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Emotion recognition systems have been of interest to researchers for a long time.
Improvement of brain-computer interface systems currently makes EEG-based emotion
recognition more attractive. These systems try to develop strategies that are capable of
recognizing emotions automatically. There are many approaches due to different features
extractions methods for analyzing the EEG signals. Still, Since the brain is supposed to
be a nonlinear dynamic system, it seems a nonlinear dynamic analysis tool may yield
more convenient results. A novel approach in Symbolic Time Series Analysis (STSA) for
signal phase space partitioning and symbol sequence generating is introduced in this
study. Symbolic sequences have been produced by means of spherical partitioning of
phase space; then, they have been compared and classified based on the maximum
value of a similarity index. Obtaining the automatic independent emotion recognition
EEG-based system has always been discussed because of the subject-dependent
content of emotion. Here we introduce a subject-independent protocol to solve the
generalization problem. To prove our method’s effectiveness, we used the DEAP dataset,
and we reached an accuracy of 98.44% for classifying happiness from sadness (two-
emotion groups). It was 93.75% for three (happiness, sadness, and joy), 89.06% for four
(happiness, sadness, joy, and terrible), and 85% for five emotional groups (happiness,
sadness, joy, terrible and mellow). According to these results, it is evident that our
subject-independent method is more accurate rather than many other methods in
different studies. In addition, a subject-independent method has been proposed in this
study, which is not considered in most of the studies in this field.

Keywords: emotion recognition, subject-independent classification systems, brain-computer interface, nonlinear
dynamic analysis, symbolic time series analysis, phase space partitioning, cosine similarity

INTRODUCTION

Emotions, which refer to a psychophysiological process resulting from understanding an object
or situation, affect our daily lives by directing actions and moderating motivation. Most human
works are influenced by emotions, from how we think to decision making and our behavior or
communication. Positive emotions enhance human health and work effectiveness, whereas negative
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emotions probably pave the way for health issues. For example,
the World Health Organization (WHO) had predicted that
depression would be the most common disease in the world
by 2020 (Byun et al., 2019), and untreated depression increases
the mortality rate and may cause suicidal behavior, which is a
severe public health problem (Franklin et al., 2017). Moreover,
it was confirmed that learning processes are deeply affected by
emotional intelligence, especially for information extraction, in
which its importance is most apparent (Salovey andMayer, 1990;
Goleman, 1995).

In recent years, many different uses of Human-Computer
Interaction (HCI) systems have become commonplace (Chai
et al., 2016), and one of the applications of HCI systems that
have been recently taken into consideration are systems that
need to detect and analyze the emotions, such as rehabilitation
systems or health care, computer video games, etc. Designing
such systems requires comprehending and recognizing emotions
(Stickel et al., 2009; Bajaj and Pachori, 2015; Verma and Tiwary,
2017), so understanding the user’s emotional state is assumed
as a significant factor. In the past decade, emotion recognition
researches from different modalities [e.g., physiological signals
(Khezri et al., 2015; Yin et al., 2017), facial expression (Cohen
et al., 2000; Ioannou et al., 2005; Flynn et al., 2020; Proverbio
et al., 2020), etc.] have been grown up and recently, thanks
to the existence of cost-effective devices for capturing brain
signals [electroencephalographic (EEG) signal] as input for
systems that decode the relationship between emotions and
electroencephalographic (EEG) variation, researchers in the field
of Brain-Computer Interface (BCI) have been studying emotion
recognition to make affective BCI (aBCI) systems (Mühl et al.,
2011; Ju et al., 2020; Torres et al., 2020).

Emotion recognition is the research area trying to design
systems and devices capable of identifying, interpreting, and
processing human emotions, which would lead to the probable
creation of machines capable of interacting with emotions.
Emotional states play an essential role in decision-making
or problem-solving, and emotional self-awareness can help
people manage their mental health and optimize their work
performance. Some researchers believe that using of EEG-based
BCI in emotion recognition systems will soon increase, and
they could be used for emotion recognition in daily life
for several purposes, such as gaming and entertainment,
health care facilities, teaching-learning scenarios, and optimizing
performance in the workplace or some other applications (Torres
et al., 2020). Therefore, the study of emotion recognition seems
to be very practical. One of the most important challenges in this
field is to decode the EEG’s information and map it to specific
emotions, which we intend to address in this study. In this
regard, several investigations have been conducted using various
procedures in the past, which we will review in the next section.

Explaining a person’s emotional state is one of the main
issues in emotion recognition. Dimensional and discrete models
are two models for describing emotional states. In general,
some fundamental emotional states, such as sadness, happiness,
hate, joy, surprise, terrible, and anger, express discrete models
(Ekman, 1992), whereas the valence-arousal space represents the
dimensional model (Mehrabian, 1996). The dimensional model

describes all emotional states using the valence and arousal axis.
The range of qualitative changes varies from negative to positive,
and each one is interpreted in a way. While high to low-level
activity in the arousal state represents exited to boring conditions,
the positive and negative valence score states demonstrate
pleasant (e.g., happiness) to unpleasant feelings (e.g., sadness).
Figure 1 illustrates the arousal-valence dimensional model and
some of the discrete emotions.

In recent years, emotion recognition has received much
attention in many fields of science. Several approaches have
been introduced to identify or classify emotions, which will be
reviewed below.

Several approaches have been used for emotion recognition
in the literature. Since a person’s emotional state has an external
appearance on his/her face and the emotions can be recognized
from his/her face, one of the most common approaches to
recognize emotions is the facial expression recognition systems
(Koelstra et al., 2012; Sharma et al., 2019; Yadav, 2021).
Another common approach to recognizing emotions is speech
analysis done in a wide range of studies (Schuller et al., 2003;
Jahangir et al., 2021). Despite the positive results reported
from these methods, the person may want to hide his/her
inner feelings. Also, these recognition methods have a critical
limitation because they are dependent on the cultural and
social environment of the subjects. This limitation may be
overcome by using physiological signals such as electromyogram
(EMG), electroencephalogram (EEG), skin temperature, blood
volume pulse, etc. (Yoon and Chung, 2013). Thus, the emotion
recognition systems moved towards processing physiological
signals because they are more accurate due to non-being
controllable by the subject. Physiological changes are the basis
of emotions in our body (Alhagry et al., 2017), so analyzing
these signals, like electrocardiogram (ECG), electromyogram
(EMG), galvanic skin response (GSR), blood volume pressure
(BVP), and electroencephalogram (EEG) make emotions to be
recognized (Koelstra et al., 2012; Moharreri et al., 2018; Bao
et al., 2021; Ebrahimzadeh et al., 2021a). Because the source of a
person’s emotions is the central nervous system (CNS), the brain
signals seem to be the most appropriate option for extracting
emotional information. The most common signal that shows
the brain’s electrical activity is the electroencephalogram (EEG),
which is widely used in extracting and analyzing brain system
information due to its non-invasiveness, easy recording, and very
high temporal resolution (Ebrahimzadeh et al., 2019a, 2021b;
Zhong et al., 2020; Sadjadi et al., 2021). The EEG signal actually
measures the brain’s activity, which is responsible for regulating
and controlling emotions (Soroush et al., 2020), so emotion
recognition systems based on EEG signals have been favored
by researchers (Takahashi, 2004; Bos, 2006; Petrantonakis and
Hadjileontiadis, 2011; Bajaj and Pachori, 2015; Pham et al., 2015;
Singh and Singh, 2017).

There are several linear feature extraction techniques,
including time and frequency domain methods (Taran and
Bajaj, 2019) and a variety of traditional machine learning
methods such as Support Vector Machines (SVM), Linear
Discriminant Analysis (LDA), Artificial Neural Networks (ANN)
and functional/effective connectivity (Zhang et al., 2020;
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FIGURE 1 | Representation of dimensional model for emotions , this model defines all emotions on a two dimensional space, valence and arousal. Valence denotes
the polarity of emotions [positive (pleasant) or negative (unpleasant)] and arousal shows the amount of excitement [high (excited) or low (bored)]. As seen in the figure,
discrete emotions, based on the amount of arousal and valence values, can be shown on this dimensional model.

Ebrahimzadeh et al., 2021c; Seraji et al., 2021) for EEG-based
Emotion Recognition systems (Zhong et al., 2020; Bao et al.,
2021). Statistical features of EEG signals, such as mean value,
power of the signal, and the first and second difference,
are usually used as time-domain features (Takahashi and
Tsukaguchi, 2003), and frequency domain characteristics like
the power spectrum of each EEG different bands are used
as frequency domain features (Wang et al., 2011). The above
methods are all linear analysis methods. But the EEG signal
is generated by a very complex system (i.e., the brain) that
is supposed to have a nonlinear, non-stationary, and chaotic
behavior (Soroush et al., 2020). So, it is better to adopt a suitable
non-linear method to extract information from this nonlinear
complex system.

Regarding the nonlinear nature of EEG (Stam, 2005), it seems
nonlinear features and tools outperform emotion recognition.
Non-linear features, such as Fractal dimension (FD; Sourina and
Liu, 2011; Liu and Sourina, 2014), sample entropy (Jie et al., 2014;
Raeisi et al., 2020), and nonstationary index (Kroupi et al., 2011),
have been used in mentioned studies to recognize emotions.
Among the nonlinear approaches that have been performed,
some of them require advanced combinations of a large number
of features or use complicated systems or algorithms, so their
computational cost is high, and also the clinical meaning of
each variable is fully blurred within complex classifiers (García-
Martínez et al., 2017; Ebrahimzadeh et al., 2019b), so, in this
study, we tried to propose a method to overcome this issue that
has a low computational cost.

One of the nonlinear analysis tools is Symbolic Time Series
Analysis (STSA), which has been favored over the last few years

in many research areas, including mechanical systems, artificial
intelligence, data mining, and the bio-signal processing (Alcaraz,
2018). One of the main advantages of symbols is the effectiveness
of numerical computation that could be considerably boosted
relative to what is achievable by directly analyzing the original
time series (Daw et al., 2003). This is an essential feature
in utilizing systems with limited computational speed and
memory capacity used in real-time mobile platform applications.
Additionally, analysis of symbolic data is typically robust to
the measurement noise (Daw et al., 2003; Reinbold et al.,
2021). There, to have low-cost and relatively simple devices,
symbolization can be directly performed in the instrumentation
software (Chin et al., 2005). Also, it has been shown that, in
the case of noisy signals, symbolization can boost the signal-
to-noise ratio (Daw et al., 2003). Symbolic analysis has been
used to investigate many biological systems features (Daw et al.,
2003; Glass and Siegelmann, 2010; Schulz and Voss, 2017; Awan
et al., 2018), in between, neural pathologies diagnosing (Lehnertz
and Dickten, 2015) and neural systems laboratory measurement
are the most notable candidates. For example, Azarnoosh et al.
(2011) used symbolic analysis methods to determine mental
fatigue.

The original data must be discretized into a matching
sequence of symbols to perform this technique. The transformed
version of the original data contains temporal information
of the original signal. So, an important stage in STSA is
the data partitioning for generating the symbol sequence
(Daw et al., 2003). Traditional methods for generating the
symbols and selecting the location of partitions have used
the mean, midpoint, or median of the data. Other methods
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that have been suggested are: to make equal size intervals
over the data range (‘‘Uniform Partitioning’’; Rajagopalan
and Ray, 2006) or equal probability regions over the data
range (‘‘Maximum Entropy partitioning’’; Rajagopalan and
Ray, 2006). Tang et al. (1997) argued that a mean-based
binary symbol set partitioning could be used for dynamics
reconstruction of nonlinear models, even upon noisy dynamics.
Uniform partitioning of EEG signals was applied to identify
precursors to seizures by Hively et al. (2000). There are also
other approaches to defining symbols, including ‘‘symbolic
false nearest neighbors partitioning (SFNNP)’’ (Buhl and
Kennel, 2005) and ‘‘wavelet-space partitioning (WSP)’’
(Rajagopalan and Ray, 2006).

One of the essential tools in nonlinear system analysis is the
phase space, which has important information about the system
(Soroush et al., 2020). Relying on the precious knowledge of
the phase space, in the present study, we try to extract this
information by the symbolic analysis of this space to find a
general pattern for emotions and classify some emotional states
based on these patterns.

Another problem with most methods used to recognize or
classify emotions is that they are subject-dependent. Because
the people’s opinions towards feelings are subjective (Soroush
et al., 2020), being dependent on the person is a weakness for an
emotion recognition system, and designing a system independent
of the individual, which can achieve a general pattern for each
emotion, is a significant advantage to it counts. This study uses
the leave-one-subject-out validationmethod to provide a subject-
independent system for emotion recognition.

The theoretical framework of a novel STSA-based approach
has been introduced in the present study to recognize the
dynamical patterns and its experimental validation for emotion
recognition using EEG signals. Considering the advantages
mentioned for the symbolic time series analysis method in the
analysis of signals and nonlinear systems (such as reducing the
sensitivity to noise, decreasing the numerical computation, etc.)
and according to the complex and non-linear nature of the EEG
signal, our goal in this study is to develop a new method based
on the symbolic time series analysis approach, which uses the
most constructive information from the phase space with the
least computational cost. To extract the information from the
whole brain system, all 32 EEG channels would be utilized to
construct the phase space. This, however, would dramatically
increase the dimensionality and computational demands. We
propose Spherical Phase Space Partitioning (SPSP) to overcome
this issue, which uses for partitioning the phase space, generating
the symbolic sequences, and achieving a general index pattern for
each emotional state. Then, the symbolic sequences are compared
and classified based on the maximum value of a similarity
index. A subject-independent protocol will be used to enhance
generalization ability.

So, this study aims to improve the precision of emotion
recognition systems with a simple, low computational cost
and subject-independent algorithm. The remainder of the
manuscript is organized as follows. ‘‘Materials and Methods’’
explains the database put to analysis in the study, provides a
brief description of the traditional STSA and cosine similarity

index methods, and finally introduces the proposed method for
symbolization. The results are given in ‘‘Results’’ Section and
then discussed in ‘‘Discussion’’ Section. Ultimately, the most
important conclusions are brought to light in the final part of
‘‘Discussion’’ Section.

MATERIALS AND METHODS

Dataset
DEAP database was applied in the current study, a multimodal
emotional database for human emotions analysis, taken from
subjects who watched music videos (Koelstra et al., 2012). The
DEAP database consists of EEG and peripheral physiological
signals of 32 subjects, in which 40 music videos were
displayed for each subject. EEG and peripheral signals were
recorded at a sampling rate of 512 Hz. In this study,
pre-processed data provided by DEAP authors were used. After
down-sampling the EEG data to 128 Hz, they were averaged
to the common reference. Afterward, eye artifacts were taken
away, and a high-pass filter was used. The duration of each
video was 1 min, and after each movie, subjects scored the
movie in each of the five dimensions of a self-assessment
questionnaire. Emotional response covers five dimensions:
dominance, valence, arousal, liking, and familiarity. Moreover,
some videos have featured discrete labels like happiness and
sadness. This study is based on the discrete model for emotion,
using five emotional states sadness, happiness, hate, joy, and
mellow.

Symbolic Time Series Analysis
Symbolic Analysis of a signal is a new approach in which
continuous signals are converted to symbol sequences using
partitioning of the continuous signal domain (Srivastav, 2014).
This method is a special case of symbolic dynamics, which
is used as its substitution, especially for signals, because of
the inherent limitations in the symbolic dynamics method
for executing for signals (the symbolic dynamics approach is
often applied to systems), particularly in the presence of noise
(Daw et al., 2003).

According to the concept of symbolic dynamics, it would
be possible to describe the features of a dynamical system by
partitioning its phase space into K sets that are mutually disjoint
{S1, S2,. . ., SK}, so each possible trajectory transforms into a
sequence of symbols (Robinson, 1998). Typically, a generating
partition is needed for applying the concepts of symbolic
dynamics, which match an exclusive assignment of symbolic
sequences to every system’s trajectory. It should be noted that this
requirement is usually ignored in real-world applications because
of noise; yet, even if there is no noise, generating partitions are
either not available or could not be estimated (Hirata et al.,
2004). Hence, as an alternative to symbolic dynamic, performing
Symbolic Time Series Analysis (STSA) has been favored recently
in many applications (Donner et al., 2008).

In traditional symbolic dynamic (or symbolic time series
analysis), the next step after symbolization is symbolic sequence
(words in the symbolic dynamics letter) construction which
is made by gathering groups of symbols together to identify
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FIGURE 2 | Time series symbolization process (A) and tabulating a histogram of symbol sequence (B)—based on a threshold (for example, mean, in this figure),
the time-series convert to a symbol sequence (series). Based on the length considered for the words, the sequence of symbols becomes a series of words. Then,
the analysis of the words is usually performed by statistical analysis of the words occurrence, frequency, like histogram.

temporal patterns. Finally, the analysis of these symbol sequences
(words) is usually performed by statistical analysis of the word
occurrence frequency in the symbolic sequences. Figure 2
illustrates this process for a time series.

As mentioned in section 1, there are some criteria for
partitioning and discretizing the signal, such as mean, median,
mean ± variance, and some other new approaches like False
Nearest Neighbor Partitioning (Kennel and Buhl, 2003), Wavelet
Partitioning (Rajagopalan and Ray, 2006) and Hilbert–Hung
Partitioning (Sarkar et al., 2009). This article aims to introduce
a new approach for partitioning the continuous data in

the phase space based on the spherical partitioning, which
will be explained in Section ‘‘Proposed STSA-Based Emotion
Recognition Method’’.

Cosine Similarity
A similarity measure is an important tool for determining the
degree of similarity between two objects. It is believed that
similarity measures are advantageous in pattern recognition,
image processing, and machine learning (Ye, 2011). The cosine
similarity measure is one of these measures, a widely used
metric that is both a simple and effective (Xia et al., 2015). It
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is defined as the cosine of the angle between the two vectors,
determines whether two vectors are pointing in roughly the
same direction (Salton and McGill, 1986), and is obtained by
dividing the inner product of two vectors by the product of
their lengths.

This classic measure is applied for information extraction and
is the most useful describedmeasure for proving vector similarity
(Salton and McGill, 1986). The formulate of the cosine similarity
is simply as follows:

similarity = cos θ =
A.B
||A||B||

=

∑n
i = 1 AiBi√∑n

i = 1 A
2
i

√∑n
i = 1 B

2
i

(1)

Where Ai and Bi are components of vectors A and B, respectively
and ||x|| indicate the absolute value of the desired vector. As can
be seen, the cosine similarity is obtained by dividing the inner
product of two vectors by their lengths. This division eliminates
the effect of the ‘‘length’’ or ‘‘magnitude’’ of the vectors, which is
an important feature of cosine similarity. This lack of sensitivity
to vectors’ magnitude is essential, especially in our study where
we work with ‘‘codes’’ or ‘‘symbols’’, instead of ‘‘amplitude’’ or
‘‘real values’’. The lack of dependence on the domain seems very
necessary and valuable. So we use this measure to find similarities
between each emotional symbolic sequence and each emotion
index, for classification purposes.

Proposed STSA-Based Emotion
Recognition Method
The adopted procedure of STSA to recognize emotions used
in this study is explained briefly in this section. The adjusted
STSA emotion recognition method uses the vector information
generated by phase space partitioning, wherein the time-series
data grow. The steps are as follows:

• Partitioning of the signal’s phase space and transforming
time-series data from the continuous domain to the symbolic
domain.
• Calculation of the similarity between each emotional state
vector and reference (index) vectors for the classification of
each emotional test vector.

Spherical Phase Space Partitioning Based Symbolic
Time Series Analysis (SPSP–STSA)
Because of the advantages of phase space in representing the
nonlinear features of a system, partitioning the phase space
was employed in this study. To analyze a set of signals, using
partitioning the phase space, we first need to construct its phase
space trajectory. All 32 EEG channels (Fp1, Fp2, AF3, AF4, Fz,
F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2,
CP5, CP6, Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1, O2) is used to
construct the phase space and each sample point ‘‘n’’ in the phase
space, is constructed as follow:

x(n) =


x1(n)
x2(n)
...

x(M−1)(n)
xM(n)


M ∗ 1

=


Fp1(n)
Fp2(n)

...
O1(n)
O2(n)


32 ∗ 1

(2)

where n = 1:N denotes the samples, N = 8,064 is the total
points of each signal, M = 32 is the number of channels (the
dimensional of phase space), xi(n) denotes the ith dimension of
the space at the sample ‘‘n’’ and x(n) denotes eachM dimensional
point of the phase space (Figure 3). The matrix of all trajectory
points for one EEG signal (for example: for one movie of one
person with the length of N points) in the phase space will be
as follows:

FIGURE 3 | Representation of points and the distances of points from the center of the hypersphere, in the constructed phase space of the signal (due to the
limitation of representation of space dimensions number, only three dimensions of phase space are displayed).
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FIGURE 4 | Uniform and Maximum Entropy (ME) partitioning examples with S = 4.

FIGURE 5 | Comparison of uniform and maximum entropy partitioning in spherical partitioning and symbol sequence generation phase.

X = [x(1), x(2), ..., x(N)]

=


x1(1), x1(2), ..., x1(N)
x2(1), x2(2), ..., x2(N)

...
x(M−1)(1), ..., x(M−1)(N)
xM(1), xM(2), ..., xM(N)


M∗N

(3)

where X is an M∗N matrix that indicates the total points of a
trajectory for one EEG signal.

Then we use the new spherical partitioning idea to discretize
the phase space and make symbols.

In the partitioning scheme, there are two main approaches:
-Uniform Partitioning
-Maximum Entropy Partitioning (ME)
Firstly, the maximum andminimum of the distances from the

mean point are assessed, and equal-sized regions are obtained
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FIGURE 6 | Algorithm for selecting the number of symbols.

FIGURE 7 | The block diagram of the proposed method.

by partitioning the range between the maximum and minimum.
These regions are mutually disjointed. A symbol from the
alphabet (the set of symbols) then assigns each region. The data
point is coded with a specified symbol if it is in a certain region.
Therefore, a sequence of symbols is generated based on a given
sequence of time series data (Uniform Partitioning).

Naturally, it seems to be more appropriate to partition regions
due to their information, i.e., the higher the information, the finer
the partitioning, and vice versa. To reach this goal, a partitioning
method was applied so that the entropy of the generated symbol
sequence is increased as much as possible (Rajagopalan and Ray,
2005). The process to obtain an ME partition is explained below.

Frontiers in Human Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 936393

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Tavakkoli and Motie Nasrabadi Non-linear Dynamic Analysis for Emotion Recognition

Suppose the length of the signal is L and the number of
symbols is S (size of the alphabet). L samples of signals are set
in ascending arrangement. A data segment of length [L/S] starts
from the first sorted data point, makes a separate portion of the
partitioning, in which [x] denotes the integral part of x. Figure 4
shows the difference between these two types of partitioning for
a sine signal and Figure 5 shows this difference for a sample
signal in three-dimensional phase space. The plot on the right
in Figure 5 indicates ME partitioning for a sample signal, with
S = 4. As predicted, the partitions’ size is not equal; nevertheless,
the symbols have equal likelihoods. It is more probable that
discrepancies in data patterns are revealed in ME partitioning
than in other partitioning methods (Rajagopalan and Ray, 2006).

In our proposed spherical partitioning method, based on the
ME partitioning approach, at first, each point’s distance (d) is
calculated from the center of the hypersphere (Figure 3). Then
the partitioning is done based on the number of symbols selected
according to the rule described below.

The selection of symbol number S is essential in STSA and
is an active research area. For instance, a small value of S
might be insufficient to capture the features of the time series
data. Besides, a large value of S could cause redundancy and
unused computational resources. To select S, Rajagopalan and
Ray (2006) applied an entropy-based approach, so we used
this approach in this study. Presume H(k) signifies the symbol
sequence Shannon Entropy which is acquired after k symbol
partitioning:

H(k) = −
∑i = k

i = 1
pilog2pi (4)

where pi indicates the probability of occurrence of the symbol si
and H(1) = 0.

If sufficient information content of the underlying data set,
like the Maximum Entropy Partitioning situation, has been
available, then H(k) would be log2(k). To indicate the change in
entropy in terms of the number of symbols (S), we describe h(.)
as follows:

h (k) = H(k)−H(k− 1) ∀ k ≥ 2 (5)

A threshold εh was defined, where 0 < εh << 1 and start with
k = 2; for each k, the symbol probabilities pi (i = 1, 2, . . ., k)
are computed, and H(k) and h(k) are calculated by equations
(4) and (5) respectively and when h(k) < εh, exit the algorithm
and choose k as the number of symbols (S) (Rajagopalan and Ray,
2006; Figure 6).

After selecting the number of symbols, it is the time to
partition the phase space, and in this study, a new approach
was considered as Spherical Phase Space Partitioning (SPSP).
Consider ‘‘M’’ EEG channels shown by xm(n) m = 1, . . ., M (m:
counter of dimension, M: total number of state-space dimension
(EEG channels)); n = 1, . . .., N (n: sample counter, N: length
of time series). At first, the phase space is constructed using
32 channels. Themean point (center of hypersphere) is calculated
as follows:

FIGURE 8 | The changes in entropy (h) against the number of symbols (S).
(h) monotonically was reduced with increasing the amount of S and becomes
less than εh when S = 8.
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(6)

where xM denotes the center of a hypersphere in M dimensional
state space and xι indicates the mean value of each dimension
obtained by the average formula mentioned above. Then,
based on the trajectory points distance from the center
point (d) (Figure 3) and based on the ME approach, the
phase space is partitioned to S symbols. As the trajectory
evolves in the phase space, symbol sequences would be made
(Figure 5).

Classification: Cosine Similarity
After partitioning the phase space and generating the symbol
sequences, we need to compare each person’s emotional state
symbolic vector with some emotional indexes and detect and
classify each emotional state. We use cosine similarity for this
purpose. For each subject, we calculated the cosine similarity
of the symbolic sequence of that person with the index of
each emotional group, which is obtained by averaging over the
symbolic sequences of other subjects, and the classification of
each test data is based on the maximum value of this criterion.
The performances of these models were examined using the
leave-one-subject-out cross-validation method.

The process of the proposed method is shown in Figure 7.
Also, we are preparing the codes in a user-friendly way, and after
preparing them, we will put them on the GitHub.
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FIGURE 9 | Graphical flowchart of classification process of a signal (four groups of emotions case). (A) Training phase and calculate emotional indices. (B) Test
Phase. Each test subject’s EEG emotional symbolic sequence, is compared to four symbolic indexes (for each emotion) and based on the maximum value of the
cosine similarity, is assigned to one emotional group and finally, the accuracy is calculated. (C) Calculate total accuracy for all subjects.

RESULTS

Our new proposed approach to STSA was applied to the
openly accessible emotion dataset (the DEAP dataset;
Koelstra et al., 2012). All 32 EEG channels have been

used for phase-space construction. The phase space was
constructed and partitioned individually for each person
and each video. Selecting the number of symbols S was
one of the critical phases in STSA, which was performed
based on the entropy-based criteria described in ‘‘Proposed
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TABLE 1 | Comparison of different studies for emotion recognition using EEG—two groups of emotions.

Method description Dataset Emotions Accuracy

Wang et al. (2014) Power Spectrum Features, wavelet features, nonlinear dynamical
features, SVM, six subjects

Personal Data Positive and
Negative

87.53%

Liu and Sourina (2013) Higher Order Crossing, six statistical features, Fractal Dimension,
SVM

Personal Data — 87.02%

DEAP 90.35%
Proposed Method Symbolic Time Series Analysis, similarity index DEAP Happy and Sad 98.44%

Bold value indicates high percentage of accuracy.

TABLE 2 | Comparison of different studies for emotion recognition using EEG—three groups of emotions.

Method description Dataset Emotions Accuracy

Brown et al. (2011) Spectral Power Features, KNN, 11 subjects Personal Data Positive,
Negative, and
Neutral

85%

Liu and Sourina (2013) Higher Order Crossing, six statistical features, Fractal Dimension,
SVM

Personal Data — 74.44%

DEAP 84.41%
Proposed Method Symbolic Time Series Analysis, similarity index DEAP Happy and Sad 93.75%

Bold value indicates high percentage of accuracy.

TABLE 3 | Comparison of different studies for emotion recognition using EEG—four groups of emotions.

Method description Dataset Emotions Accuracy

Candra et al. (2015) Wavelet Energy, Wavelet Entropy, SVM DEAP Happy, sad,
angry, and
relaxed

77.4%

Lin et al. (2010) Power Spectral Density and asymmetry features of five frequency
bands, SVM, 26 subjects

Personal Data Joy, anger,
sadness, and
pleasure

82.29%

Liu and Sourina (2013) Higher Order Crossing, six statistical features, Fractal Dimension,
SVM

Personal Data — 67.08%

DEAP 80%
Proposed Method Symbolic Time Series Analysis, similarity index DEAP Happy, sad, joy,

and terrible
89.06%

Bold value indicates high percentage of accuracy.

TABLE 4 | Comparison of different studies for emotion recognition using EEG—five groups of emotions.

Method description Dataset Emotions Accuracy

Jenke et al. (2014) Higher Order Crossing, Higher Order Spectra, and Hilbert -Hung
Spectrum features, 16 subjects

Personal Data Happy, sad,
angry, quiet, and
curious

36.8%

Liu and Sourina (2013) Higher Order Crossing, six statistical features, Fractal Dimension,
SVM

Personal Data — 61.67%

DEAP 76.53%
Proposed Method Symbolic Time Series Analysis, similarity index DEAP Happy, sad, joy,

terrible, and
mellow

85%

Bold value indicates high percentage of accuracy.

STSA-Based Emotion Recognition Method’’ Section. The
threshold parameter εh was selected to be 0.2. Figure 8
shows the change in entropy h (Equation 5) against the
number of symbols S. As is shown, h monotonically was
reduced with increasing the amount of S and becomes less

than εh when S = 8. Thus, the number of symbols S was
selected to be 8.

After selecting the number of symbols, the phase space was
constructed and partitioned for each person’s movie based on
the ME Partitioning approach. As the system evolves through
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TABLE 5 | Confusion matrix for two emotional states.

Otuput class

Target class Emotions Happy Sad

Happy 32 (100%) 0 (0%)
Sad 1 (3.125%) 31 (96.875%)

Bold value indicates high percentage of accuracy.

TABLE 6 | Confusion matrix for three emotional states.

Otuput class

Target class Emotions Happy Sad Joy

Happy 32 (100%) 0 (0%) 0 (0%)
Sad 0 (0%) 30 (93.75%) 2 (6.25%)
Joy 4 (12.5%) 0 (0%) 28 (87.5%)

Bold value indicates high percentage of accuracy.

time, it moves through several blocks in its phase space, and
the matching symbol j (j = 1, 2,. . ., 8) is allocated to it thus a
data sequence is adapted to a symbol sequence si1, si2, si3,. . ..
Therefore, the symbol sequences represent coarse-graining of
the trajectories time evolution. After all intended movies of
all participants were symbolized, we used cosine similarity
(Equation 1) to find the maximum similarity between each
person’s symbolic emotional EEG signals and each emotional
index for classification purposes.

To validate the classification results, we used the leave-
one-subject-out cross-validation method (i.e., to compute the
accuracy for each subject, that person was excluded, and the
average of all 31 remaining sequences was calculated as an index
for each emotional state.) Then, the cosine similarity between
each emotional index and a test vector was computed, the
accuracy for each subject was computed, and the total accuracy
was obtained by averaging on all subjects. This procedure is
shown in Figures 9A–C.

The procedure was performed for four different combinations
of emotions by adding one emotion in each step. At first, we
started with two emotions, namely happiness, and sadness, and
our proposed method was able to classify these two emotional
groups with a precision of 98.44%. In the next step, we added Joy
to the groups, and we were able to distinguish these three groups

with an accuracy of 93.75%. For four groups classification, we
were able to classify the emotions including happiness, sadness,
joy, and terrible and separated four groups with an accuracy
of 89.06% and finally, for five groups of emotions (happiness,
sadness, joy, terrible, and mellow) the classification accuracy
was 85%.

It should be noted that in all four combinations of emotional
states, an increase in classification accuracy is observed compared
to some previous studies. Our proposed method results in
comparison with the other methods in the literature, on the same
dataset or some other datasets, were shown in Tables 1–4.

The classification accuracy is reported in Tables 1–4, but
in order to determine which emotions are easiest and which
are the most difficult to distinguish, investigating the confusion
matrices can be useful. The confusion matices for each groups of
emotional state are shown in Tables 5–8. Tables 6, 7 show, for
example, that joy is the most difficult emotional state to classify
and has the highest rate of misclassification among the three and
four emotional states. In addition, other emotional states can be
analyzed using Tables 5–8.

DISCUSSION

Emotion recognition using EEG signals has received much
attention recently. EEG is an invaluable source of information
about the brain dynamic and is Inherently nonlinear and
highly complex (Soroush et al., 2020). External or internal
stimulation, such as eliciting emotions, causes brain activity to
become more complex. Accordingly, in order to study these
types of systems, the use of nonlinear time series descriptors
like what is performed in this study is imperative. Given the
Symbolic Time Series Analysis (STSA) potential capabilities
for nonlinear analyzing the EEG dynamics, it was used to
recognize the emotional states in this study. Moreover, it was
shown that low computational complexity and noise robustness
are the other advantages of this method (Daw et al., 2003).
Most of the different approaches to STSA have been proposed
in the one-dimensional signal space. A person’s emotions,
however, are not localized in any particular area of their

TABLE 7 | Confusion matrix for four emotional states.

Otuput class

Target class Emotions Happy Sad Terrible Joy

Happy 29 (90.625%) 0 (0%) 3 (9.375%) 0 (0%)
Sad 0 (0%) 29 (90.625%) 2 (6.25%) 1 (3.125%)
Terrible 1 (3.125%) 2 (6.25%) 29 (90.625%) 0 (0%)
Joy 3 (9.375%) 0 (0%) 2 (6.25%) 27 (84.375%)

TABLE 8 | Confusion matrix for five emotional states.

Output class

Target class Emotions Happy Sad Terrible Joy Mellow

Happy 26 (81.25%) 0 (0%) 3 (9.375%) 0 (0%) 3 (9.375%)
Sad 0 (0%) 29 (90.625%) 2 (6.25%) 0 (0%) 1 (3.125%)
Terrible 1 (3.125%) 2 (6.25%) 28 (87.5%) 0 (0%) 1 (3.125%)
Joy 2 (6.25%) 0 (0%) 2 (6.25%) 27 (84.375%) 1 (3.125%)
Mellow 3 (9.375%) 0 (0%) 2 (6.25%) 1 (3.125%) 26 (81.25%)
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brain. Neural circuits responsible for emotion regulation are
distributed along different brain regions (Soroush et al., 2020).
Therefore, we have used the entire 32-channel EEG signal
for the whole brain, and the partitioning of the phase space
has been done based on our proposed Spherical Phase Space
Partitioning. To achieve more information, we performed the
analysis in the phase space of all 32 EEG channels (instead of
applying the STSA directly on the EEG time series themselves)
and partitioned the phase space based on our proposed
Spherical Phase Space Partitioning. Applying to the DEAP
dataset, our proposed method has successfully identified all
four combinations of emotional states. The comparison with
other methods applied on the same dataset (DEAP) or other
datasets is shown in Tables 1–4. The evaluation indicated that
our proposed method can recognize emotions more accurately
than several different methods (which are represented in bold
in Tables). For instance, the emotion recognition system which
has been proposed by Liu and Sourina (2013), based on Higher-
Order Crossing (HOC) features and Support Vector Machine
(SVM) classifier, for two emotional states of DEAP, had an
accuracy of 90.35%. In contrast, our proposed method had the
accuracy of 98.44% on the same number of emotional states
of DEAP. Also, for three combinations of emotions, they had
an accuracy of 84.41%, while our proposed method had an
accuracy of 93.75%. Increasing the classification accuracy can
be seen in two other cases for four and five combinations of
emotional states.

For four emotional states, the confusion matrix in Table 7
indicates that the happy, sad and terrible were classified with
90.625% of accuracy, and joy was classified with 84.375%. This
indicates that in this group, joy is the most difficult to classify.
It may be due to the similarity of the brain’s behavioral patterns
in joy to states such as happiness. As is seen, in 9.375% of cases,
the state of joy is mistakenly classified as happiness, which can
indicate the similarity of the dynamic pattern of the brain in the
case of joy to happiness.

CONCLUSION

This study proposed an emotion recognition system based on a
new Symbolic Time Series Analysis approach. Using the DEAP
dataset, the proposed EEG-based emotion recognition system

has successfully identified the emotional states of happiness and
sadness, with an accuracy of 98.44% in a subject-independent
approach. By increasing the number of emotions, the accuracy
rates of 93.75%, 89.06%, and 85% were obtained for three, four,
and five groups of emotions, respectively. The key strength of the
proposed method is that while the dynamic characteristics of the
signals are preserved, it is also a simple and fast method, which
has a significant advantage, especially in real-time applications.
For our future work, a potential research direction worth
considering would be reducing the number of channels based on
the importance of the brain area in the emotional states, which
some methods like ICA could do. In addition, since the DEAP
dataset videos are more based on the dimensional definition for
emotions and just a few numbers of videos are labeled based on
the discrete definition, more studies on DEAP have attempted
to classify the emotions based on the arousal and valence axes.
Future works can be conducted to use our proposed method to
classify the arousal and valence axes or four areas of the space.
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