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Abstract

Recent evidence shows that mutations in several driver genes can cause aberrant methyla-

tion patterns, a hallmark of cancer. In light of these findings, we hypothesized that the land-

scapes of tumor genomes and epigenomes are tightly interconnected. We measured this

relationship using principal component analyses and methylation-mutation associations

applied at the nucleotide level and with respect to genome-wide trends. We found that a few

mutated driver genes were associated with genome-wide patterns of aberrant hypomethyla-

tion or CpG island hypermethylation in specific cancer types. In addition, we identified asso-

ciations between 737 mutated driver genes and site-specific methylation changes.

Moreover, using these mutation-methylation associations, we were able to distinguish

between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated

methylation differences between the thyroid cancer subtypes were linked to differential

gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related path-

ways. These results establish that driver gene mutations are associated with methylation

alterations capable of shaping regulatory network functions. In addition, the methodology

presented here can be used to subdivide tumors into more homogeneous subsets corre-

sponding to underlying molecular characteristics, which could improve treatment efficacy.

Author summary

Mutations that alter the function of driver genes by changing DNA nucleotides have been

recognized as key players in cancer progression. However, recent evidence has shown that

DNA methylation, which can control gene expression, is also highly dysregulated in cancer

and contributes to carcinogenesis. Whether methylation alterations correspond to mutated

driver genes in cancer remains unclear. In this study, we analyzed 4,302 tumors from 18

cancer types and demonstrated that driver gene mutations are inherently connected with

the aberrant DNA methylation landscape in cancer. We showed that driver gene–associ-

ated methylation patterns can classify heterogeneous tumors within a cancer type into

homogeneous subtypes and have the potential to influence genes that contribute to tumor

growth. This finding could help us better understand the fundamental connection between
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driver gene mutations and DNA methylation alterations in cancer, and to further improve

cancer treatment.

Introduction

DNA methylation (DNAm) is highly dysregulated in cancers from many organs [1, 2], display-

ing aberrant CpG island (CGI) hypermethylation and long-range blocks of hypomethylation.

Moreover, dysregulated DNAm at specific locations within the genome can often be used to

divide heterogeneous tumors within cancer types into homogeneous subtypes [3, 4]. The ori-

gin of these dramatic changes in the DNAm of tumor cells remains a puzzle. On the one hand,

DNAm alterations at particular CpG sites in tumors are associated with the aging process in

normal cells [5, 6]. This has led some researchers to propose that cell proliferation, which

drives age-associated DNAm errors in normal cells, is also responsible for aberrant DNAm in

cancer [7]. On the other hand, although DNAm errors exhibit a linear association with the

number of cell divisions in normal cells, they are not well correlated with the expression-based

mitotic index in every type of cancer cell [7]. This suggests that in tumor cells, some factor

other than cell proliferation is shaping the DNAm landscape. Because tumors of the same

molecular subtype often harbor both dysregulated DNAm at particular locations in the

genome and mutations in driver genes [3, 8], we decided to investigate the connection between

somatic mutations and specific aberrant DNAm patterns.

Somatic mutations could directly or indirectly affect cancer methylomes. Frequent somatic

mutations in epigenetic modifying enzymes could mechanistically explain dysregulated epi-

genomes, including DNA methylomes [9]. For example, mutations in SETD2, the H3K36me3

writer, lead to ectopic H3K36me3, coinciding with DNA hypermethylation in renal cell carci-

nomas [10]. In addition, mutations in driver genes whose functions do not directly influence

the epigenome could result in downstream DNAm changes. For example, in glioblastoma,

mutated IDH1 produces abnormal 2-hydroxyglutarate. This leads to widespread CGI hyper-

methylation, termed the CpG island methylator phenotype (CIMP), by inhibiting the TET-

demethylation pathway [11, 12]. In colorectal cancer, the BRAF V600E mutation results in

DNA hypermethylation and CIMP development by upregulating the transcriptional repressor

MAFG, which recruits the DNA methyltransferase DNMT3B to its targets at promoter CGIs

[13]. Finally, the KRAS G13D mutation upregulates another transcriptional repressor,

ZNF304, to establish a CIMP-intermediate pattern in colorectal cancer [14].

Somatic mutations and DNAm changes can co-occur in tumor molecular subtypes without

clear mechanistic links. In head and neck squamous cell carcinomas (HNSCs), for instance, an

atypical CIMP subtype was recently identified in association with CASP8 mutations, which are

not known to have a functional link to the epigenome [15]. And in gastric cancer, PIK3CA
mutations co-occur with CIMP, which is thought to be caused by Epstein-Barr virus (EBV)

infection [3]. In this type of cancer, TP53 mutations are largely mutually exclusive with

PIK3CA mutations. Thus, we would also expect TP53 mutations to be associated with non-

CIMP tumors. Despite lacking mechanistic links, it does not mean these non-random associa-

tions established simply by chance. Ascertaining these associations would be the critical first

step for studying underlying mechanisms.

Based on these findings, we hypothesized that tumor genomic and epigenetic landscapes

are stable and interdependent, and that specific driver mutations are associated with specific

DNAm patterns. Thus, in this study, we systematically evaluated mutation-methylation associ-

ations across 4,302 tumors from 18 cancer types, along with 727 normal tissue samples from
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The Cancer Genome Atlas (TCGA). By investigating DNAm alterations associated with

mutated driver genes on both a genome-wide scale and a site-specific scale, we were able to

show that (i) mutated driver genes are tightly associated with DNAm variation in cancer; (ii)

some driver gene associations are present across cancer types; for example, TP53 mutations

predominantly correspond to hypomethylation across cancer types; (iii) other associations are

cancer type-specific; and (iv) these associations can be used to classify tumors into molecular

subtypes and gain insight into functional alterations. Together, these results establish that

driver mutations and DNAm alterations are tightly coupled in tumor cells, and that this cou-

pling may affect important regulatory networks related to oncogenesis.

Results

Association between driver gene mutations and methylation patterns in

cancer

To determine whether mutated driver genes were associated with methylation changes, first

we performed principal component analysis (PCA) on methylation data for each of 18 differ-

ent cancer types; within a given cancer type, tumor samples were projected onto the principal

components (PCs). Illumina Infinium human methylation 450K array data and somatic muta-

tion data were downloaded from TCGA (Table 1), and driver genes were predicted with Mut-

SigCV [16] (see Materials and Methods for details). For each cancer type, a driver gene was

considered to be associated with a PC if samples in which the gene was mutated (any synony-

mous/non-synonymous mutation reported in TCGA level 2 exome-sequencing data) were

unevenly distributed toward the positive or negative extremes of that PC (q<0.05; two-sided

Table 1. Number of tumor samples, normal samplesa, and driver genes across 18 cancer types.

Cancer type Abbr. # tumor samples # normal samples # driver genesb

Bladder urothelial carcinoma BLCA 130 21 48

Breast invasive carcinoma BRCA 652 102 51

Colon adenocarcinoma COAD 219 38 650

Glioblastoma multiforme GBM 144 2 16

Head and neck squamous cell carcinoma HNSC 306 60 34

Kidney renal clear cell carcinoma KIRC 245 160 14

Kidney renal papillary cell carcinoma KIRP 153 45 10

Liver hepatocellular carcinoma LIHC 202 50 11

Lung adenocarcinoma LUAD 407 32 84

Lung squamous cell carcinoma LUSC 74 43 10

Pancreatic adenocarcinoma PAAD 90 10 31

Prostate adenocarcinoma PRAD 261 50 22

Rectum adenocarcinoma READ 80 7 7

Skin cutaneous melanoma SKCM 372 3 56

Stomach adenocarcinoma STAD 244 2 366

Testicular germ cell tumor TGCT 142 0 25

Thyroid carcinoma THCA 446 56 5

Uterine corpus endometrial carcinoma UCEC 135 46 62

Total 4,302 727 1,502

aNormal tissue samples were obtained from tissues adjacent to tumors. Abbr. = TCGA abbreviated nomenclature
bDefined as MutSigCV-reported driver genes mutated in at least five tumor samples for a given cancer type in our data set (see MutSigCV in [16]).

https://doi.org/10.1371/journal.pcbi.1005840.t001
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Wilcoxon rank-sum test). We assessed each driver gene for the top five DNAm PCs; examples

of PC1-associated driver genes are shown in Fig 1A.

A PC-associated driver gene suggests that the mutated samples at one extreme of the PC

display methylation patterns distinct from the non-mutated samples at the other extreme. For

instance, in stomach adenocarcinoma (STAD), TP53-mutated samples were distributed

toward the positive extreme of PC1, whereas ARID1A- and PIK3CA-mutated samples were

distributed toward the negative extreme. Thus, distinct methylation patterns associated with

PC1 separated the majority of TP53-mutated STAD samples from ARID1A- and PIK3CA-

Fig 1. Driver gene mutations are significantly associated with DNA methylation in various cancers. (A) Examples of mutations in 15 driver

genes that display an uneven distribution along the first principal component (PC1) of DNAm, biased toward either the positive extreme (+) or the

negative extreme (-). Tumor samples are ordered vertically by their coordinates on PC1, from small (-, bottom) to large (+, top). A black line indicates

the presence of the mutated driver gene in a sample, whereas a white line indicates its absence. Note that a sample’s presence at an extreme (+/-) of a

PC does not necessarily correspond to high or low methylation. See Table 1 for cancer type abbreviations. (B) Example of a cancer with driver gene

mutations unevenly distributed on PC1, resulting in distinct methylation patterns: ARID1A/PIK3CA-mutated stomach adenocarcinomas (STADs)

display a methylation pattern distinct from TP53-mutated STADs. Shown is a heat map of methylation levels for the top 1,000 most heavily weighted

probes in PC1. Each column represents a sample ordered by its PC1 coordinate, from small (-, left) to large (+, right). Each row represents a probe site.

The three column sidebars on the top indicate mutation status for TP53, PIK3CA, and ARID1A. The row sidebar indicates the CpG subsets: CpG island

(CGI), shores and shelves (SS; the 4-kb regions flanking the CGIs), or open sea (i.e., probes outside of CGIs and SSs). TP53-mutated STADs display

lower methylation levels at the selected CpG sites than the majority of ARID1A/PIK3CA-mutated STADs. (C) In 15 of 18 cancer types examined,

mutated driver genes were associated with one or more of the top five methylation PCs, shown as rows. The three driver genes most significantly

associated with each PC are reported. Driver genes associated with the negative extreme of a PC are in blue, whereas associations with the positive

extreme are in red. *Some of these mutated driver genes were previously reported in association with DNAm subtypes (corresponding references listed

at the top).

https://doi.org/10.1371/journal.pcbi.1005840.g001
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mutated samples: ARID1A- and PIK3CA-mutated samples were highly methylated at PC1-de-

fining probes relative to TP53-mutated samples (Fig 1B). Overall, we found a significant asso-

ciation between 159 driver genes and one or more of the top five methylation PCs in 15 of 18

cancer types. The top three driver genes associated with each PC are shown in Fig 1C; some

have been previously reported in association with DNAm subtypes [3, 8, 11, 15, 17–29] (see

Fig 1C for the references associated with each gene). For each cancer type, the full list of driver

genes associated with methylation PCs can be found in S1 Table, and the full list of MutSigCV-

reported driver genes can be found in S2 Table.

Mathematically, distinct PCs represent mutually orthogonal (uncorrelated) linear combina-

tions of probes corresponding to different methylation patterns (such as the pattern associated

with PC1 in STAD, shown in Fig 1B). Several top PCs usually capture the majority of variance

in the methylome. Thus, the frequent driver gene–PC associations in almost every cancer type

suggest a tight connection between driver gene mutations and DNA methylation alterations in

cancer.

Next, we investigated whether the mutation-methylation connection in cancer was lim-

ited to certain CpG subsets—namely those occurring in CGIs, shores and shelves (SSs; the

4-kb regions flanking the CGIs), or open sea regions (i.e., probes outside of CGIs and SSs)

—as the regulatory functions of these CpG subsets may differ [30]. For example, DNAm

in promoter CGIs often causes gene silencing. DNAm in CGI shores is frequently altered

and strongly correlated to corresponding gene expression in cancer [31]. And in addition

to containing repetitive elements, open sea regions also contain functional sites such as

enhancers, exons, and introns, where DNAm changes may affect gene regulation and splic-

ing. Thus, we repeated the analysis described above for each subset of probes. We observed

similar driver gene–PC associations across multiple cancer types, indicating that the muta-

tion-methylation connection is not limited to a particular CpG subset (S1 Fig). In total, 14

of 18 cancer types harbored significant associations between driver gene mutations and the

top five methylation PCs at CGIs, 14 of 18 at SSs, and 15 of 18 in open sea regions. We then

repeated the same analysis after stratifying probes by hypo- or hypermethylation status and

found that the results did not vary appreciably (S1 Fig). Of note, in this study we identified

hyper- and hypomethylated probes by comparing the methylation of tumor and normal

samples (q<0.05; Wilcoxon rank-sum test).

Some researchers have recently proposed that aberrant DNAm in cancer is driven by cell

proliferation and developed a DNAm-based mitotic index (derived from the average methyla-

tion level across 385 CpG sites) [7]. We found that the top 5 PCs correlated with the DNAm-

based mitotic index in all cancer types (S2 Fig), suggesting that mutated driver genes, DNAm

patterns, and cell proliferation rates are associated (see S1 Text for detailed information).

However, after removing probes correlated with the DNAm-based mitotic index (p<0.05;

Pearson correlation), methylation PC–driver gene associations remained for 11 cancer types

(S3 Fig), indicating that mutation-methylation associations cannot be totally explained by the

DNAm-based mitotic index. In addition, we found that the findings for the DNAm-based

mitotic index were not consistent with those for an expression-based mitotic index (derived

from the average expression level across 9 mitotic genes) in association with some methylation

PCs (S2 Fig) and driver gene mutations (S3 Table). For example, TP53-mutated tumors are

associated with a high expression-based mitotic index in 9 cancer types, whereas no such asso-

ciation was seen for the DNAm-based mitotic index in any cancer type. This inconsistency

points out further investigation is needed to elucidate the relationship among cell proliferation,

driver gene mutations, and DNAm variation.
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Driver gene mutations, genome-wide CGI hypermethylation, and open

sea hypomethylation in tumors

We next asked whether driver gene–associated methylation alterations correspond to genome-

wide methylation patterns characteristic of cancer: i.e., widespread CGI hypermethylation and

huge hypomethylated blocks, primarily in open sea regions [1, 2, 32]. To answer this question,

we calculated HyperZ and HypoZ indices for each sample [33]. A high HyperZ index indicates

that aberrant hypermethylation exists in many CGIs for a given sample, whereas a high HypoZ

index indicates that extensive open sea hypomethylation is present. Mutated driver genes that

were significantly associated with either high or low HyperZ and/or HypoZ indices are shown

for all 18 cancer types in Table 2 (q<0.05; Wilcoxon rank-sum test); the number of associated

driver genes varies from 67 in COAD to 0 in pancreatic adenocarcinoma (PAAD), rectum ade-

nocarcinoma (READ), and skin cutaneous melanoma (SKCM).

Some known players in oncogenesis appear on this list. For example, a high HyperZ index

was associated with BRAF in COAD and IDH1 in glioblastoma (GBM); both genes are linked

to CIMP in cancer [11, 29]. And NSD1 (which encodes a histone methyltransferase) was asso-

ciated with a high HypoZ index in HNSC and has also been linked to hypomethylation in can-

cer [18]. The associations we detected in most cancer types underscore the relationship

between driver gene mutations and the genome-wide methylation alterations commonly

observed in cancer. Only a few cancer types lacked these associations.

Driver gene mutations and site-specific methylation alterations in tumors

Next, we investigated whether the connection between driver gene mutations and methylation

alterations was methylation site–specific in each cancer type. To do so, we calculated the asso-

ciations between every driver gene and every methylation array probe for all 18 cancer types,

testing whether the presence of mutations in a driver gene was associated with high or low

methylation levels at a given probe site (q<0.05; Wilcoxon rank-sum test). Across almost all

cancer types, many more driver genes were significantly associated with at least one probe

than with the HyperZ and/or HypoZ indices, after correcting for multiple testing (Table 2). In

total, 737 unique driver genes were implicated, and driver gene–methylation site associations

were present genome-wide. An example of the chromosomal distribution of driver gene–asso-

ciated methylation probes present in kidney renal clear cell carcinoma (KIRC) is shown in

S4A Fig. The numerous gene-probe associations detected in KIRC suggest that driver gene–

associated methylation changes likely occur at certain CpG sites, potentially resulting from a

site-targeting mechanism. A heat map illustrates mutations in these 14 genes in KIRC (S4B

Fig), showing some co-occurrence between SETD2 mutations and PBRM1 mutations, and

between BAP1 mutations and PBRM1 mutations, whereas SETD2 mutations and BAP1 muta-

tions are almost mutually exclusive.

The number of probes associated with each driver gene varied greatly, ranging from fewer

than 10 to tens of thousands (S2 Table). For each cancer type, a few (1–5) dominant driver

genes accounted for the majority of associations (Fig 2A). These dominant driver genes

included known oncogenes and tumor suppressor genes such as TP53, PTEN, and PIK3CA,

and known CIMP-driving genes such as BRAF, IDH1, and KRAS [13, 14, 34]. Dominant driver

genes usually displayed both positive and negative associations with probe methylation levels

in a given cancer type (Fig 2B). However, there was typically more of one type of association

than the other. By definition, positive associations indicate higher methylation levels among

tumor samples in the presence of driver gene mutations, whereas negative associations indi-

cate lower methylation levels. Thus, positive associations would correspond to hypermethyla-

tion (primarily in CGIs) if normal samples displayed low methylation levels at a given probe

Associations between driver gene mutations and DNA methylation alterations in cancer
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site, whereas negative associations would correspond to hypomethylation (primarily in open

sea regions) if normal samples displayed high methylation levels.

Primarily positive associations occurred for the CIMP-driving genes BRAF in COAD and

IDH1 in GBM. Other genes with predominantly positive associations included RNF43 and

MACF1 in COAD; CASP8 in HNSC; PBRM1 (a chromatin remodeler), SETD2 (a histone

methyltransferase), and BAP1 (a histone deubiquitinating enzyme) in KIRC; SETD2 in kidney

renal papillary cell carcinoma (KIRP); SPOP in prostate adenocarcinoma (PRAD); PIK3CA in

STAD; and PTEN in uterine corpus endometrial carcinoma (UCEC). These genes were also

associated with a high HyperZ index, suggesting that they may play a role in genome-wide

CGI hypermethylation in particular cancer types (Table 3).

Table 2. Associations between mutated driver genes and HyperZ and HypoZ indices or site–specific methylation alterations.

Cancer type Driver genes associated with HyperZ and HypoZ (in alphabetical order)a # driver genes associated with any probeb

HyperZ HypoZ Total

BLCA STAG2 NA 1 0

BRCA FOXA1 CDH1 2 50

COAD ADORA3,AKAP9,ARAP3,ATG2B,

BCL9,BRAF,BRD8,CAB39L,CCDC88A,

CD58,CDK12,CEL,CHD3,CYLC1,

DAXX,DNAH17,DOCK1,DSG4,EGR1,

ERCC3,FBN2,FHOD3,FMN2,GIGYF2,

GPATCH8,GPR112,HEATR4,HIPK2,

HIST1H1E,IGF2R,INADL,IQSEC2,

KAT2B,KBTBD4,KCTD3,KLKB1,

LATS1,LEPRE1,MACF1,MBD6,MGA,

MTA2,MTTP,NOVA1,OR4M2,OVCH1,

PCDHGA11,PLAGL2,PLEKHA6,

PLXNA3,PREX2,PSD,PTCH1,RNF43,

SPEN,SVIL,TET3,TNRC6C,UBQLN2,

UBR4,USP34,XYLT2,ZBTB20,ZFYVE26

C14orf39,CNTNAP5,FBN2,

MEPE,SPEN

67 189

GBM IDH1,PDGFRA,STAG2 PDGFRA,STAG2 3 16

HNSC CASP8 NSD1 2 34

KIRC BAP1,PBRM1,SETD2 ARID1A 4 14

KIRP NF2,SETD2 2 10

LIHC CTNNB1,TP53 2 11

LUAD STK11 KEAP1,LTBP1,STK11,TP53 4 80

LUSC TP53 1 0

PAAD 0 7

PRAD SPOP TP53 2 12

READ 0 0

SKCM 0 43

STAD ADNP2,ALG10,ARID1A,BCL9L,BCOR,

C5orf42,EIF5B,EPHA2,FHOD3,GLI1,

GON4L,IRS4,KIAA0195,PFKP,PIK3CA,

RALGAPB,RNF43,STAB1,TBX4,TLE2,

TP53,TP53BP2,WASF3,WDR7,WNT16,

XYLT2,ZBTB20,ZFHX4,ZNF608

FRMD4A,TP53,ZFHX4 30 357

TGCT NAc NAc NAc 25

THCA BRAF,HRAS,NRAS BRAF,EIF1AX,HRAS,NRAS 4 5

UCEC CUX1,PIK3R1,PTEN TP53 4 53

a Negatively associated genes are shown in bold; positively associated genes are shown in normal font.
b See S2 Table for driver genes associated with site-specific methylation alterations
c Normal tissue samples were not available to calculate HyperZ/HypoZ indices

https://doi.org/10.1371/journal.pcbi.1005840.t002
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By contrast, genes that primarily displayed negative associations were often associated with

a high HypoZ index, suggesting that they may play a role in genome-wide open sea hypo-

methylation. Examples were NSD1 in HNSC, CTNNB1 in liver hepatocellular carcinoma

(LIHC), and STK11 and KEAP1 in lung adenocarcinoma (LUAD) (Table 3). Interestingly,

RNF43 was associated with both high HyperZ and HypoZ indices in STAD, suggesting a dual

role in genome-wide CGI hypermethylation and open sea hypomethylation. Genomic distri-

bution analysis on RNF43-associated probes revealed that positively associated probes were

enriched in gene promoters, whereas negatively associated probes were enriched in gene bod-

ies, suggesting that they may have different functional impacts (S5 Fig).

In short, a few driver genes were linked to genome-wide patterns of CGI hypermethylation

and open sea hypomethylation in particular cancer types, whereas many more driver genes

were linked to a few probe sites aberrantly methylated in cancer (S2 Table). We note that no

probe-level associations were identified for bladder urothelial carcinoma (BLCA), lung squa-

mous cell carcinoma (LUSC), and READ. However, this lack of significant associations could

reflect the relatively small sample size for these cancers. When we re-analyzed the data by com-

bining COAD and READ, all mutated driver genes in READ were associated with probes in

the combined set and more gene-probe associations were seen in the combined set than in

COAD alone (results for the combined set shown in the ‘CRAD’ tab in S2 Table).

Fig 2. Driver gene–methylation associations and CpG subsets. (A) The total number of probes associated with any driver gene is shown for each

cancer type (top of each column). Each point represents the fraction of corresponding probes associated with a driver gene (y-axis). Names are shown for

each of the top three driver genes if they account for more than 10% of total probes (dotted line). See Table 1 for cancer type abbreviations. (B) Driver

genes with the most probe associations in each cancer type (gene names in panel). The bar plots show the proportion of associated probes in each of the

three CpG subsets [CpG islands (CGIs), shores and shelves (SSs), or open sea], stratified by the direction of association (+/-). Dashed lines indicate the

divisions expected if associations were proportionally distributed. No probes were associated with driver genes in BLCA, LUSC, and READ.

https://doi.org/10.1371/journal.pcbi.1005840.g002
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Consistency of methylation alterations associated with mutated driver

genes across cancer types

Next, we asked whether mutated driver genes consistently displayed predominantly positive/

negative associations across multiple cancer types. We investigated the proportion of positive

and negative probe associations for 17 driver genes across 18 cancer types (Fig 3A). These

genes were selected because they were associated with extensive methylation alterations (more

than 1,000 probe associations per driver gene) in at least two cancer types. When compared

with normal samples, positive associations often equated to hypermethylation (primarily in

CGIs) in response to mutations. Likewise, negative associations often equated to hypomethyla-

tion (primarily in open sea regions) (Fig 3B).

TP53 displayed predominantly negative associations in 9 of 18 cancer types, and no pre-

dominantly positive associations were observed in connection to this gene in any cancer type.

This suggests a tight connection between TP53 mutations and open sea hypomethylation

across multiple cancer types. Interestingly, many negatively associated probes were shared

across cancer types (62,951 probes were shared across 2 cancer types, and 15 were shared

across 7 types) (S6 Fig). APC and CTNNB1 also displayed predominantly negative associations

in two different cancer types each.

By contrast, IDH1 strongly favored positive associations in two cancer types, GBM and

SKCM, consistent with reports that mutated IDH1 downregulates TET-dependent demethyla-

tion, resulting in aberrant CGI hypermethylation [35]. SETD2, PTEN, RNF43, HRAS, EPHA2,

and BAP1 were also linked to primarily positive associations in more than one cancer type,

suggesting that they may play a general role in CGI hypermethylation.

Finally, BRAF, which mediates CIMP in colorectal cancer, displayed a high proportion of

positive associations (0.98) in COAD, but low proportions in SKCM (0.02) and thyroid carci-

noma (THCA; 0.27). Its negative associations in THCA corresponded to hypomethylation

Table 3. Mutated driver genes that exhibit primarily positive or negative probe associations and correspond to a high HyperZ or HypoZ index in

particular cancer types.

Gene Cancer type P-Assoca N-Assoca HyperZ HypoZ

BRAF COAD 5166 103 Y

RNF43 COAD 4784 173 Y

MACF1 COAD 2706 95 Y

IDH1 GBM 31877 3535 Y

CASP8 HNSC 21552 4660 Y

PBRM1 KIRC 11831 3906 Y

SETD2 KIRC 6443 2440 Y

BAP1 KIRC 5162 1240 Y

SETD2 KIRP 4300 936 Y

SPOP PRAD 8919 6444 Y

PIK3CA STAD 58843 2153 Y

PTEN UCEC 20548 14496 Y

NSD1 HNSC 1423 72475 Y

CTNNB1 LIHC 1065 23869 Y

STK11 LUAD 3269 33840 Y

KEAP1 LUAD 4122 31348 Y

RNF43 STAD 31905 23267 Y Y

a Number of positively (P-Assoc) and negatively (N-Assoc) associated probes are reported for each driver gene in particular cancer types.

https://doi.org/10.1371/journal.pcbi.1005840.t003
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across CGIs, SSs, and open sea regions (Fig 3B and S2 Table). This dramatic difference indi-

cates that driver genes may be associated with methylation patterns in a cancer type–specific

manner. Such cancer type–specific associations were also seen for PIK3CA, KRAS, GATA3,

CTCF, CDH1, and ARIDA1.

Functional implications of TP53-associated probes across cancer types

The consistent predominantly negative trend in TP53-methylation associations across cancer

types led us to ask whether TP53-associated methylation alterations might functionally con-

verge along the same biological pathways. To focus solely on TP53 mutations, first, we recom-

puted TP53-associated probes by performing multiple testing correction for TP53-probe

associations within each cancer type without considering other driver gene-probe associations

(q<0.05). TP53-associated probes were seen in 11 cancer types with the number varying from

2,940 (PAAD) to 141,002 (BRCA) (S4 Table). Negative associations predominated in all cancer

types, consistent with the previous analysis. For each cancer type, we then identified genes

whose expression levels were correlated with TP53-associated probes (q<0.05; Spearman cor-

relation) in gene promoters or bodies exhibiting aberrant methylation changes (magnitude of

Fig 3. Proportion of positive and negative associations with methylation for 17 recurrently mutated driver genes. (A) Bar plots show the

proportion of methylation probes for each driver gene (labels at bottom) and cancer type (labels at top) displaying positive and negative associations.

Positive associations are plotted above the horizontal line, negative associations below the horizontal line. Associations are further stratified by CpG

subset: CpG islands (CGI), shores and shelves (SS), and open sea (regions outside CGIs and SSs). Driver genes were classified into three groups based

on the directionality of their predominant associations (negative, positive, inconsistent). All genes shown were associated with more than 1,000 probes, in

at least two cancer types. See Table 1 for cancer type abbreviations. (B) Plotted as in (A), using: (1) positively associated and hypermethylated probes and

(2) negatively associated and hypomethylated probes. *Hyper- or hypomethylated probes were not identified for glioblastoma (GBM), stomach

adenocarcinoma (STAD), skin cutaneous melanoma (SKCM), and testicular germ cell tumor (TGCT) due to a lack of normal samples.

https://doi.org/10.1371/journal.pcbi.1005840.g003
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median difference in beta values between TP53-mutated tumors and normal samples >0.1).

The correlated genes were further stratified into up- and downregulated genes in TP53-

mutated tumors, relative to both tumors without TP53 mutations and normal samples

(median difference in expression level > 0.5; log2 RSEM). To test whether the aberrantly regu-

lated genes converged on common pathways, we performed gene set analysis for genes that

were up- or downregulated in at least two cancer types. On the one hand, downregulated

genes were enriched in 25 regulatory gene sets (q<0.05), with the strongest corresponding to

FOXO4 targets (q = 6E-5). No enriched canonical pathways were found (S5 Table). On the

other hand, upregulated genes were enriched in 38 canonical pathways, with the strongest

enrichment present in the cell cycle/mitotic pathway (q = 3.5E-15, hypergeometric test) and 21

regulatory gene sets mainly corresponding to E2F targets (q<0.05) (S5 Table). The enriched

pathways/gene sets remained largely the same when repeating the analysis restricted to genes

corresponding to TP53-negatively associated probes, whereas no enriched pathways/gene sets

were found for genes corresponding to TP53-positively associated probes. This implies that,

across cancer types, the enrichment was dominated by genes corresponding to the probe sites

exhibiting lower methylation levels in TP53-mutated tumors.

Identification of molecular subtypes in thyroid carcinoma and uterine

corpus endometrial carcinoma based on driver gene–associated

methylation patterns

In previous studies, researchers have identified cancer subtypes in COAD and GBM by match-

ing mutational profiles to methylation patterns [11, 29]; here, we asked whether site-specific

mutation-methylation associations could separate tumors into subtypes. We focused on the

methylation patterns associated with the top three driver genes in THCA and UCEC, which

account for the most probe associations (as shown in Fig 2A), because in these cancers the top

three genes rarely co-occurred. Thus, if subtypes linked to mutation-methylation associations

were present, they would probably display a clear separation. In THCA, the top three genes

(NRAS, HRAS, or BRAF) were each mutated in a mutually exclusive fashion. And in UCEC,

mutations in TP53 were nearly mutually exclusive with PTEN and CTNNB1mutations, which

co-occurred in many tumor samples.

For both cancer types, we performed hierarchical clustering on the union of the 500 methyl-

ation probes most significantly associated with mutations in each of the top three genes (Fig

4). In THCA, two methylation subtypes emerged, corresponding to NRAS- and HRAS-

mutated tumors vs. BRAF-mutated tumors. These two groups were consistent with the follicu-

lar vs. classical histological subtypes of THCA, respectively (Fig 4A). The selected probes pri-

marily fell in non-CGI positions (i.e. SS and open sea regions); BRAF mutants displayed

hypomethylation in open sea and some SS regions, whereas NRAS and HRAS mutants dis-

played methylation levels similar to normal samples in open sea and SS regions, with little

hypermethylation. Furthermore, we found tumors lacking any of the specified mutations that

co-clustered within these patterns. No evidence of increased expression or copy number gain

in BRAF or NRAS/HRAS, or of significant enrichment of mutated genes other than BRAF,

NRAS, and HRAS were found in these co-clustered tumors. This suggests either that unknown

events drive these co-clustered tumors toward similar molecular profiles, or that NRAS, HRAS
or BRAF mutations have been missed in these tumors.

Two methylation subtypes were also identified in UCEC, this time corresponding to TP53
vs. PTEN mutations, consistent with the serous vs. endometrioid histological subtypes of

UCEC, respectively (Fig 4B). PTEN-mutated samples generally exhibited CGI hypermethyla-

tion, whereas TP53-mutated samples generally exhibited normal methylation levels, with some
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hypomethylation in open sea regions. Most UCEC samples with mutations in both PTEN and

CTNNB1 displayed greater levels of open sea hypomethylation than samples with PTEN muta-

tions alone, a finding which has not been previously reported. Moreover, these samples corre-

sponded to copy-number low subtype according to TCGA classification (Fig 4B).

Collectively, these results illustrate the connectivity between mutational profiles and DNA

methylation in cancer. We note that the same methylation subtypes in both cancer types can

be found by using the top 1% most variable probes as well (S7 Fig).

Correlations between driver gene–associated methylation probe sites

and corresponding gene expression in two thyroid carcinoma subtypes

Finally, we investigated whether driver gene–associated methylation patterns shape gene regu-

latory networks. To investigate the three-way association between mutation, methylation, and

gene expression, we used THCA as our primary example; the mutually exclusive mutation pro-

file present in this type of cancer minimized the complexity of the associated methylation pat-

terns, facilitating the study of gene expression. We looked for genes whose aberrant expression

levels were correlated with aberrant methylation levels (each relative to normal samples). We

focused on CpG sites in promoter regions and gene bodies in NRAS and HRAS mutants (the

NRAS-HRAS group) vs. BRAFmutants (the BRAF group). These genes were subsequently

sorted into four different categories based on expression: (1) upregulation only in the BRAF
group, (2) upregulation only in the NRAS-HRAS group, (3) downregulation only in the BRAF

Fig 4. Driver gene–associated methylation patterns can be used to identify tumor molecular subtypes. Heat maps for (A) thyroid carcinoma

(THCA) and (B) uterine corpus endometrial carcinoma (UCEC) depict hierarchical clustering of methylation values of the union set of the 500 probes most

significantly associated with each of the three dominant driver genes in each cancer type. Each column represents a sample, and each row represents a

probe. Mutation status and subtype classification are shown in the upper sidebars. The sidebars on the left indicate gene-probe associations and CpG

subsets, as well as average methylation levels across normal samples. The arrow in (B) indicates methylation probes that display more hypomethylation in

samples where PTEN and CTNNB1 mutations co-occur than in samples with PTEN mutations alone.

https://doi.org/10.1371/journal.pcbi.1005840.g004
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group, and (4) downregulation only in the NRAS-HRAS group. For each category, we reported

the affected genes, sorted by median difference in expression between mutants and normal

samples (S6 Table), and significantly enriched pathways (S7 Table).

In all, 1,565 differentially methylated genes were upregulated specifically in the BRAF group

(S6 Table). Gene set analysis showed that these genes were enriched in 97 canonical pathways,

which were primarily pertinent to cell-cell communication/extracellular matrix gene sets and

signaling pathways (q<0.05; hypergeometric test; S7 Table). Some upregulated genes were

involved in many of the 97 pathways; the 10 genes implicated in the most pathways were:

GRB2 (present in 34 out of 97 pathways), RAC1 (n = 26), STAT1 (n = 25), LYN (n = 24), VAV1
(n = 24), JAK1 (n = 22), PTPN6 (n = 22), ITGB1 (n = 20), STAT3 (n = 18), and STAT5A
(n = 18). We noticed that 4 genes (STAT1, JAK1, STAT3, and STAT5A) corresponded to the

JAK and STAT gene families implicated in many signaling cascades, including the KEGG

JAK-STAT signaling pathway (ranked 12th out of the 97 pathways; q = 4.7E-5). In addition,

JAK3 (n = 11) and STAT4 (n = 4), other two members in JAK and STAT gene families, were

also upregulated in multiple pathways. This differential regulation of the JAK and STAT fami-

lies may be shaped by differences in DNA methylation (Fig 5A). Specifically, STAT1 differen-

tial expression is negatively correlated with methylation levels at an SS probe of the promoter

CGI, whereas JAK3 differential expression is positively correlated with methylation levels at

Fig 5. Differential expression of JAK and STAT family genes is correlated with differential methylation in thyroid cancer subtypes. (A) Shown

are scatter plots for gene expression levels (y-axis) and methylation levels (x-axis) for STAT1, STAT3, STAT4, STAT5A, JAK1, and JAK3, plotted with

BRAF-mutated (red), HRAS-mutated (blue), NRAS-mutated (green), and normal (grey) samples. Gene names and Spearman rho values (with p-values)

for the correlation between gene expression and methylation among tumor samples are shown on top of the plots. Probe names (where methylation levels

were measured) and genomic locations are shown on the bottom of the plots. (B) Snapshots from the UCSC genome browser for STAT1 and JAK3, with

CpG islands (CGIs) indicated below (green arrow: CGIs; red arrow: probes flanking the CGIs). Methylation levels of the indicated regions are shown in

panel (C). (C) Box plots show methylation levels (y-axis) at probes in STAT1 and JAK3 for BRAF-mutated, HRAS-mutated, NRAS-mutated, and normal

samples. The shown probes fall in the north shores and shelves [or SSs, indicated by red arrows in (B)] of the STAT1 promoter CGI and the 3’ CGI of

JAK3 [indicated by green arrows in (B)].

https://doi.org/10.1371/journal.pcbi.1005840.g005
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the 3’ gene body CGI and its north shore (Fig 5B and 5C). Finally, 9 of the top 15 differentially

methylated genes were upregulated in the BRAF group and involved in metastasis: KLK6,

KLK7, KLK11 [36], CLDN10 [37], B3GNT3 [38], RASGRF1 [39], ST6GALNAC5 [40], TACSTD2
(also known as TROP2) [41], and CEACAM6 [42] (S6 Table).

By contrast, 1,043 differentially methylated genes were downregulated specifically in the

BRAF group. Gene set analysis showed that these genes were enriched in five canonical path-

ways, which were pertinent to amino acid catabolism, triglyceride biosynthesis, glyceropho-

spholipid metabolism, and nucleic acid metabolism (S7 Table).

The NRAS-HRAS group displayed 278 differentially methylated, upregulated genes.

These genes were enriched in three canonical pathways, which were relevant to the neuro-

nal system, potassium channels, and melanogenesis (S7 Table). We did not find a substan-

tial proportion of differentially methylated genes implicated in tumor progression among

the top differentially expressed genes (defined by median difference in expression between

NRAS-HRAS mutants and normal samples). However, when we considered the top 17 dif-

ferentially expressed, highly transcribed genes (median expression level in mutants > 10

log2 RSEM; median difference > 1 log2 RSEM; highlighted in S6 Table in bold), 6 out of 17

were implicated in tumorigenesis. These genes included G protein alpha subunit (GNAS)

[43], pyruvate dehydrogenase kinase 4 (PDK4) [44], NADPH reductase (NQO1) [45], and

three NADPH oxidases that produce H2O2 for thyroid hormone synthesis: DUOX2,

DUOXA2, and DUOX1 [46] (S6 Table).

Finally, 447 differentially methylated genes were downregulated specifically in the NRAS-H-
RAS group. These genes were enriched in 166 canonical pathways; interestingly, 47 genes over-

lapped the 97 pathways enriched in the BRAF upregulated group, including the JAK-STAT

signaling pathway (ranked 13th, q = 3.5E-5). Specifically, STAT1, STAT3, STAT4, and JAK3
were among the genes upregulated in the BRAF group but downregulated in the NRAS-HRAS
group (Fig 5A and S6 Table). This result demonstrates that methylation changes are indeed

associated with differential gene expression between BRAF-mutated and NRAS- and HRAS-

mutated samples in THCA.

Discussion

In this study, we demonstrated that driver gene mutations are tightly tied to the DNAm land-

scape in multiple types of cancer. Furthermore, we showed that mutated driver genes are asso-

ciated with DNAm alterations in a reproducible, site-specific manner. In each cancer type, a

few driver genes dominate the site-specific associations, and some potentially contribute to

CGI hypermethylation and extensive hypomethylation, i.e., the hallmarks of cancer. We cau-

tion that these findings do not equate to causality, but do point to the highly interconnected

nature of the genome and epigenome.

Our findings are consistent with previous research on methylation in cancer; however, they

also contribute novel insights. Several driver genes that displayed primarily positive or negative

associations with methylation probes in this study have been previously linked to CGI hyper-

methylation or open sea hypomethylation, respectively. Driver genes associated with CGI

hypermethylation in both this study and past studies include BRAF in COAD [29], IDH1 in

GBM [11], SETD2 in KIRC [10], PIK3CA in STAD [3], CASP8 in HNSC [15], SPOP in PRAD

[21], and PTEN in UCEC [47]. Genes associated with hypomethylation include TP53 in LIHC

[48], BRAF in THCA [26], and NSD1 in HNSC [18]. In addition to these examples, we identi-

fied novel driver genes that may contribute to CGI hypermethylation, such as BAP1 in KIRC,

or to open sea hypomethylation, such as CTNNB1 in LIHC. By illuminating the driver genes

associated with widespread DNAm alterations, as well as driver genes associated with more
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limited DNAm alterations, our comprehensive analysis provides a detailed mutation-methyla-

tion map for many types of cancer.

Several mutated driver genes displayed consistent and widespread positive or negative asso-

ciations across cancers, corresponding to extensive DNAm alterations. The effects of others

varied by cancer type. This discrepancy may be attributable to different underlying mecha-

nisms. For example, mutations in IDH1 and SETD2 directly affect the epigenetic landscape by

inhibiting TET-dependent demethylation and disturbing DNA methyltransferase targeting,

respectively [10, 12, 35]. Both mechanisms cause DNA hypermethylation, in line with the cor-

responding primarily positive associations observed in this study. BRAFmutations, by con-

trast, displayed inconsistent methylation patterns between cancer types in this study. In

COAD, BRAF-mutated samples mutations displayed widespread CGI hypermethylation.

This is consistent with our knowledge that, in this type of cancer, BRAF V600E recruits

DNA methyltransferase to CGI targets by stimulating the MEK/ERK signaling pathway and

upregulating the transcription repressor MAFG [13]. However, in THCA, BRAF-mutated

samples (260/266 of which harbored the V600E mutation) largely displayed hypomethyla-

tion. Although no mechanistic explanation for this observation is yet available, it is possible

that the mutation does not upregulate MAFG in THCA. Alternatively, MAFG may be upre-

gulated in both THCA and COAD, resulting in CGI hypermethylation at a few MAFG bind-

ing sites, but some other factor may occur in COAD but not in THCA driving the extensive

CGI hypermethylation in COAD.

Several mechanisms have been documented to support the consistent hypomethylation we

observed in association with TP53 mutations, across cancer types [48–51]. For example, in

hepatocellular carcinoma, loss-of-function mutations in TP53 allow pre-malignant cells to

bypass senescence induced by global hypomethylation [48], which could explain the connec-

tion between TP53 mutations and hypomethylation. In this study, we found that hypomethy-

lated sites associated with TP53 mutation are shared across cancer types and correspond to

upregulated E2F-targets and genes involved in cell cycle regulation. This is interesting because

the crosstalk between p53 and E2F pathways profoundly regulates the cell cycle [52]. More-

over, CpG methylation regulates E2F activity by preventing E2F family members from binding

target promoters [53], supporting the correlation between TP53-associated hypomethylation

at E2F targets and their upregulation. Upregulated E2F activity may promote cell proliferation,

consistent with the association between TP53 mutations and a high expression-based mitotic

index in 9 cancer types found in this study (S3 Table). Therefore, the hypomethylation at E2F

targets could regulate E2F activity or could simply represent the footprint of upregulated E2F

activity due to TP53 loss, yielding the association between TP53 mutations and DNAm

changes at E2F targets. In sum, several mechanisms, including hypomethylation-induced

senescence and upregulated E2F activity, may underlie TP53-associated hypomethylation.

Future research is needed to elucidate the role of hypomethylation in TP53-mutated tumors.

Whether the mutation-methylation associations found in this study are causal remains

largely unresolved. However, the DNAm landscape can be affected by mutations in epigenetic

modifying enzymes such as SETD2, the H3K36me3 writer [10]. In this study, many epigenetic

modifying enzymes were implicated, including PBRM1, BAP1, NSD1, and ARID1A. In addi-

tion, mutations in driver genes may perturb the transcriptional circuitry. The perturbation can

aberrantly activate or inactivate DNA binding proteins causing DNAm changes near their

binding sites [54, 55]. This is evidenced by the recent finding that BRAF V600E and KRAS

G13D mutations in COAD upregulate the transcription factors MAFG and ZNF304, respec-

tively, resulting in targeted promoter CGI hypermethylation near MAFG and ZNF304 binding

sites [13, 14]. The TP53-associated hypomethylation at E2F targets found in this study may

also be explained in this way. Finally, several biological processes that can alter DNAm at
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specific sites have been documented recently—and driver gene mutations that promote these

DNAm-altering processes may alter DNAm at affected sites. For example, cellular oxidative

stress can produce hypermethylation at the promoters of low-expression genes [56], hypoxia

can reduce TET activity, leading to hypermethylation at targeted sites [57], and cell prolifera-

tion can cause aberrant DNAm to accumulate in the promoters of polycomb group target

CpGs [7].

Conversely, changes in DNAm can cause mutations in cancer. DNA hypomethylation, for

example, leads to elevated mutation rates [58]. In addition, deamination of 5-methylcytosine

can result in a C-to-T mutation. This could explain the occurrence of mutation hot spots at

methylated CpG dinucleotides in TP53 [59].

It is possible, of course, that no causal relationship exists between mutations and associated

DNAm patterns. The associations observed may simply reflect the presence of specific DNAm

patterns in the same tumor subtypes in which particular driver gene mutations are enriched or

depleted. However, the absence of a causal relationship does not necessarily mean that muta-

tions and methylation alterations occur in the same subtype merely by chance. In the previ-

ously mentioned example, DNA hypomethylation triggers TP53-mediated senescence, and

hepatocellular carcinoma emerges when senescence is bypassed due to later TP53 loss [48]. In

this manner, positive selection for both the gene level and the DNAm level alterations could

mechanistically link two non-causal events during tumorigenesis. This example suggests a

mechanistic explanation that can be further investigated for mutation-methylation associa-

tions that lack clear causality.

Because mutation-methylation patterns may reflect important oncogenic characteristics,

using these patterns to separate tumors into molecular subtypes could potentially aid treat-

ment selection. In a proof of concept portion of this study, we successfully identified molecular

subtypes in THCA and UCEC based on dominant driver gene–associated methylation pat-

terns. These subtypes agreed with previous reports of subtypes defined by gene expression

analyses [22, 26, 60]. In THCA, distinct DNAm patterns associated with RAS- and BRAF-

mutated tumors corresponded to follicular and classical histological subtypes, respectively (Fig

4A) [60]. Likewise, the two UCEC subtypes characterized by PTEN and TP53 mutations corre-

sponded to the endometrioid-like and serous-like subtypes identified in TCGA analysis,

respectively (Fig 4B) [22]. Moreover, TCGA classification indicated that the endometrioid-like

subtype could be further subdivided into a microsatellite instability subtype (with a low fre-

quency of CTNNB1 mutations) and a low-copy-number subtype (with a high frequency of

CTNNB1mutations). Consistent with this finding, in our study tumors with co-occurring

PTEN and CTNNB1mutations displayed more hypomethylation (corresponding to the low-

copy-number subtype) than tumors with PTEN mutations alone. Though we only attempted

to identify subtypes in two cancer types, these results indicate that our mutation-methylation–

based approach could be useful for identifying molecular subtypes in other cancer types as

well.

The mutual exclusivity of the NRAS, HRAS, and BRAFmutations in THCA tumors has

been interpreted to mean that these mutations must have interchangeable effects on MAPK

signaling activation, the main cancer-driving event in papillary thyroid carcinomas [60]. Our

analysis, however, highlights substantial differences in DNAm between BRAF-mutated vs.

NRAS- and HRAS-mutated THCA tumors; moreover, the differences in DNAm appear to pro-

foundly shape gene expression profiles, which may contribute to thyroid tumorigenesis. The

JAK-STAT signaling pathway transmits information from extracellular signals to the nucleus,

regulating genes involved in immunity and oncogenesis [61]. In this study, differential DNAm

in six JAK and STAT family genes were found to correlate with their upregulation in BRAF-

mutated tumors. Among them, STAT3 has been studied in many cancer types, but its role in
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thyroid cancer is still debated. To date, one study has found a significant association between

STAT3 activation and metastatic disease in papillary thyroid carcinoma patients [62], whereas

another has found that STAT3 activation was inversely correlated with thyroid tumor growth

[63]. In addition to JAK and STAT family genes, 9 metastatic genes were also differentially

methylated and upregulated in BRAF-mutated tumors. Paired with the aggressiveness of BRAF
vs. RAS mutation–positive thyroid tumors [64–66], our results support a connection between

BRAF mutations, JAK-STAT signaling upregulation (including STAT3 activation), and THCA

metastasis, suggesting the role of STAT3 and other JAK-STAT family genes in oncogenesis in

THCA. There is also reason to be believe that the DNAm alterations in NRAS- and HRAS-

mutated tumors have functional consequences for oncogenesis: Methylation changes in these

tumors were linked to H2O2 overproduction, which can lead to DNA damage [46], activation

of G-protein signaling via GNAS overexpression [43, 67], and activation of mTOR signaling

via PDK4 overexpression [60]. These differences in the molecular processes linked to different

driver gene mutations may contribute to distinct pathways of tumorigenesis, yielding different

prognoses and clinical phenotypes.

Our study has several limitations. First, all samples with mutations in the same MutSigCV-

reported driver gene were classified together regardless of the mutation. For example, although

the majority of BRAF-mutated samples carried the V600E mutation (25 out of 34 BRAF-

mutated tumors carried BRAF V600E in COAD, 167/195 in SKCM, and 260/266 in THCA),

this group also included a few non-V600E mutations. Different mutations in the same gene

may be linked to different methylation patterns, therefore, introducing noise into our analysis

and lowering our statistical power to detect mutation-methylation associations. Second, we

examined individual associations between driver genes and methylation sites. However, com-

binatorial effects of driver gene mutations on methylation could exist, as several driver gene

mutations typically co-occur in a given tumor. Third, we focused only on MutSigCV-reported

driver genes and were limited to the information present in TCGA data. Although MutSigCV

is one of the most reliable driver gene–detection tools available, limitations associated with the

detection algorithm—paired with limitations imposed by the number of tumor samples avail-

able in TCGA—may have led us to miss methylation-altering mutations that occurred in

unknown driver genes. Finally, tumor purity is a potential confounding factor in analyses of

cancer data. Although we were not able to exclude the possibility of confounding by tumor

purity, the mutation-methylation associations reported here were seen in cancer types for

which most TCGA samples (>80%) were predicted to be of high purity (>70%), including

GBM, KIRP, THCA, and UCEC [68]. Therefore, it seems unlikely that confounding by tumor

purity level was extensive.

Conclusions

This comprehensive pan-cancer analysis establishes a widespread connection between geno-

mic and epigenomic alterations in cancer. The mutation-methylation relationships described

here could potentially be used to identify tumor subtypes, thus aiding prognosis and treatment

decisions. In addition, in the future, further analysis of methylation and expression data may

identify driver gene mutation–induced methylation alterations that dysregulate genes/path-

ways that promote tumor growth. Such dysregulation could potentially be corrected by treat-

ing patients with agents that influence the DNA methylation landscape. Demethylating agents

such as 5-aza-2’-deoxycytidine, for example, have been used to reactivate epigenetically

silenced tumor suppressor genes and also to decrease overexpression of oncogenes [69, 70]. By

contrast, the methyl donor S-adenosylmethionine has been shown to downregulate the onco-

genes c-MYC and HRAS, inhibiting cancer cell growth [71]. In summary, in light of the
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connection between driver gene mutations and DNA methylation shown here, it will be

important to further study how coordinated genomic and epigenomic alterations result in the

hallmarks of cancer. A better understanding of the molecular mechanisms underlying cancer

may help us identify factors that accelerate tumor onset, predict biomarkers for early diagnosis,

and assess new therapeutic targets.

Materials and methods

We downloaded data from all TCGA cancer types that had enough samples to support analy-

ses (i.e. >100 samples for each data type: somatic mutation, DNA methylation 450K array, and

RNA-Seq, according to the information posted on the UCSC cancer genome browser: https://

genome-cancer.ucsc.edu/proj/site/hgHeatmap/) in 2015 and excluded cervical cancer and

esophageal cancer whose molecular characterization had not been published by TCGA

research network in 2016. We also excluded acute myeloid leukemia because we had reason to

believe the mechanisms underlying this type of cancer could be very different from those

underlying other solid tumors. This gave us the 18 cancer types: bladder urothelial carcinoma

(BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma

multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell

carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carci-

noma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancre-

atic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma

(READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular

germ cell tumors (TGCT), thyroid carcinoma (THCA), and uterine corpus endometrial carci-

noma (UCEC). The number of tumor and normal samples (derived from tissue samples adja-

cent to tumors) for each cancer type is listed in Table 1.

Data preprocessing

Exome-sequenced level 2 somatic mutation data were downloaded from TCGA’s data portal

(https://tcga-data.nci.nih.gov/) on February 1, 2015.

TCGA level 3 DNA methylation array–based data (Illumina Infinium HumanMethyla-

tion450 BeadChip array) were downloaded from the UCSC Cancer Genomics Browser

(https://genome-cancer.ucsc.edu) on October 26, 2015. DNA methylation levels were mea-

sured with β values. We normalized β values for type I and II probes using the β mixture quan-

tile (BMIQ) method [72]. The following types of probes were removed from the analysis: (i)

probes on the X and Y chromosomes, (ii) cross-reactive probes [73], (iii) probes near single

nucleotide polymorphisms (SNPs), and (iv) probes with missing rates�90% across all samples

for a given cancer type. A final set of 314,421 probes was analyzed for each cancer type.

Finally, TCGA level-3 gene expression data measured by log transformed (base 2) RSEM-

normalized RNA-Seq (Illumina HiSeq) counts were downloaded from the UCSC Cancer

Genomics Browser (https://genome-cancer.ucsc.edu) on November 4, 2015.

Driver genes

We defined driver genes as those reported by MutSigCV2 [16] for each of the 18 cancer types;

these data were downloaded from the Broad Institute of MIT & Harvard (http://firebrowse.

org). Specifically, we analyzed genes that had reported q-values < 0.05 and that were mutated

in at least five samples from each cancer type. The number of driver genes for the 18 cancer

types is summarized in Table 1.
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Hyper- and hypomethylated probes

For each probe, we compared the distribution of methylation levels among tumor samples

with that among normal samples using one-sided Wilcoxon rank-sum tests, one for each

direction, stratified by cancer type. Each significant probe (q<0.05) was classified as either

hypermethylated (methylation levels in tumor samples were greater than in normal samples)

or hypomethylated (methylation levels in tumor samples were less than in normal samples).

Principal component analysis

PCA was performed using the R package ‘pcaMethods,’ and missing values were imputed by

probabilistic PCA. We wanted to analyze as many PCs as we could, to capture the majority of

DNAm variation. However, the more PCs we analyze, the longer the computation time

needed. We found that 5 PCs provided an ideal balance: the PCs captured the majority of

mutation-methylation associations within a reasonable computation time. The top five PCs

were computed within each cancer type for all probes and subsets of probes, including probes

in CGIs, the SSs around CGIs (the 4-kb regions flanking CGIs), and open sea regions (CpGs

outside CGIs and SSs). The probe sets (CGIs, SSs, and open sea regions) were further stratified

by hyper- and hypomethylation status. CGIs, SSs, and open sea regions were defined in the

Illumina 450K array annotation file.

HyperZ and HypoZ indices

HyperZ and HypoZ indices were computed for each tumor sample within a cancer type. The

HyperZ and HypoZ indices were introduced by Yang et al. [33] to measure the level of overall

CGI hypermethylation and open sea hypomethylation, respectively.

Association between driver gene mutations and DNA methylation

We analyzed somatic mutations at the gene level. A driver gene was classified as either mutated

(any mutations) or not mutated (no mutations) for each tumor sample. Associations between

driver gene mutations and methylation were tested using the two-sided Wilcoxon rank-sum

test. To evaluate driver gene–PC associations, the test was performed for every driver gene and

each of the top five methylation PCs; samples were ranked based on their coordinates on the

PC, and the mutated cohort was compared with the non-mutated cohort. To evaluate site-spe-

cific associations, the test was performed for every possible driver gene–probe pair. Here, sam-

ples were ranked based on their β values at the probe, and the mutated cohort was compared

with the non-mutated cohort. Finally, we performed the same association test for every driver

gene and the HyperZ and HypoZ indices, to identify driver genes potentially associated with

genome-wide CGI hypermethylation and open sea hypomethylation. In each case, q-values

were computed by correcting for all tests performed for a given cancer type [74]. Associations

were considered significant at q<0.05. For associations between every gene-probe pair, the

empirical false discovery rate was also estimated by permuting the mutation status for every

driver gene. The results showed that the empirical false discovery rate was controlled (<0.05)

at the theoretical cutoff (q<0.05) for each cancer type (S8 Fig).

Differential expression analysis of thyroid carcinoma molecular subtypes

First, we visually identified two THCA molecular subtypes based on driver gene mutations

and DNA methylation patterns (Fig 4A): (i) BRAF-mutated tumors (the BRAF group) and (ii)

NRAS- and HRAS-mutated tumors (the NRAS-HRAS group). Next, we assembled four differ-

entially expressed gene sets (up- or downregulated in one group but identical or regulated in
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the opposite direction in another group, compared with normal samples). The search was

restricted to genes whose aberrant expression levels coincided with hyper- or hypomethylated

probes associated with BRAF,HRAS, and NRAS mutations (see section below). Using a hyper-

geometric model, genes in each of the four sets were tested for enrichment by 1,330 canonical

pathways collected by MsigDB [75]. The highly transcribed, differential genes were defined by

expression levels that were greater than 10 log2 RSEM and at least double those of normal

samples.

Association between driver gene–associated aberrant methylation and

aberrant gene expression in thyroid carcinomas

We sought genes whose aberrant expression was correlated with aberrant methylation in the

presence of BRAF,HRAS, or NRAS mutations. First, we identified probes that fell within 1,500

bp of the transcription start site or within gene bodies, and whose β values were significantly

correlated with expression levels of the corresponding gene. Because a methylated CpG may

up- or downregulate gene expression in a context-dependent manner [70, 76, 77], we com-

puted the significance of the Spearman correlation between each individual probe’s methyla-

tion and the expression level of its corresponding gene. We considered gene-probe pairs

significant at q<0.05. Second, we analyzed the association between β values and BRAF,HRAS,

and NRAS mutation status for all probes using the two-sided Wilcoxon rank-sum test. For

each driver gene, aberrantly methylated probes (q<0.05) were classified as hyper- or hypo-

methylated relative to normal samples. Third, we integrated the results from the first and sec-

ond steps to identify aberrantly methylated probes whose methylation levels were significantly

correlated with the expression levels of their corresponding genes for each group of BRAF-,

HRAS-, and NRAS- mutated samples. Finally, for each group of mutated samples, significantly

up- or downregulated genes were identified from the aberrant methylation-matched genes

identified in the third step, using the two-sided Wilcoxon rank-sum test relative to the expres-

sion levels of normal samples (q<0.05). For example, when we looked for genes that were

upregulated in BRAF-mutated samples but exhibited no change or were downregulated in

HRAS- and NRAS-mutated samples, we restricted the search to genes that were hyper- (or

hypo-) methylated in BRAF-mutated samples but exhibited no change or were hypo- (or

hyper-) methylated in HRAS- and NRAS-mutated samples in the third step. Thus, for each

driver gene, we obtained a list of aberrantly methylated probes associated with genes that were

aberrantly expressed.

Supporting information

S1 Text. Driver gene mutations, methylation patterns, and cell proliferation are

associated.

(DOCX)

S1 Fig. Driver gene–methylation associations across 18 cancer types (rows), stratified by

CpG subsets (columns). The numbers (1–5) indicate the top five principal components (PCs)

for each probe set, whereas the colors show the significance of the strongest association

between each methylation PC and any driver gene. The probe sets represent methylome (all

probes), CpG island (CGI) probes, shore and shelf (SS) probes, and open sea probes, further

stratified by hyper- and hypomethylation status. For glioblastoma (GBM), stomach adenocar-

cinoma (STAD), skin cutaneous melanoma (SKCM), and testicular germ cell tumor (TGCT),

there were not enough normal samples to compute associations for hyper-/hypomethylated
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probes (shown in dark grey).

(TIFF)

S2 Fig. DNAm variation is correlated with mutated driver genes and mitotic indices. In 15

of 18 cancer types examined, mutated driver genes were associated with one or more of the

top five methylation PCs, shown as rows. The three driver genes most significantly associated

with each PC are reported. Driver genes associated with the negative extreme of the PC are in

blue, whereas associations with the positive extreme are in red. Background colors indicate

correlation status (q<0.05; Spearman correlation) with two mitotic indices. Light green indi-

cates a significant correlation with the DNAm-based index (epiTOC [7]); light yellow a signifi-

cant correlation with the expression-based index; orange indicates correlations with both

indices, in the same direction; and brown indicates correlations with both indices, in opposite

directions. The methylation PC–driver gene association shown here is identical to that in Fig

1. See Table 1 for cancer type abbreviations.

(TIFF)

S3 Fig. Driver gene mutations are significantly associated with DNA methylation variation

in various cancers, after removing probes correlated with the DNAm-based mitotic index.

The DNAm-based mitotic index, called epiTOC (for epigenetic Timer Of Cancer), was used to

approximate the cell proliferation rate in cancer [7]. In 11 of 18 cancer types examined, driver

gene mutations were associated with one or more of the top five epiTOC-uncorrelated methyl-

ation principal components (PCs). Shown is a grid depicting the three driver genes most sig-

nificantly associated with each PC. A gene name in blue indicates that mutations in that gene

were significantly associated with the negative extreme of the PC, whereas red indicates a gene

was associated with the positive extreme of the PC. For each PC, a white background indicates

no correlation with epiTOC was present (q<0.05; Spearman correlation). See Table 1 for can-

cer type abbreviations.

(TIFF)

S4 Fig. Distribution of driver gene–associated methylation probes throughout the genome

in kidney renal clear cell carcinoma (KIRC). (A) Chromosomes 1 to 22 are plotted on a cir-

cle, with each chromosome plotted proportional to chromosome length and labeled in the out-

ermost track. The 14 inner tracks correspond to all 14 driver genes in KIRC; gene names and

the number of associated probes for each are shown. For each driver gene, associated probes

are plotted as line segments in the corresponding track at the appropriate chromosome loca-

tion. The chromosome length scale is labeled for chromosome 1 (a major interval indicates 90

Mb). (B) A heat map shows driver gene mutation profiles across KIRC tumor samples.

(TIFF)

S5 Fig. Genomic distribution of the probes that are positively and negatively associated

with RNF43. The bar plot shows the percentage of probes falling in 11 different annotated

genomic regions for RNF43, for all probes analyzed (labeled array) and after stratifying by the

direction of association (positive or negative). The genomic distribution of probes was

obtained with ChIPseeker [78].

(TIFF)

S6 Fig. Probes that are negatively associated with TP53 are shared across cancer types. A

bar plot shows the number of probes negatively associated with TP53 (y-axis in log10 scale;

number of probes is also indicated at the top of each bar) in at least 1 to 7 cancer types (x-axis).

(TIFF)
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S7 Fig. Methylation subtypes identified by using the top 1% most variable probes in thy-

roid carcinoma (THCA) and uterine corpus endometrial carcinoma (UCEC). Heat maps

for (A) THCA and (B) UCEC depict hierarchical clustering of methylation values of the top

1% most variable probes (based on variance across tumor samples; 3,145 probes in total). Each

column represents a sample, and each row represents a probe. Mutation status is shown in the

upper sidebar. Sidebars on the left indicate CpG subset and average methylation levels across

normal samples. The subtypes identified and their corresponding mutation status are similar

to those shown in Fig 4.

(TIFF)

S8 Fig. Empirical false discovery rates (FDRs) are controlled by theoretical cutoffs at

q = 0.05 for site-specific associations. Site-specific associations were tested between every

driver gene and every probe. Significant associations were called at a theoretical FDR (q-value)

< 0.05 for each cancer type. The empirical FDR (y-axis) was estimated for the theoretical cut-

off (q = 0.05) by permuting mutation status for each driver gene in each cancer type (column).

Here, all points are below the line (empirical FDR = 0.05), indicating that empirical FDRs are

controlled by the theoretical cutoffs.

(TIFF)

S1 Table. Driver genes associated with any of the top five principal components across 18

cancer types (q<0.05; Wilcoxon rank-sum test).

(XLSX)

S2 Table. Counts for driver gene–methylation probe associations for 18 cancer types

(q<0.05; Wilcoxon rank-sum test), stratified by CpG subset [methylome (all probes), CpG

island probes, shores and shelves probes, and open sea probes] as well as hypo- or hyper-

methylated status (+: positive associations, -: negative associations); epigenetic modifying

enzymes are annotated.

(XLSX)

S3 Table. Associations between mutated driver genes and DNAm- and expression-based

mitotic indices.

(DOCX)

S4 Table. Number of TP53-associated probes in 18 cancer types (q<0.05; corrected for

associations between all probes and TP53 within each cancer type; Wilcoxon rank-sum

test).

(XLSX)

S5 Table. Canonical pathways and regulatory gene sets enriched with up-/downregulated

genes shared across at least two cancer types that correspond to DNAm changes in TP53-

mutated tumors.

(XLSX)

S6 Table. Sorted median expression levels of genes differentially expressed (relative to nor-

mal samples) in the two thyroid carcinoma molecular subtypes identified in Fig 4A: BRAF-

mutated vs NRAS-/HRAS-mutated; each Excel tab separates genes by the direction of

expression dysregulation (up or down) and the group of mutated samples showing the

expression dysregulation (BRAF or HRAS/NRAS).

(XLSX)

S7 Table. Pathways enriched with genes dysregulated in the two thyroid carcinoma molec-

ular subtypes identified in Fig 4A: BRAF-mutated vs HRAS/NRAS-mutated, stratified by
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the direction of expression dysregulation (up or down) and the mutant group (BRAF or

HRAS/NRAS).

(XLSX)
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