use should be restricted to short-term
assays and the results should be interpreted carefully.

Recently, LRE1—an improved sAC-specific inhibitor—has been identified [46]. LRE1 inhibits sAC
by occupying the bicarbonate binding site. LRE1 neither exhibits cell toxicity nor results in uncoupling
of isolated brain mitochondria [46]. In our experiments, we have not observed any interference
between LRE1 and fluorescence, which allows the compound to be used in live cell imaging.

3. Functional Role of sAC in Different Cellular Compartments

sAC-generated cAMP is involved in the regulation of multiple cellular functions as it is
generated locally within particular microdomains containing cAMP effectors (PKA, EPAC, cyclic
nucleotide-gated ion channels and Popeye domain-containing proteins [59–62]), scaffolding proteins
(A-kinase anchoring proteins, AKAPs) and a subset of PDEs, that degrade cAMP, and thus suppress
cAMP diffusion [28,29,63]. AKAPs form the complexes of cAMP and its downstream targets, and bind
these complexes to particular subcellular compartments [22]. Tight spatiotemporal regulation of cAMP
dynamics inside discrete signaling compartments provides specific responses to diverse stimuli at
certain locations and avoids unregulated cross-communication between microdomains.

Mammalian sAC is distributed over different compartments throughout the cell: the cytosol,
nucleus, plasma membrane and mitochondria [25,64–68]. Although numerous cellular functions have
been attributed to the activity of sAC, the functional significance of sAC in particular compartments
is still in need of clarification. Therefore, in this review, the functional significance of different sAC
domains will be described according to the sAC subcellular localization (Figure 1).
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Figure 1. Intracellular distribution of sAC-dependent cAMP pool. sAC, soluble adenylyl cyclase; 
PKA, protein kinase A, EPAC, exchange protein directly activated by cAMP; CNGC, cyclic nucleotide 
gated channels; PDE, phosphodiesterase. 
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It has been suggested that sAC both co-localizes with microtubules and centrioles, while also 
playing a role in mitosis and cytokinesis [25]. During prophase, sAC is dispersed from the nucleus. 
In metaphase and anaphase, it accumulates at the mitotic poles and spindle fibers. During 
cytokinesis, sAC is localized in the midbody. In the centrioles, the main pathway that promotes the 
phosphorylation cascade is PKA-dependent, whereas in the microtubules it is EPAC-dependent [25]. 

3.2. Role of Cytosolic/Nuclear sAC-Dependent cAMP Signaling 

3.2.1. Proliferation and Cell Growth 

Cytosolic sAC makes a significant contribution to the regulation of cell growth, particularly in 
hyperplasia [16]. In prostate carcinoma tissue and cells (LNCaP, PC3), sAC was shown to be 
overexpressed and the suppression of sAC activity significantly reduced the proliferation rate [53]. 
A subsequent analysis of the underlying cellular mechanisms revealed the role of the EPAC/Rap1/B-
Raf axis in the sAC-dependent regulation of cell growth. Inhibiting sAC down regulates cyclin B1 and 
cyclin-dependent kinase 1, which are the key proteins involved in the G2/M transition. Thus, sAC 
suppression causes cell cycle arrest in the G2 phase [53]. In another tumor cell line (PC12), nerve 
growth factor stimulation via sAC was shown to induce cAMP elevation, which, in turn, promoted 
the activation of Rap1 [69]. This mechanism is considered to be implicated in the process of brain-
derived neurotrophic factor-mediated axonal guidance. A study performed in breast cancer cells 
postulated that sAC in the EPAC-Rap1 dependent mechanism is involved in a metabolic switch, 
thereby favoring the development of malignant progression [70]. 

sAC also plays a role in non-proliferative cell growth, i.e., hypertrophy. It is expressed in 
embryonic neurons and generates cAMP in response to netrin-1, a member of the laminin-related 
secreted proteins family, thus affecting axon outgrowth [71]. Moreover, retinal ganglion cell survival 
and axon growth is regulated by Ca2+-dependent cAMP-PKA signaling [64]. Our recent study 
revealed a novel role for sAC in cardiac hypertrophy induced by either β-adrenergic stimulation or 
pressure overload [72]. B-Raf’s involvement in sAC-dependent hypertrophy was also demonstrated 
in that study. 

3.2.2. Motility 

sAC plays a central role in sperm physiology [58,73]. During one of the first definable events in 
capacitation, Ca2+ and bicarbonate enter into sperm and activate sAC to produce cAMP. This 
promotes an asymmetrical flagellar beat frequency and results in vigorous forward sperm motility 

Figure 1. Intracellular distribution of sAC-dependent cAMP pool. sAC, soluble adenylyl cyclase; PKA,
protein kinase A, EPAC, exchange protein directly activated by cAMP; CNGC, cyclic nucleotide gated
channels; PDE, phosphodiesterase.

3.1. Role of sAC-Dependent cAMP Signaling in Microtubules and Centrioles

It has been suggested that sAC both co-localizes with microtubules and centrioles, while also
playing a role in mitosis and cytokinesis [25]. During prophase, sAC is dispersed from the nucleus.
In metaphase and anaphase, it accumulates at the mitotic poles and spindle fibers. During cytokinesis,
sAC is localized in the midbody. In the centrioles, the main pathway that promotes the phosphorylation
cascade is PKA-dependent, whereas in the microtubules it is EPAC-dependent [25].

3.2. Role of Cytosolic/Nuclear sAC-Dependent cAMP Signaling

3.2.1. Proliferation and Cell Growth

Cytosolic sAC makes a significant contribution to the regulation of cell growth, particularly
in hyperplasia [16]. In prostate carcinoma tissue and cells (LNCaP, PC3), sAC was shown to
be overexpressed and the suppression of sAC activity significantly reduced the proliferation
rate [53]. A subsequent analysis of the underlying cellular mechanisms revealed the role of the
EPAC/Rap1/B-Raf axis in the sAC-dependent regulation of cell growth. Inhibiting sAC down
regulates cyclin B1 and cyclin-dependent kinase 1, which are the key proteins involved in the G2/M
transition. Thus, sAC suppression causes cell cycle arrest in the G2 phase [53]. In another tumor cell
line (PC12), nerve growth factor stimulation via sAC was shown to induce cAMP elevation, which,
in turn, promoted the activation of Rap1 [69]. This mechanism is considered to be implicated in the
process of brain-derived neurotrophic factor-mediated axonal guidance. A study performed in breast
cancer cells postulated that sAC in the EPAC-Rap1 dependent mechanism is involved in a metabolic
switch, thereby favoring the development of malignant progression [70].

sAC also plays a role in non-proliferative cell growth, i.e., hypertrophy. It is expressed in
embryonic neurons and generates cAMP in response to netrin-1, a member of the laminin-related
secreted proteins family, thus affecting axon outgrowth [71]. Moreover, retinal ganglion cell survival
and axon growth is regulated by Ca2+-dependent cAMP-PKA signaling [64]. Our recent study
revealed a novel role for sAC in cardiac hypertrophy induced by either β-adrenergic stimulation
or pressure overload [72]. B-Raf’s involvement in sAC-dependent hypertrophy was also demonstrated
in that study.

3.2.2. Motility

sAC plays a central role in sperm physiology [58,73]. During one of the first definable events
in capacitation, Ca2+ and bicarbonate enter into sperm and activate sAC to produce cAMP. This
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promotes an asymmetrical flagellar beat frequency and results in vigorous forward sperm motility [47].
In keeping with this role of sAC in sperm motility, male sAC knockout mice show an infertility
phenotype [74]. Though sAC’s role in cell motility was initially exclusively considered for sperm,
a recent report suggested that sAC is also involved in the regulation of leukocyte trans-endothelial
migration through the CD99 [75]. CD99 and sAC are co-localized in a signaling complex with ezrin and
PKA. The stimulation of CD99 promotes the sAC-PKA pathway that activates membrane trafficking
from the lateral border recycling compartment to sites of trans-endothelial migration, facilitating the
passage of leukocytes across the endothelium [75].

3.2.3. pH Homeostasis

sAC plays an important role in the regulation of pH homeostasis [76,77]. In epididymal clear
cells and in kidney intercalated cells, sAC-produced cAMP promotes the translocation of the vacuolar
proton pumping ATPase (V-ATPase) to the acid-secreting surface in a PKA-dependent manner [78,79].
The apical translocation of V-ATPase, associated with the protein activation, plays an important role in
the regulation of pH homeostasis and extracellular acidification/alkalinization. The maintenance of
acid/base balance is important for the regulation of acids in the body. V-ATPase dysfunction is one of
the factor that leads to renal distal tubular acidosis, the formation of kidney stones and proteinuria [80].

Recently, sAC’s control of the endosomal-lysosomal acidification has been shown to function
in a PKA-dependent manner. The absence of sAC disrupts V-ATPase localization at the lysosomal
membrane which is rescued by treatment with membrane-permeable cAMP [81]. It is interesting
to note that a disturbance in lysosomal acidification through sAC knockout leads to an impaired
autophagic degradative system.

3.2.4. Transcriptional Regulation

An increasing number of reports argue for the essential role of sAC in regulating the transcriptional
activity of the cell. Indeed, sAC has been identified as a unique source of cAMP in the nucleus
that in PKA-dependent manner regulates CREB activity [68]. sAC, in a PKA-dependent manner, is
especially involved in corticotropin-releasing hormone-mediated CREB phosphorylation and c-fos
(endogenous CREB target) induction in hippocampal neuronal cells [82]. A recent study demonstrated
that sAC contributes to the regulation of CREB-mediated Na+/K+-ATPase expression in the vascular
endothelium and is an important regulator of endothelial stiffness [83,84]. Besides promoting
CREB activity, sAC also regulates several other transcription factors. For example, sAC supports
hypercapnia-accelerated adipogenesis via the activation of pro-adipogenic transcription factors, such
as CREB, CCAAT/enhancer binding protein ß and proliferator-activated receptor γ [85]. Similarly,
sAC-PKA-dependent phosphorylation, and thus the activation of transcription factor 4, is required for
brain development [86].

3.2.5. CFTR Regulation

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel,
primarily localized in the apical membrane of secretory epithelial cells. Mutations in the CFTR lead to
the development of cystic fibrosis [87]. In cultured human airway epithelial cells, it has been found that
sAC, activated by bicarbonate, modulates CFTR function in a PKA-dependent manner. The inhibition
of sAC attenuated bicarbonate-stimulated CFTR activity [88]. Further studies have demonstrated
that CFTR is involved in bicarbonate entry into granulosa cells, which further promotes the nuclear
cAMP-PKA-CREB axis [89]. CFTR is involved in triggering sperm capacitation, as CFTR promotes
bicarbonate secretion by the endometrium [90] which, in turn, activates sAC in sperm, increases cAMP
production, and then activates PKA and the cyclic nucleotide gate cation channels [91,92]. Moreover,
CFTR via the sAC-cAMP-PKA pathway has been shown to promote embryo development through the
suppression of p53-dependent development arrest [93]. Taken together, the CFTR-sAC axis seems to
play an important role in reproductive processes [94].
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3.2.6. Na+/K+-ATPas Endocytosis

In alveolar epithelial cells, a high CO2 concentration promotes the sAC-cAMP axis, which in
turn induces a PKA-dependent phosphorylation of α-adducin, a component of the actin cytoskeleton,
resulting in Na+/K+-ATPase endocytosis [95]. In the vascular endothelium, the role that the sAC-cAMP
axis plays in Na+/K+-ATPase regulation has been demonstrated, as the inhibition of sAC (KH7 and
interfering RNA) significantly decreases the mRNA and protein levels of Na+/K+-ATPase [84]. A recent
study confirmed that the sAC-dependent regulation of Na+/K+-ATPase in the vascular endothelium
plays an important role in endothelial stiffness [83].

3.2.7. Endothelial Permeability

The importance of the intracellular distribution of cAMP for endothelial barrier function has been
demonstrated, because the stimulation of plasma membrane and cytosolic cAMP pools exerts the
opposite effects [96,97].

A recent study suggested that sAC has a protective effect on endothelial barrier function
under inflammatory and hypoxic conditions [98]. In this study, the bicarbonate-mediated activation
of sAC elevated cellular cAMP levels was followed by PKA and EPAC activation, which led to
the inhibition of RhoA/Rock signaling and the translocation of VE-cadherin at cell–cell junctions.
Moreover, sAC activation abrogated thrombin and hypoxia/reoxygenation-induced endothelial cells
hyperpermeability. Pharmacological inhibition or knockdown of sAC worsened the thrombin-induced
endothelial hyperpermeability suggesting that basal sAC activity is required for the maintenance of
the endothelial barrier function under inflammatory conditions.

3.3. Role of Mitochondrial sAC-Dependent cAMP Signaling

3.3.1. Extra-Mitochondrial sAC

According to the current view on mitochondrial cAMP signaling, two main cores that contain
distinct cAMP signaling pathways—the extra-mitochondrial sAC (outer mitochondrial membrane
(OMM)) and intra-mitochondrial (the mitochondrial matrix)—can be distinguished [99]. The specificity
of cAMP in OMM is mainly achieved through PKA tethering to OMM by several AKAPs, which allows
multiple processes to be carried out, including mitochondrial protein import, autophagy, mitophagy,
mitochondrial fission and fusion, and apoptosis [99]. Our recent study defined the role that sAC plays
in regulating mitochondrial biogenesis and mitophagy [100].

It has been demonstrated that the cytosolic pool of cAMP generated by sAC is also involved in
controlling mitochondrial apoptosis. Under stress conditions, the translocation of cytosolic sAC to the
mitochondria leads to a selective activation of PKA, followed by phosphorylation and binding of the
pro-apoptotic protein Bax to mitochondria and the release of cytochrome c in coronary endothelial
cells, cardiomyocytes and aortic smooth muscle cells [15,101,102]. Furthermore, the overexpression of
cytosolic sAC, but not intra-mitochondrial sAC, promotes the activation of the mitochondrial pathway
of apoptosis under oxysterol treatment [102].

3.3.2. Intra-Mitochondrial sAC

An increasing amount of evidence suggests that intra-mitochondrial cAMP/PKA signaling is
present in mammals [8,45,103] and yeast [104]. Although transmembrane adenylyl cyclase was initially
assumed to be a source of mitochondrial cAMP [105], a recent study [9] reconsidered this paradigm
and demonstrated that cytosolic cAMP cannot permeate the inner mitochondrial membrane and a
mitochondria-localized cAMP source, i.e., sAC, is required [99]. In a recent study [106] we confirmed
the previously published findings [9] that activating plasmalemmal adenylyl cyclase with forskolin
leads to a rapid elevation of cytosolic cAMP, but does not affect cAMP concentration in mitochondria.
It is worth noting that we [106], as well as other authors [9,107,108], have all observed a rapid increase
in intra-mitochondrial cAMP under sAC stimulation with bicarbonate.
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Bicarbonate and Ca2+ stimulation of mitochondrial sAC may couple the activity of the TCA
cycle—the main source of CO2/bicarbonate in the cell—and alterations in the intra-mitochondrial
Ca2+ concentration to the OXPHOS activity [9]. Indeed, the seminal studies of Acin-Perez et al.
demonstrated that cAMP produced in the mitochondrial matrix promotes cytochrome c oxidase activity
via a PKA-dependent phosphorylation of cytochrome c oxidase subunit IV [8,109]. Knockout of sAC in
fibroblasts causes a decline in OXPHOS activity that is compensated with elevated OXPHOS expression,
whereas restoring sAC expression in the mitochondrial matrix rescues OXPHOS activity [110]. Similar
results (regulation of OXPHOS activity via cAMP-PKA axis) were obtained in yeast, where the
inhibition of sAC caused a decline in respiration and OXPHOS activity [104]. Furthermore, in a study
on human fibroblasts, the inhibition of sAC depressed complex I activity was rescued by adding a
membrane-permeable cAMP analog [111].

The role of intra-mitochondrial sAC in the regulation of memory processing was recently
demonstrated [45]. The authors suggested that the activation of mitochondrial localized type-1
cannabinoid receptors (mtCB1) decreases mitochondrial cAMP, complex I activity, mitochondrial
respiration and cellular ATP content in hippocampal cell culture. In their study bicarbonate stimulation
fully reversed the effect of mtCB1-receptor activation and eliminated the cannabinoid-induced
reduction in respiration. The study also confirmed that the modulation of brain mitochondrial
respiration occurs through the PKA-dependent phosphorylation of complex I subunit NDUFS2 [45].

In addition to the post-translational regulation of OXPHOS activity via PKA-dependent
phosphorylation, [8] it has also been suggested that sAC has an effect on the turnover of OXPHOS
proteins. Indeed, intra-mitochondrial cAMP prevents the digestion of nuclear-encoded subunits
of complex I by mitochondrial proteases and supports its NADH-ubiquinone oxidoreductase
activity [111].

Aside from the above-mentioned studies, several other reports have demonstrated the presence of
functional PKA in the mitochondrial matrix [112,113]. In a notable study that applied a PKA-sensing
system with a robust dynamic range, Agnes et al. [113] characterized the compartmentalized location
of PKA activity as being in bovine heart mitochondria. The experimentally determined PKA activity
ratio—79:8:13 in mitochondrial matrix/intermembrane space/outer membrane respectively—provided
evidence that the major PKA activity is located in the mitochondrial matrix. In agreement with
that study, Sardanelli et al. [112], applying densitometric immunoblot analysis and activity assays,
concluded that the majority (~90%) of mitochondrial PKA is localized in the inner mitochondrial
compartment. Nevertheless, this issue of PKA localization is still a matter of debate [114]. Indeed,
applying FRET-based analysis of PKA activity Lefkimmiatis et al. found no evidence of PKA
activity in the mitochondrial matrix [115]. In addition, it was demonstrated that calcium-induced
cardiac mitochondrial respiration is PKA independent [116]. This obvious discrepancy may be
due to differences in the methods used in the analysis of PKA activity or cell models (reviewed
in Valsecchi et al. [114]). In fact, the absence of PKA activity in Lefkimmiatis’s study may be due to the
use of predominantly glycolytic cell lines, i.e., HeLa and HEK cells. In addition, in many studies PKA
activity was examined through treatment with H89, which is an unspecific PKA inhibitor and may
lead to numerous side effects.

Though PKA has long been considered the most active kinase in the matrix and the main effector
of intra-mitochondrial cAMP [12], another cAMP downstream target involved in the regulation of
mitochondrial function—EPAC—has also been described [117]. The mitochondrial sAC-cAMP-EPAC
pathway regulates coupling efficiency and the structural organization of F0F1ATP synthase in
mammalian mitochondria [118]. In a recent study, Wang et al. [107] demonstrated a down-regulation
of sAC in an animal model of heart failure, which was accompanied by a reduced resistance
to Ca2+ overload in cardiac mitochondria. The authors underlined the inhibitory effect of the
sAC/cAMP/Epac1 axis on the Ca2+ overload-induced opening of mitochondrial permeability pore
transition [107]. In contrast, a study by Fazal et al. [119] postulated that activation of the mitochondrial
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sAC-cAMP-EPAC axis stimulates the mitochondrial Ca2+ entry, the opening of mitochondrial
permeability pore transition and cell death.

3.3.3. Intra-Mitochondrial PDE2

In addition to the sAC, PDEs also contribute to the intra-mitochondrial cAMP level. PDE2A has
been found to be a predominant intra-mitochondrial isoform [103]. This PDE is activated by cGMP that
enables a negative cGMP-cAMP cross-talk [103,120]. A study performed with mitochondria isolated
from mouse brains suggested that PDE2A, and the PDE2A2 isoform in particular, is localized in the
mitochondrial matrix—due to the mitochondrial targeted sequence at N terminus of PDE2A2—where
it regulates the activity of the mitochondrial respiratory chain [103]. Applying the super-resolution
stimulated emission depletion microscopy in neonatal rat ventricular myocytes, Monterisi et al.
revealed the localization of PDE2A outside of the mitochondrial matrix, particularly at the outer
or inner mitochondrial membrane, where it regulates mitochondrial morphology, mitochondrial
membrane potential and cell death via sAC-independent mechanisms [121]. Further investigation is
required to clarify the localization and activity of PDE2 in mitochondria.

Since the PDE2 is activated by cGMP, it is tempting to speculate that an activation of NO signaling
may lead to the activation of mitochondrial PDE2. In fact, our new report demonstrated a decline in
mitochondrial cAMP concentration after NO signaling activation, either by NO donor or estradiol,
in a PDE2- and sGC-dependent manner [106]. It is worth nothing that the localization of sGC in
mitochondria was confirmed by western blot analysis. The reduction of mitochondrial cAMP level was
accompanied by a decline in mitochondrial COX activity in a PDE2-dependent manner [106]. These
data are in agreement with a previous report that demonstrated that the inhibition of PDE2A with
BAY60-7550 increases oxygen consumption and ATP production in isolated mitochondria [103].

To prove whether the beneficial effect of PDE2 inhibition may be translated to cardiac pathology,
adult rat cardiomyocytes were challenged metabolically with cyanide followed by a recovery phase.
Inhibition of PDE2A with BAY60-7550 significantly improved cell viability [122]. In alignment
with these results, a recent report suggested that PDE2 inhibition has a protective effect in a brain
ischemia/reperfusion model, although it was delayed rather than acute effects of reperfusion that
were analyzed [123]. Similarly, an inhibition of matrix localized PDE2A with BAY60-7550 reduced the
uncoupled respiration rate and increased cytochrome c oxidase activity in septic mice [124].

3.4. Importance of sAC in the Cardiovascular System

The role of cAMP in the regulation of numerous physiological and pathological processes in the
heart is well known [125–127]. Nevertheless, knowledge about the role of sAC in the cardiovascular
system is limited. A seminal study by Sayner et al. [97] showed sAC’s regulation of endothelial barrier
function. We have also demonstrated that sAC plays a role in cardiovascular apoptosis [15,101].
The importance of sAC in cardiac pathology, like heart failure, has recently been suggested by
Wang et al. [107]. The authors revealed a dramatic downregulation of sAC in mitochondrial fraction
isolated from rat hearts at the late phase of cardiomyopathy and linked it to the reduced Ca2+ resistance
of mitochondria. Our recent study presented further evidence of the importance of sAC in cardiac
hypotrophy induced by isoprenaline (isolated cardiomyocytes) or pressure overload (sAC-knockout
mice) [72].

4. Conclusions

cAMP signaling plays a fundamental role in controlling numerous cellular functions. The system
is complex and has a well-organized spatiotemporal structure. Different mechanisms are involved
in the compartmentalized structure of cAMP within the cell, including phosphodiesterases, tmAC-
and sAC-dependent cAMP sources. The discovery of sAC as an alternative, intracellular source of
cAMP significantly expands our knowledge of the spatial compartmentalization of cAMP signaling.
The multifunctional role of sAC in the regulation of mitochondrial function and transcriptional activity
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in the cells, together with other functions described in this review, shows how important this cyclase
is for cellular and organismal homeostasis and health. In this light, an in-depth understanding of
sAC biology may contribute significantly to the prevention, prediction and treatment of several
pathologies. The appearance of recent data describing the role of sAC in cardiovascular physiology [9]
and pathology [11,15,72,102,107,119,124] is not surprising, especially considering the fundamental role
that cAMP signaling plays in the regulation of heart function.
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