Boatta et al. European Radiology Experimental

https://doi.org/10.1186/s41747-019-0103-8

ORIGINAL ARTICLE

respiratory motion

Open Access

Check for updates

Emanuele Boatta^{1†}, Roberto Luigi Cazzato^{1*†}, Pierre De Marini¹, Mathieu Canuet², Julien Garnon¹, Bob Heger³, Thi Mai Bernmann³, Nitin Ramamurthy⁴, Christine Jahn¹, Marc Lopez³ and Afshin Gangi¹

(2019) 3:26

Embolisation of pulmonary arteriovenous

malformations using high-frequency jet

ventilation: benefits of minimising

Abstract

Background: To evaluate patient radiation dose and procedural duration recorded during pulmonary arteriovenous malformation (PAVM) embolisation performed using high-frequency jet ventilation (HFJV) as compared with conventional intermittent positive pressure ventilation (IPPV)

Methods: Patients undergoing PAVM embolisation with HFJV assistance after April 2017 were retrospectively identified as group A, and those treated with IPPV before April 2017 as group B. Primary outcomes were patient radiation dose and procedural duration between groups A and B. Secondary outcomes were difference in diaphragmatic excursion between groups A and B, in group A with/without HFJ assistance, technical/clinical success, and complications.

Results: Twelve PAVMs were embolised in 5 patients from group A, and 15 PAVMs in 10 patients from group B. Mean patient radiation was significantly lower in group A than in group B (54,307 ± 33,823 mGy cm² [mean ± standard deviation] *versus* 100,704 ± 43,930 mGy cm²; p = 0.022). Procedural duration was 33.4 ± 16.1 min in group A *versus* 57.4 ± 14.9 min in group B (p = 0.062). Diaphragmatic excursion was significantly lower in group A (1.3 ± 0.4 mm) than in group B (19.7 ± 5.2 mm; p < 0.001) and lower with near statistical significance in group A with HFJV than without HFJV (1.3 ± 0.4 mm *versus* 10.9 ± 3.1 mm; p = 0.062). Technical and clinical success was 100% in both groups, without relevant complications.

Conclusion: HFJV-assisted PAVM embolisation is a safe, feasible technique resulting in reduced patient radiation doses and procedural time.

Keywords: Arteriovenous malformations, Embolisation (therapeutic), Lung, Anesthesiology, High-frequency jet ventilation

Key points

- Embolisation is the treatment of choice for pulmonary arteriovenous malformations.
- Embolisation of pulmonary arteriovenous malformations can be performed under general anaesthesia and high-frequency jet ventilation.

¹Service d'Imagerie Interventionelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France

Full list of author information is available at the end of the article

• This option results in reduced patient radiation dose and procedural time.

Background

Pulmonary arteriovenous malformations (PAVMs) are anomalous direct communications between pulmonary arteries and veins, comprising single/multiple feeding arteries (classified as "simple" or "complex" types, respectively), an aneurysmal sac/nidus, and one or more draining veins. Eighty per cent of them are associated with hereditary haemorrhagic telangiectasia (HHT), a rare autosomaldominant disease characterised by recurrent epistaxis,

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

^{*} Correspondence: gigicazzato@hotmail.it

 $^{^{\}dagger}\mbox{Emanuele}$ Boatta and Roberto Luigi Cazzato contributed equally to this work.

mucocutaneous telangiectasia, and visceral arteriovenous malformations [1, 2]. PAVMs form a right-to-left shunt, potentially resulting in cyanosis, haemorrhage, and significant risk of paradoxical embolism (*e.g.* stroke, cerebral abscess) [3, 4]. Early treatment is usually recommended.

Endovascular embolisation is the treatment of choice and aims to selectively occlude feeding arteries as close as possible to the nidus, while avoiding device migration. Embolisation is typically performed under local anaesthesia and mild sedation. However, despite development of numerous devices facilitating safe, distal vascular occlusion (including microcatheters, detachable coils, microcoils, and vascular plugs [5-13]), procedures may remain challenging due to significant target-lesion motion during respiration. This may preclude two-dimensional (2D)/three-dimensional (3D) roadmap generation, limit precise device navigation/deployment to short periods of controlled apnoea or breathing intervals, and necessitate multiple angiographic acquisitions with increased procedure time and radiation dose. For these reasons, some operators may prefer general anaesthesia with intermittent positive pressure ventilation (IPPV).

High-frequency jet ventilation (HFJV) utilises limited tidal volumes (1–3 mL/kg, often less than dead space) at high frequencies (> 100 cycles/min) to minimise thoracoabdominal motion compared with IPPV [14, 15]. The technique has been applied to thoracic surgery, extracorporeal shockwave lithotripsy, cardiac ablation, and percutaneous tumour ablation procedures to reduce targetlesion motion and optimise therapy [14, 16–25]. To our knowledge, there are no prior studies evaluating potential benefits in endovascular embolisation procedures.

The purpose of this study is to evaluate patient radiation dose and procedural duration recorded during PAVM embolisation performed using HFJV as compared with conventional IPPV.

Methods

This retrospective study was approved by the institutional review board with a waiver of written informed consent.

Study population

A retrospective review of a prospectively maintained institutional database was performed to identify consecutive patients undergoing PAVM embolisation under general anaesthesia (mainly due to patients' refusal of local anaesthesia) between December 2015 and May 2018. Following the introduction of HFJV at our institution in April 2017, all cases undergoing PAVM embolisation under general anaesthesia were systematically treated using HFJV assistance (group A); prior to this, patients undergoing PAVM embolisation under general anaesthesia were treated using conventional IPPV without HFJV (group B).

All patients were affected by HHT and referred for treatment following multidisciplinary discussion between pulmonologists, interventional radiologists, and anaes-thesiologists, to prevent future cerebrovascular accident or ameliorate respiratory symptoms. All PAVMs were confirmed on echocardiography/bubble test, demonstrating right-to-left shunts, and contrast-enhanced computed tomography (CECT). No patients in group A had contraindications to HFJV (chronic airways disease with forced expiratory volume in the first second < 1.5, severe obesity, or recent pneumothorax/thoracic surgery).

Procedures

All procedures were performed on an in-patient basis by the same interventional radiologist (> 7 years of experience in embolisation) under sterile surgical conditions. Procedures were performed in an angiography suite equipped with a flat-panel C-arm cone-beam computed tomography (CBCT) system and XperCT/Embo-Guide tools (Philips Healthcare, Best, the Netherlands). Anticoagulant/antiplatelet therapy and blood clotting parameters were managed according to Society of Interventional Radiology guidelines [26]. Antibiotic prophylaxis (cefazolin, 1 g) and 5000 IU heparin were administered intravenously prior to and during the procedure, respectively.

Anaesthesia and HFJV assistance

Following induction of anaesthesia, muscle relaxation, and orotracheal intubation, conventional IPPV was commenced in all patients (6-8 mL/kg predicted body weight tidal volume; respiratory rate adjusted according to end-tidal carbon dioxide [ETCO₂] level; target 30-40 mmHg). For group A patients, IPPV was discontinued and a HFJV dual-lumen cannula (length 40 cm, diameter 2 mm; Acutronic Medical Systems AG, Hirzel, Switzerland) was introduced into the endotracheal tube. HFJV was initiated using a Monsoon II jet ventilator (Acutronic Medical Systems AG, Hirzel, Switzerland) with frequency 150-250 breaths/min, driving pressure 1-2 bar, inspiratory time 30%, and fraction of inspired O₂ (FiO₂) adjusted to maintain peripheral oxygen saturation $(SpO_2) > 95\%$. Blood pressure, ECG, and SpO_2 were continuously monitored. ETCO₂ monitoring was performed intermittently after 5 min and then every 30 min using the jet ventilator capnography device, by injecting five long insufflations with IPPV followed by measurement over 10 s (with the jet switched off). Once embolisation was completed, the HFJV cannula was removed and conventional ventilation was resumed until patient's awakening/extubation.

PAVM embolisation

Following ultrasound-guided placement of a 6-8-Fr sheath (Pinnacle, Terumo Corporation, Tokyo, Japan) in the femoral vein, a 4-Fr Imager TM II pig-tail catheter (Boston Scientific, Marlborough, MA, USA) was advanced into the target main pulmonary artery, and diagnostic angiography was performed to localise PAVMs and identify number/size of feeding arteries. Feeding arteries were selectively catheterised using a 6-Fr catheter (Neuron catheter, Penumbra Inc., Alameda, CA, USA), and when required, a co-axially 4-Fr MPA 125-cm catheter (Cordis, Johnson & Johnson Company, USA) was used. The 6-Fr catheter was continuously flushed with heparin-saline solution (2500 IU/L) via a Y connector to avoid thrombus formation and minimise neuro-embolic risk. For group A, navigation was assisted by a simple 2D roadmap (Fig. 1) in four patients, and a continuous 3D roadmap automatically delineating feeding arteries (generated by Embo-Guide software following initial 3D rotational angiography with 40 mL of contrast agent at 8 mL/s) was used in one patient. No 2D/3D roadmaps could be generated for group B. Embolisation was performed using conventional or microvascular plugs (MVP, Medtronic, Minneapolis, MN, USA) and/or platinum detachable microcoils with/without hydrogel coating (Ruby Coil, Penumbra Inc., Alameda, CA, USA; Azur Coils, Terumo Corporation, Tokyo, Japan), depending on feeding artery anatomy and available technologies during the study period.

Devices were deployed as distally as possible within feeding arteries, via 4–6-Fr catheters for conventional vascular plugs, or via a co-axial 2.8-Fr microcatheter (Progreat, Terumo Corporation, Tokyo, Japan; inner diameter 0.027") for microvascular plugs/microcoils. Vascular occlusion was confirmed via selective feeding artery angiogram. A final angiographic check was performed after 3–4 min to confirm satisfactory device position and occlusion. For group B, angiograms

throughout the procedure were variably performed with induction of patient's apnoea, depending on operator requirements. For group A, all angiograms were performed with HFJV, other than a final acquisition under conventional IPPV to compare differences in diaphragmatic excursion.

Following the procedure, patients were admitted to a recovery ward for 24-h observation and discharged when medically fit.

Follow-up

All patients were clinically reviewed by the treating interventional radiologist and underwent CECT to confirm PAVM occlusion 1 month post-procedure. Serial echocardiography/bubble tests were performed at 1, 6, and 12 months to monitor for right-to-left shunts.

Data collection and statistical analysis

Patients' demographics; number, location, and type (simple or complex) of PAVMs treated per session; and type of embolic device were tabulated. Primary outcomes were patient radiation dose and procedural time. Secondary outcomes included mean intraprocedural diaphragmatic excursion, considered as a surrogate for whole-lung movement in group A *versus* B; mean diaphragmatic excursion in group A on final angiogram with HFJV *versus* IPPV; technical success; complications (according to the classification System of the Cardiovascular and Interventional Radiological Society of Europe [27]); and clinical success.

The patient radiation dose was calculated as dose-area product by the proprietary angiographic software (Philips Healthcare, Best, the Netherlands). Procedural time was calculated between the first and last angiographic acquisition.

Diaphragmatic excursion was calculated for each case on digital subtracted angiographic series (duration at least 15 s), measuring the cranio-caudal distance between the upper- and lower-most positions of the

superimposed hemidiaphragmatic cupolas and recording the lowest measurement for each procedure (Fig. 2).

Technical success was defined as distal occlusion of the feeding artery <1 cm from the PAVM aneurysmal sac, with complete devascularisation on final angiogram. Clinical success was defined as the absence of neurologic/respiratory symptoms and echocardiographic rightto-left shunt at the last available clinical/sonographic follow-up.

Statistical analysis was performed using R software (R v3.4.5, R Foundation for Statistical Computing, Vienna, Austria). Non-parametric Wilcoxon test was used to compare numerical and discrete variables; p values < 0.05 were considered statistically significant.

Results

In the study period, 20 patients underwent PAVM embolisation. Among them, 15 were treated under general anaesthesia, thus representing the study population. In particular, between April 2017 and May 2018, 5 consecutive patients underwent PAVM embolisation using HFJV assistance (group A). Prior to this, 10 patients were treated using conventional IPPV without HFJV (group B). Mean number of PAVMs embolised per session was 2.4 ± 2.1 (range 1–6) in group A *versus* 1.5 ± 0.7 (range 1–3) in group B (p = 0.422). Patient and PAVM characteristics are summarised in Table 1.

Mean patient radiation exposure was significantly lower in group A than in group B: dose-area product 54, $307 \pm 33,823 \text{ mGy cm}^2$ (mean \pm standard deviation; range $6135-100,678 \text{ mGy cm}^2$) *versus* $100,704 \pm 43,930 \text{ mGy cm}^2$ (range 53,109–176,634 mGy cm²), respectively (p = 0.022).

Procedural time was lower in group A than in group B with a trend towards statistical significance, 33.4 ± 16.1 min (range 16–55 min) *versus* 57.4 ± 14.9 min (range 41–85 min) (*p* = 0.062).

Mean diaphragmatic excursion was significantly lower in group A than in group B $(1.3 \pm 0.4 \text{ mm})$ (range 0.9-1.9 mm) versus $19.7 \pm 5.2 \text{ mm}$ (range 8.7-27.1 mm) mm); p < 0.001) and demonstrated a lower trend on final angiograms in group A with HFJV assistance than with IPPV (1.3 ± 0.4 mm (range 0.9-1.9 mm) *versus* 10.9 ± 3.1 mm (range 7.2-15 mm); p = 0.062).

Technical success was 100% in both groups without radiologic complications. One patient from group A experienced bronchospasm necessitating temporary switching from HFJV to conventional IPPV, but no episodes of desaturation, hypercapnia, or barotrauma (grade 1 complication) were recorded. All PAVMs were completely occluded on 1-month CECT follow-up without device migration. Clinical success was 100% in both groups on early follow-up (group A: mean 3.75 months, range 1–12 months; group B: mean 16.5 months, range 14–29 months).

Discussion

The HFJV is a mechanical ventilation method initially described in 1977 by Klain and Smith [28], in which small tidal volumes of pressurised gas are delivered through a narrow-bore endotracheal catheter at very high respiratory rates. The technique facilitates adequate gas exchange while minimising diaphragmatic excursion, and thoracoabdominal target lesions normally subject to significant respiratory positional variation are rendered relatively motionless [14, 15, 25]. Several recent interventional radiology reports have demonstrated improved lesion targeting, reduced technical difficulty and procedural time, and reduced patient radiation dose during thermal ablation of lung, liver, and renal tumours [19–24]. However, to our knowledge, the technique has not yet been reported for endovascular embolisation procedures.

In the present study, HFJV was applied to five cases undergoing PAVM embolisation. Patient radiation dose and procedural time were improved using HFJV compared with IPPV. The presence of nearly static PAVMs enabled generation of accurate 2D/3D roadmaps, facilitating easier catheter navigation and more precise, confident deployment of embolic material. Fewer angiographic

Table 1 Patient demographics, symptoms, and PAVMs treated in groups A and B

Group	Number of patients	Demographics	Symptoms	Number of PAVMs treated	PAVM location	Embolisation devices
A (HFJV)	5	Age 47.2 ± 11.7 years (34–57 years) 2 males, 3 females	4/5 (80%) 1 prior TIA 3 dyspnoea	12 simple	RLL (n = 4) RML (n = 1) RUL (n = 1) LLL (n = 4) LUL (n = 2)	6.5-mm MVP ($n = 4$), vascular plug ($n = 5$), coils ($n = 3$)
B (IPPV)	10	Age 41.5 ± 12.4 years (27–65 years) 5 male, 5 female	7/10 (70%) 1 prior TIA 6 dyspnoea	15 (14 simple, 1 complex)	RLL $(n = 3)$ RML $(n = 5)$ RUL $(n = 2)$ LLL $(n = 3)$ LUL $(n = 2)$	6.5-mm MVP ($n = 4$), vascular plug ($n = 3$), coils ($n = 8$)

Ages are given as mean ± standard deviation (range). *HFJV* High-frequency jet ventilation, *IPPV* Intermittent positive pressure ventilation, *LLL/LUL* Left lower/upper lobes, *MVP* Microvascular plug, *RLL/RML/RUL* Right lower/middle/ upper lobes, *TIA* Transient ischemic attack

acquisitions were required for lesion targeting, significantly reducing radiation dose by 54% and procedural time by mean 24 min (minus 42%, non-significant likely due to small sample size). Similar advantages have been described in prior thermal ablation studies [22-24].

These benefits are likely to be the result of the nearly static PAVMs, and for this reason, diaphragmatic excursion was compared with a historic series of 10 patients undergoing the same procedure using IPPV. As expected, HFJV-assisted cases demonstrated significantly lower diaphragmatic excursion compared to IPPV (mean 1.3 mm, compared with 20 mm for IPPV), and similar results (1.3 mm excursion with HFJV assistance compared with 11 mm for IPPV) were observed intraprocedurally in the five cases with HFJV assistance, although did not reach statistical significance likely due to small sample size. These measurements are comparable with reported excursion of 1-3 cm during quiet breathing and conventional IPPV [29, 30] and with prior studies reporting reduced diaphragmatic motion during HFJVassisted extracorporeal shockwave lithotripsy [25].

Although direct, reliable/reproducible measurement of PAVM motion was not possible due to retrospective differences in projections/positioning between cases, diaphragmatic excursion was considered an adequate surrogate, since it was less prominently affected by interprocedural factors, and appears to be similar in magnitude to whole-lung movement during respiration [31]. The present measurement of 1.3 mm is comparable to prior reports of HFJV-assisted thermal ablation and radiotherapy procedures. Denys et al. [21] measured target tumour displacement during lung, liver, and renal tumour ablation using CT guidance and demonstrated a mean motion of 0.3 mm transversely and < 3.75 mm cranio-caudally. Biro et al. [20] reported a reduction in liver motion from 20 to 5 mm following switching from IPPV to HFJV, and liver motion < 3 mm has been reported during HFJV-assisted hepatic radiotherapy using fiducial markers [22]. Diaphragmatic excursion is therefore minimal compared with gross motion using standard IPPV

tidal volumes [18], and HFJV assistance appears to provide effective respiratory immobilisation.

HFJV assistance appeared to be safe, with no episodes of desaturation, hypercapnia, or barotrauma. One patient experienced bronchospasm requiring temporary conversion to IPPV; however, this was due to insufficient depth of anaesthesia, and HFJV was promptly recommenced following additional anaesthetic administration. There were no differences in technical success/outcomes compared with IPPV. Use of current-generation systems (which continuously monitor airway pressure with an alarm signal to avoid barotrauma) and intermittent CO₂ monitoring with HFJV further increases procedural safety [14]. HFJV also proved practical and widely applicable, with simple/user-friendly ventilator installation and few contra-indications (COPD with forced expiratory volume in the first second < 1500 mL, severe obesity, and recent pneumothorax/thoracic surgery [32]). However, the need for specially trained anaesthesiology teams, and potentially longer anaesthetic times are aspects that should be taken into account [14, 21, 23, 24].

Study limitations include small sample size, including only few patients undergoing PAVM embolisation under general anaesthesia, and short follow-up, limiting generalisability and outcome comparison. Groups were nonrandomised, but there were no significant differences in demographics, lesions, and embolisation devices. Procedural duration did not include anaesthetic time, and there was no evaluation of anaesthesiologist technical difficulty due to the retrospective protocol. Finally, diaphragmatic excursion was used as a surrogate for PAVM motion and measured using a gross method. Although non-comparable to standardised diaphragmatic measurements and without proven correlation with PAVM motion, this was sufficient to illustrate significant relative motion reduction with HFJV assistance compared with IPPV.

In conclusion, in patients undergoing PAVM embolisation under general anaesthesia, HFJV-assisted embolisation is a safe, practical technique enabling respiratory immobilisation and improved lesion targeting thus resulting in reduced patient radiation dose and procedural time. Larger prospective randomised studies are required to confirm the short- and long-term effects of this resurgent anaesthetic technique in vascular interventional procedures.

Abbreviations

2D: Two-dimensional; 3D: Three-dimensional; CBCT: C-arm cone-beam CT; CECT: Contrast-enhanced computed tomography; CT: Computed tomography; ETCO₂: End-tidal carbon dioxide; FiO₂: Fraction of inspired oxygen; HFJV: High-frequency jet ventilation; HHT: Hereditary haemorrhagic telangiectasia; IPPV: Intermittent positive pressure ventilation; MVP: Microvascular plug; PAVM: Pulmonary arteriovenous malformation; SpO₂: Peripheral oxygen saturation

Authors' contributions

EB and RLC conceived, wrote, and supervised this paper. PDM, JG, MC, and BH collected the data. PDM analysed the data. NR, TMB, ML, CJ, and AG revised the paper. All authors read and approved the final manuscript.

Funding

This paper received no funding.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article.

Ethics approval and consent to participate

Institutional review board approval has been obtained for the present study (Hôpitaux Universitaires de Strasbourg; 2018).

Consent for publication

Consent for publication was obtained from the enrolled patients.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Service d'Imagerie Interventionelle, Hôpitaux Universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France. ²Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France. ³Service d'Anesthésie et de Réanimations Chirurgicales, Hôpitaux Universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France. ⁴Department of Radiology, Norfolk and Norwich University Hospital, Colney Lane, Norwich NR4 7UY, UK.

Received: 3 March 2019 Accepted: 28 May 2019 Published online: 09 July 2019

References

- Lacombe P, Lacout A, Marcy PY et al (2013) Diagnosis and treatment of pulmonary arteriovenous malformations in hereditary hemorrhagic telangiectasia: an overview. Diagn Interv Imaging 94:835–848. https://doi. org/10.1016/j.diii.2013.03.014
- Kjeldsen AD, Vase P, Green A (1999) Hereditary haemorrhagic telangiectasia: a population-based study of prevalence and mortality in Danish patients. J Intern Med 245:31–39. https://doi.org/10.1046/j.1365-2796.1999.00398.x
- Babaker M, Breault S, Beigelman C, Lazor R, Aebischer N, Qanadli SD (2015) Endovascular treatment of pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia. Swiss Med Wkly 145:w14151. https://doi.org/10.4414/smw.2015.14151
- Cartin-Ceba R, Swanson KL, Krowka MJ (2013) Pulmonary arteriovenous malformations. Chest 144:1033–1044. https://doi.org/10.1378/chest.12-0924
- Remy-Jardin M, Wattinne L, Remy J (1991) Transcatheter occlusion of pulmonary arterial circulation and collateral supply: failures, incidents, and complications. Radiology 180:699–705. https://doi.org/10.1148/radiology.180. 3.1871280
- Remy-Jardin M, Dumont P, Brillet PY, Dupuis P, Duhamel A, Remy J (2006) Pulmonary arteriovenous malformations treated with embolotherapy: helical

CT evaluation of long-term effectiveness after 2–21-year follow-up. Radiology 239:576–585. https://doi.org/10.1148/radiol.2391050333

- Pollak JS, Saluja S, Thabet A, Henderson KJ, Denbow N, White RI Jr (2006) Clinical and anatomic outcomes after embolotherapy of pulmonary arteriovenous malformations. J Vasc Interv Radiol 17:35–44; quiz 45. https:// doi.org/10.1097/01.RVI.0000191410.13974.B6
- Letourneau-Guillon L, Faughnan ME, Soulez G et al (2010) Embolization of pulmonary arteriovenous malformations with amplatzer vascular plugs: safety and midterm effectiveness. J Vasc Interv Radiol 21:649–656. https:// doi.org/10.1016/j.jvir.2010.01.026
- Funaki B (2007) Embolization of pulmonary arteriovenous malformations. Semin Intervent Radiol 24:350–355. https://doi.org/10.1055/s-2007-985750
- Dinkel HP, Triller J (2002) Pulmonary arteriovenous malformations: embolotherapy with superselective coaxial catheter placement and filling of venous sac with Guglielmi detachable coils. Radiology 223:709–714. https:// doi.org/10.1148/radiol.2233010953
- Abdel Aal AK, Ibrahim RM, Moustafa AS, Hamed MF, Saddekni S (2016) Persistence of pulmonary arteriovenous malformations after successful embolotherapy with Amplatzer vascular plug: long-term results. Diagn Interv Radiol 22:358–364. https://doi.org/10.5152/dir.2015.15262
- Boatta E, Jahn C, Canuet M et al (2017) Pulmonary arteriovenous malformations embolized using a microvascular plug system: technical note on a preliminary experience. Cardiovasc Intervent Radiol 40:296–301. https://doi.org/10.1007/s00270-016-1493-0
- Trerotola SO, Pyeritz RE (2010) Does use of coils in addition to amplatzer vascular plugs prevent recanalization? AJR Am J Roentgenol 195:766–771. https://doi.org/10.2214/AJR.09.3953
- Galmén K, Harbut P, Freedman J, Jakobsson JG (2017) The use of highfrequency ventilation during general anaesthesia: an update. F1000Res 6: 756. https://doi.org/10.12688/f1000research.10823.1
- Evans E, Biro P, Bedforth N (2007) Jet ventilation. Contin Educ Anaesth Crit Care Pain [BJA Education] 7:2–5. https://doi.org/10.1093/bjaceaccp/mkl061
- Mucksavage P, Mayer WA, Mandel JE, Van Arsdalen KN (2010) Highfrequency jet ventilation is beneficial during shock wave lithotripsy utilizing a newer unit with a narrower focal zone. Can Urol Assoc J 4:333–335. https://doi.org/10.5489/cuaj.09160
- Fritz P, Kraus HJ, Muhlnickel W, Sassmann V, Hering W, Strauch K (2010) High-frequency jet ventilation for complete target immobilization and reduction of planning target volume in stereotactic high single-dose irradiation of stage I non-small cell lung cancer and lung metastases. Int J Radiat Oncol Biol Phys 78:136–142. https://doi.org/10.1016/j.ijrobp. 2009.07.1678
- Raiten J, Elkassabany N, Mandel JE (2012) The use of high-frequency jet ventilation for out of operating room anesthesia. Curr Opin Anaesthesiol 25: 482–485. https://doi.org/10.1097/ACO.0b013e3283554375
- Galmen K, Harbut P, Freedman J, Jakobsson JG (2017) High frequency jet ventilation for motion management during ablation procedures, a narrative review. Acta Anaesthesiol Scand 61:1066–1074. https://doi.org/ 10.1111/aas.12950
- Biro P, Spahn DR, Pfammatter T (2009) High-frequency jet ventilation for minimizing breathing-related liver motion during percutaneous radiofrequency ablation of multiple hepatic tumours. Br J Anaesth 102:650– 653. https://doi.org/10.1093/bja/aep051
- Denys A, Lachenal Y, Duran R, Chollet-Rivier M, Bize P (2014) Use of highfrequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol 37:140–146. https://doi.org/10.1007/s00270-013-0620-4
- Abderhalden S, Biro P, Hechelhammer L, Pfiffner R, Pfammatter T (2011) CTguided navigation of percutaneous hepatic and renal radiofrequency ablation under high-frequency jet ventilation: feasibility study. J Vasc Interv Radiol 22:1275–1278. https://doi.org/10.1016/j.jvir.2011.04.013
- Chung DY, Tse DM, Boardman P et al (2014) High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol 25:1463–1469. https://doi.org/10.1016/j.jvir.2014.02.026
- Buchan T, Walkden M, Jenkins K, Sultan P, Bandula S (2018) High-frequency jet ventilation during cryoablation of small renal tumours. Cardiovasc Intervent Radiol 41:1067–1073. https://doi.org/10.1007/s00270-018-1921-4
- Canty DJ, Dhara SS (2009) High frequency jet ventilation through a supraglottic airway device: a case series of patients undergoing extracorporeal shock wave lithotripsy. Anaesthesia 64:1295–1298. https://doi.org/ 10.1111/j.1365-2044.2009.06079.x

- Sacks D, McClenny TE, Cardella JF, Lewis CA (2003) Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol 14:S199–S202. https://doi.org/10.1097/01.RVI.0000094584.83406.3e
- Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL (2017) CIRSE quality assurance document and standards for classification of complications: the CIRSE classification system. Cardiovasc Intervent Radiol 40:1141–1146. https://doi.org/10.1007/s00270-017-1703-4
- Klain M, Smith RB (1977) High frequency percutaneous transtracheal jet ventilation. Crit Care Med 5:280–287. https://doi.org/10.1097/00003246-197711000-00007
- Mageras GS, Yorke E, Rosenzweig K et al (2001) Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys 2:191–200. https://doi.org/10.1120/1.1409235
- Kleinman BS, Frey K, VanDrunen M et al (2002) Motion of the diaphragm in patients with chronic obstructive pulmonary disease while spontaneously breathing versus during positive pressure breathing after anesthesia and neuromuscular blockade. Anesthesiology 97:298–305. https://doi.org/10. 1097/00000542-199809230-00008
- Korreman SS (2015) Image-guided radiotherapy and motion management in lung cancer. Br J Radiol 88:20150100. https://doi.org/10.1259/bjr.20150100
- Bourgain JL, Chollet M, Fischler M, Gueret G, Mayne A, membres du conseil du club en anesthesie en ORL (2010) Guide for the use of jet-ventilation during ENT and oral surgery. Ann Fr Anesth Reanim 29:720–727. https://doi. org/10.1016/j.annfar.2010.06.020

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at **>** springeropen.com