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Abstract

(ESCQ) is poorly understood.

from binding to TUSC2.

Background: Pseudogenes are RNA transcripts with high homology with its parent protein-coding genes. Although
pseudogenes lost the ability to produce protein, it still exert import biological function, and play important role in the
pathogenesis of a wide varity of tumors; However, the role of pseudogenes in esophageal squamous cell carcinoma

Methods: TUSC2P function in ESCC were explored using both in vitro and in vivo experiments cell proliferation,
invasion and apoptosis assay was performed to evaluated the effect of TUSC2P on the tumor biology of ESCC.
Expression of relative genes was assessed by quantitative real-time PCR (qRT-PCR) and western blotting in EC109 and
TE-1 cell, as well as ESCC patients. 3'UTR luciferase assay was used to confirm the direct binding of miRNAs with TUSC2
and TUSC2P 3'UTR. Relation betweenTUSC2P, TUSC2 and ESCC prognosis was predicted by survival analysis (n = 56).

Results: Pseudogene TUSC2P was down regulated in ESCC tissues compared with paired normal adjacent tissues, and
the expression of TUSC2P was significantly correlated with survivalof ESCC patients. Over expression of TUSC2P in
EC109 and TE-1 cells resulted in altered expression of TUSC2, thus inhibited proliferation, invasion and promoted
apoptosis. Dual luciferase assay demonstrated that TUSC2P 3'UTR decoyed miR-17-5p, miR-520a-3p, miR-608, miR-661

Conclusions: TUSC2P can suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2
expression and may also serve as a prognostic factor for ESCC patients.

Keywords: Pseudogene, Esophageal squamous cell carcinoma, TUSC2

Background

Esophageal cancer is one of the most leading causes of
cancer-related death worldwide, and esophageal squa-
mous cell carcinoma (ESCC) is histologically the most
frequent type of esophageal cancer [1]. Esophageal can-
cer is aggressive and has poor prognosis, and the overall
5-year survival rate of esophageal cancer is about 20%
[2, 3]. Additionally, the incidence of ESCC is increasing
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rapidly [3]. ESCC is a multifactorial, multistage and com-
plex pathological process, which involves the interaction of
numerous oncogenes and tumor suppressor genes, as well
as transcriptional and post-transcriptional levels of regula-
tion. In the last two decades, non-coding RNA and the im-
portance of its post transcriptional regulation has drawn
extensive attentions. The non-coding RNAs family broad-
ened as more new classes of non-coding RNAs have been
identified and named, for example IncRNA, miRNA, cir-
cRNA, tiRNA etc. [4-7].

For the last few years, depending on the development
of large scale sequencing technique and bioinformatics
analysis, thousands of pseudogenes were identified [8].
Pseudogenes is a special form of RNA, which resembles
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mRNA but lost its protein coding function, thus belongs
to the family of long non-coding RNA. In most of the
cases, pseudogenes are duplicated DNA sequences of its
corresponding parent coding gene, and can be tran-
scribed along with other genes into RNA fragments.
However the transcripts usually are incomplete or with
mutations such as point or frameshift, which resulting
in mutant coding-function [9-11]. Interestingly, the
RNA fragments derived from pseudogenes can exert
biological functions. They play important role in the
post-transcriptional regulation at multiple levels including
DNA, RNA and protein, and been proven involved in di-
verse physiological and pathological processes such as car-
cinogenesis [11, 12]. Though thousands of pseudogenes
have been sequenced, very few of them have been func-
tionally characterized so far.

Tumor suppressor candidate-2 (TUSC2) is a novel tumor
suppressor gene that found played important role in the
pathogenesis of cancer. TUSC2 was firstly reported in a
study analyzing frequent deletions in the short arm of
chromosome 3p. Frequent deletions in the short arm of
chromosome 3p occurs in a wide variety of cancers
[13, 14]. Exogenous expression of TUSC2 in non-small
cell lung carcinoma cells significantly inhibited tumor cell
growth by activating the apoptotic protease activating fac-
tor 1 (Apaf-1) [15]. Intravenous systemic delivery of
TUSC2 to distant tumors, via intravenous cholesterol
nanovesicles, suppressed tumor growth and progression
in orthotopic human lung cancer xenograft models [16].
Numerous TUSC2-targeting miRNAs have been predicted
by bioinformatics analysis and many targeting has already
been validated, which indicating that TUSC2 abundance
in cancer cells is largely dependent on post-transcriptional
regulation.

Pseudogene of TUSC2 named TUSC2P, sequence of
which shared 89% homology with the 3’-UTR of
TUSC2. In addition, they shared binding sites of many miR-
NAs, including miRNA-17-5p, miRNA-608, miRNA-661,
miRNA-520a-3p. In this study, we investigated the relation-
ship between TUSC2 and its pseudogene TUSC2P and the
potential role of common binding miRNAs in ESCC.

Methods

Tissue samples

Fifty-six human esophagus tumor samples were con-
secutively collected from Zhang Zhou Hospital, and The
First Affiliated Hospital of Fujian Medical University be-
tween September 2012 and March 2013, and The Fujian
Provincial Cancer Hospital between September 2014 and
January 2015. Forty-nine oral cancer samples were con-
secutively collected from The First Affiliated Hospital of
Fujian Medical University, within a period from January
2010 to December 2016.
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Construct generation

The TUSC2 and TUSC2P 3’-UTR fragments were synthe-
sized. The synthesized fragments and pcDNA3.1 vector
were digested with Nhel and Apal. The digested frag-
ments were then inserted into pcDNA3.1 vector to obtain
3’-UTR over-expression construct.

The fragment of 3'UTR of TUSC2 and TUSC2P which
contained potential binding sites of miRNA-17-5p,
miRNA-608, miRNA-661, miR-520a-3p were synthe-
sized. The synthesized fragments and psiCHECKTM-2
luciferase vector were digested with Xhol and NotI. The
digested fragments were then inserted into the opened
psiCHECKTM-2 luciferase vector to obtain the lucifer-
ase constructs TUSC2-1, TUSC2-2, TUSC2-3 and
TUSC2P-1, TUSC2P-2, TUSC2P-3 respectively.

To obtain a negative control, the corresponding frag-
ments of 3'UTR of TUSC2 and TUSC2P 3'UTR of
which the miRNAs binding sites were mutated was syn-
thesized and cloned to psiCHECK™-2 luciferase vector
to obtain corresponding mutant luciferase constructs.

Transfection

EC109 cells or TE-1 cells were seeded at six-well plates for
3-UTR over-expression construct transduction by using
Lipofectamine 2000 (Invitrogen). Transfected ESCC cells
were selected by G418 to gain ESCC cells with stable
over-expression of TUSC2 and TUSC2P.

EC109 or TE-1 cells were seeded in 12-well dishes and
cultured for 24 h, followed by transfection of TUSC2
siRNAs or miRNAs mimics/ inhibitors using Lipofecta-
mine 2000 (Invitrogen). The concentration for siRNAs is
200 nmol/L, and concentrations for miRNAs mimics/
inhibitors is 400 nmol/L.

Proliferation assay

EC109 cells or TE-1 cells were transfected for 6 h, then
were trypsinized, resuspended in 50 ml DMEM medium
and then seeded in 5 sets of 12-well plate. Within
12-well plate, each treatment group were seeded tripli-
cately. The cells were observed for 5 days. For each of
the following day (d1, d2, d3, d4, d5), one set of plate
was fixed using 10% formalin solution and kept in PBS
at 4 °C. At the end of the observation, all the wells were
stained with crystal violet, and then all the well were
lysised with 10% acetic acid, optical density of each well
was detected at 590 nm. The experiment were repeated
for three times.

Cell invasion assay

Matrigel was diluted with DMEM medium in 1:10 and
coated in cell transwell membrane inserts, 100 ml matri-
gel for each insert. Cell transwell membrane inserts were
set in 24-well plates.
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EC109 cells or TE-1 cells were suspended in serum free
DMEM media and seeded in transwell membrane inserts,
2x 10° cell in 100 pl free DMEM media per inserts. 500 pl
DMEM media with 10% FBS were added into the wells of
the plate which at bottom of the inserts. Cells were incu-
bated at 37 °C and allow cell migrate through the matrigel
and the membrane in the inserts into bottom side of the
membrane. After 24 h, the inserts were taken out, the cell
contain DMEM media and matrigel were removed, while
the cells on the bottom side of the membrane were fixed
with 10% formalin solution and stained with crystal violet.
Cells were photographed and counted.

Apoptosis analysis

Sub-confluent cells were treated with 5 uM H,O, for
40 min to induce oxidative stress. Thereafter, cells were
subjected to Apoptosis assays. An Annexin V-FITC
apoptosis detection kit (Biovision Inc) was used to detect
apoptotic activity. Cells (1 x 10°) were collected and
resuspended in binding buffer, and incubated with
Annexin V-FITC and propidium iodide in the dark
for 15 min. Annexin V-FITC binding was determined
by flow cytometry (Ex =488 nm; Em =530 nm) using
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FITC signal detector (FL1) and propidium staining by
the phycoerythrin emission signal detector (FL2).

Luciferase activity assays

Luciferase activity assays were performed using a
dual-luciferase reporter system developed by Promega.
In brief, EC109 cell were cultured in 24-well plate at a
density of 3x 10 * cells per well. Cells were cultured at
37 °C for 24 h, TUSC2 and TUSC2P luciferase constructs
or corresponding mutant constructs were co-transfected
with miRNA mimics, or miRNAs controls, respectively
using Lipofectamine 2000. After 12 h, cells were collected
and lysed. Luciferase activity was measured using the
Dual-Luciferase reporter assay system (Promega) accord-
ing to the manufacturer’s instructions.

RNA analysis

Quantification of TUSC2 mRNA transcripts was per-
formed by SYBR Green quantitative real-time PCR using
the ABI Prism 7500 sequence detection system (Applied
Biosystems) with normalization to the expression of
GAPDH. MiRNAs were detected by specific stem-loop
primers using miScript Reverse Transcription Kit (Qiagen)
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and miScriptSYBR Green PCR Kit (Qiagen) with
normalization to the expression of human-U6RNA. All
primer sequences are provided (see Additional file 1).

Western blot
EC109 cells or TE-1 cells were collected and lysed. Pro-
tein concentration was determined by BCA assay kit.
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Total protein (20 mg/well) was subjected to 12%
SDS—-PAGE and transferred to a nitrocellulose membrane,
and hybridized with anti-TUSC2 (Abcam, Ab70182) at a
dilution of 1:500 at 4 °C overnight. Secondary antibodies
(Abcam, ab98488) were dialuted at 1:2,000 and incu-
bated with the membranes at room temperature for
2 h. After secondary antibody incubation, the blot was
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washed and detected using ECL kit (Millipore) in
autoradiography.

B-actin (Abcam, ab179467) was used to confirm equal
sample loading.

Statistical analysis

Mann—Whitney test or Student ¢ test were used for were
used to compare quantitative data among groups using
SPSS (version 16.0; SPSS Inc., Chicago, IL). TUSC2 or
TUSC2P expression intensity in tissue sample were trans-
formed into loglO, and correlations between TUSC2
or TUSC2P expression in tissue were calculated using
Spearman rank correlation coefficients. For survival
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analysis, TUSC2 and TUSC2P expression levels in human
esophagus cancer were classified into low and high sub-
groups according to their median expression value. The
survival rate was calculated using the Kaplan Meier
method, and the log rank test was performed for signifi-
cance test of TUSC2 and TUSC2P subgroups. All tests
were considered significant at P value < 0.05.

Results

TUSC2 and TUSC2P shared the same targeting miRNAs
The DNA sequence of pseudogene TUSC2P is highly
homologous to its corresponding gene TUSC2, with
only eighteen mismatches for the coding sequence.
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TUSC2P possesses a 3'UTR that is about 1.2 kilobase,
which shared 89% homology with the 3UTR of TUSC2
(see Additional file 2). When analyzing the sequence
of the TUSC2P and TUSC2 3'UTR, miRNA-17-5p,
miRNA-608, miRNA-661, miRNA-520a-3p were found to
poss conserved binding sites for TUSC2P and TUSC2
(Fig. 1a). Among these potential targeting miRNAs, some
of them exhibit more than one potential binding site.

To explore the potential targeting regulation of these
miRNAs on both TUSC2 and TUSC2P in ESCC. In EC109
and TE-1 esophageal cancer cells, transient transfection of
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a pool of miRNA mimics suppressed both TUSC2 and
TUSC2P mRNA abundance (Fig. 1b and c), as well as
TUSC2 protein abundance (Fig. 1d). In these ESCC cells, a
pool of miRNA inhibitors de-repressed both TUSC2 and
TUSC2P transcript levels (Fig. 1b and c), as well as
TUSC2 protein expression (Fig. 1d). Luciferase activity
assays indicated that the miRNA-TUSC2 (Fig. 2a—d) and
miRNA-TUSC2P (Fig. 2e-h) interaction was direct,
which indicate that TUSC2 and TUSC2P are targeted by
common miRNAs and in the post-transcriptional regula-
tion manner.
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Expression of TUSC2P suppresses tumour activity in ESCC
The TUSC2P 3-UTR over-expression construct was
generated to express TUSC2P 3'UTR, and was then
transfected into EC109 cells or TE-1 cells to examined
the ability of TUSC2P 3’ UTR as decoy of TUSC2 -tar-
geting miRNAs.

Indeed, TUSC2P 3'UTR over expression resulted in
a de-repression of both TUSC2 transcript and pro-
tein in EC109 and TE-1 esophageal cancer cells
(Fig. 3a and b). Consistent with elevated TUSC2,
TUSC2P 3'UTR over expression can induce growth
(Fig. 3c) and invasion inhibition (Fig. 3d), and pro-
mote apoptosis (Fig. 3e).

To examine the consequences of TUSC2 and TUSC2P
down-regulation, siRNAs for TUSC2 (si-TUSC2/ TUSC2P)
which can suppress both TUSC2 and TUSC2P expression
was transfected into EC109 cells or TE-1 cells Transfection
of si-TUSC2/ TUSC2P in EC109 and TE-1 cell reduced
TUSC2 expression (Fig. 4a and b), and thus acceler-
ated cell proliferation (Fig. 4c) and invasion (Fig. 4d),
decelerated apoptosis (Fig. 4e), indicating that TUSC2
and its pseudogene have important roles in tumor cell
biology.
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The tumour suppressive function of TUSC2P is dependent
on miRNA binding

DICER ~'~ EC109 cells were established to investigate
the potential mechanism by which TUSC2P can regulate
TUSC2 expression. DICER is a critic enzyme for miRNA
maturation. In DICER = EC109 cells, expression of
DICER was silenced, leading to decreased expression
level of miRNAs compared to control EC109 cells
(see Additional file 3). We observed that the de-repression
of TUSC2 abundance by TUSC2P 3’ UTR over-expression
was blunted under absent expression of miRNAs
(Fig. 5a), which supported that regulation of TUSC2
by 3'UTR of TUSC2P requires mature miRNAs. Consist-
ent with blunted TUSC2 de-repression, effects of TUSC2P
3UTR over expression on growth (Fig. 5b), invasion
(Fig. 5¢) and apoptosis (Fig. 5d) were also blunted in
DICER -/- EC109 cells.

Expression and losses of TUSC2 and TUSC2P in ESCC
patients

TUSC2 and TUSC2P expression was detected in tumor
samples and matched adjacent normal tissue from ESCC
patient (n=56), and then validated in oral cancer
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samples (n=49), using qRT-PCR. Both TUSC2 and
TUSC2P expression levels were decreased in esophagus
tumour samples compared with matched adjacent nor-
mal tissue (Fig. 6a and b). Additionally, TUSC2 and
TUSC2P expression showed highly correlation (r=0.90,
P<0.001 and r=0.85 P<0.001, respectively) in both
adjacent tissue and esophagus tumour samples, which sug-
gests that they may be co-regulated in vivo (Fig. 6¢ and d).
In further, higher level of TUSC2 and TUSC2P expression
predicted better survival in esophagus cancer patients
(Fig. 6e and f). Similar pattern was observed in oral
cancer samples (see Additional file 4). This finding sup-
ports our molecular observations that TUSC2 and TUSC2P
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exert important role in tumor cell biology, and TUSC2P
can regulate TUSC2 expression.

Discussion

Pseudogenes are fragments of DNA with variation in
sequence relative to the parent coding gene. Pseudo-
genes have lost at least some functionality, relative to
the complete gene, in cellular gene expression or
protein-coding ability. Although not being fully functional,
pseudogenes are similar to other noncoding RNA, which
can perform regulatory functions. Many pseudogenes
have important roles in normal physiologic and abnormal
pathologic process [17, 18]. Similarly to other non-coding
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RNAs, pseudogenes can affect the function and/or expres-
sion of their parental genes or other coding genes through
mechanisms as following:1) Producing antisense tran-
scripts thus can completely bind to its parental gene and
act as endogenous siRNAs [19, 20]; 2) Functioning a
competing endogenous RNAs, which can regulate the sta-
bility and translation of other RNA transcripts by compet-
ing for shared microRNAs [21, 22]; 3) Encoding shortened
proteins or peptides, which exert certain functions in cell
[23, 24]. Pseudogene-mediated miRNA decoys is the most
functional way since all transcribed pseudogenes can in
principle compete with cognate genes for miRNA binding,
only few pseudogenes undergo antisense transcription or
produce functional protein. However, very few pseudo-
genes have been functionally well elucidated so far.

TUSC2P was a newly discovered and poorly elucidated
pseudogene [25]. The only related study reported that
TUSC2P may exert tumor suppression role in prostate
tumor [26]. However, the involvement of TUSC2P in the
development of ESCC have yet not been well character-
ized. In the present study, for the first time, we reported a
functional role for TUSC2P is relevant to TUSC2 biology
in esophageal carcinoma as minute changes in TUSC2
can have tumorigenic consequences. In our analysis, we
found that TUSC2P derepress TUSC2 expression by
competing with miRNA binding. Loss of TUSC2P and
TUSC2 can lead to accelerated proliferation and invasion,
decelerated apoptosis in esophageal cancer cell, suggesting
TUSC2P is a bona fide tumor suppressor gene. Actually,
TUSC2P is not the first functional pseudogene as miRNA
decoy, which can regulated corresponding cognate
genes. Pseudogene PTENP1 was mostly elucidated and
was reported to regulate cellular levels of PTEN and exert
a growth-suppressive role in prostate cancer cell [27].
Pseudogene PHBP1 promotes esophageal squamous
cell carcinoma proliferation by increasing its cognate
gene PHB expression [28]. Pseudogene GBAP1 regu-
lates the glucocerebrosidase gene GBA by competively
binding miR-22-3p [29].

Additionally, TUSC2P is repressed in ESCC tissues
compared with adjacent normal tissues, and that expres-
sion level of TUSC2P and corresponding cognate gene
TUSC2 is associated with survival outcome of ESCC.

Accumulating evidence showed that pseudogenes usu-
ally expressed in a cancer specific pattern [17, 27, 30].
They have shown differential expression profile between
tumor species and normal control tissues, or sometimes
their expression can be tumor tissue specific [31, 32]. To
date, pseudogene detection has been neglected in most
of the studies about their parental genes. However, more
and more pseudogenes have been identified, and they
exhibit cancer specific expression pattern and are
proven to be related to cancer. Thus makes it as a potential
diagnostic and prognostic indicator [33—36]. For example
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increased levels of OCT4 pseudogene POUS5F1B has been
reported to promote tumor growth and predict poor prog-
nosis in stage IV gastric cancer patients [37]. Another
OCT4 pseudogene OCT4-pg4 can competitively bind to
miRNA-145 thus regulate OCT4 expression. Additionally
OCT4-pg4 is over expressed in hepatocellular carcinoma
and predict poor prognosis [38]. In light of this, pseudo-
genes can not only play structural and functional roles in
the tumorigenesis, but also in disease diagnosis and prog-
nosis. Therefore, a better understanding of pseudogenes ex-
pression change may provide important clues for both
etiology and prognosis of cancer.

Conclusions

In summary, we provided a better understanding of the
biology of ESCC carcinogenesis by TUSC2P. We investi-
gate that the TUSC2P was significantly down regulated
in ESCC tissues and increased expression of TUSC2P
might play a tumor repressive role in ESCC carcinogen-
esis by acting like ‘endogenous competitors’ of miRNAs,
consequently de-repressed TUSC2 mRNA. All of these
findings illustrate the important roles of TUSC2P in
ESCC carcinogenesis and the potential role of TUSC2P
as a novel biomarker for ESCC.
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