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Abstract

It is challenging to decipher molecular mechanisms in biological systems from system-level

input-output data, especially for complex processes that involve interactions among multiple

components. We addressed this general problem for the bacterial histidine kinase CheA,

the activity of which is regulated in chemotaxis signaling complexes by bacterial chemore-

ceptors. We developed a general network model to describe the dynamics of the system,

treating the receptor complex with coupling protein CheW and the P3P4P5 domains of

kinase CheA as a regulated enzyme with two substrates, ATP and P1, the phosphoryl-

accepting domain of CheA. Our simple network model allowed us to search hypothesis

space systematically. For different and progressively more complex regulation schemes,

we fit our models to a large set of input-output data with the aim of identifying the simplest

possible regulation mechanisms consistent with the data. Our modeling and analysis

revealed novel dual regulation mechanisms in which receptor activity regulated ATP binding

plus one other process, either P1 binding or phosphoryl transfer between P1 and ATP. Strik-

ingly, in our models receptor control affected the kinetic rate constants of substrate associa-

tion and dissociation equally and thus did not alter the respective equilibrium constants. We

suggest experiments that could distinguish between the two dual-regulation mechanisms.

This systems-biology approach of combining modeling and a large input-output dataset

should be applicable for studying other complex biological processes.

Author summary

In complex biological systems, it is often difficult to determine which steps in the underly-

ing biochemical network are regulated by the signal by using direct experimental mea-

surements alone. In this paper, we tackled this general problem in the case of the kinase

activity of the multi-domain histidine kinase CheA. We developed a quantitative reaction

network model to describe the CheA enzyme kinetics by considering all the key reaction
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steps explicitly. We used this general model with different regulation schemes of progres-

sively increasing complexities to fit a large input-output dataset. Our modeling revealed

novel dual regulation mechanisms in which receptor activity regulated two independent

reactions in the network including the ATP binding reaction that was previously unsus-

pected. Through our quantitative analysis, we found that receptors affected the kinetic

rate constants of substrate association and dissociation equally and thus did not alter the

respective equilibrium constants. Testable predictions of the kinase activity dynamics are

made from our models to further distinguish the different dual regulation mechanisms.

Our study shows that combining modeling kinetics of the reaction network and input-

output data can help reveal the underlying regulation mechanism in complex networks

where probing individual reaction is impossible.

Introduction

Living systems sense environmental signals and respond by altered behaviors. Control of

behavior is achieved by a myriad of biochemical reactions forming a reaction network,in

which some reactions are directly regulated by the sensed signals. However, exactly which

reactions are controlled by a signal and how that control is exerted are incompletely under-

stood. Experimentally, it is common that only the final outputs can be measured, whereas

changes in internal processes remain largely inaccessible. Given these limitations in our

knowledge of the network and in the available data, inferring the underlying regulation mech-

anisms from systems-level input-output measurements is a major challenge in systems biology,

especially for complex reaction networks [1]. Here, we address this challenge in understanding

regulation mechanisms for the specific case of histidine kinase CheA which is a central compo-

nent in the machinery of bacterial chemotaxis and which is regulated by bacterial chemorecep-

tors [2–4].

The first stage of signal transduction in bacterial chemotaxis is from the external stimulus

(a chemical) to a conformational change in the transmembrane chemoreceptors [5–7]. The

second stage is from the conformation state of the receptors to modulation of phosphorylation

of the response regulator CheY [8, 9]. The final stage is control by phosphorylated CheY of the

bacterial rotary motor and thus the pattern of cell movement [10]. The second stage involves

histidine kinase CheA, which catalyzes phosphoryl transfer between ATP and a histidinyl side

chain in its P1 domain [11, 12]. That phosphoryl group is then transferred to an aspartyl resi-

due on CheY. Phosphoryl transfer from ATP to His to Asp is the hallmark of two-component

regulatory systems, which are prevalent in microorganisms [13].

Phosphoryl transfer from ATP to CheY involves steps internal to CheA [14]. These are

chemical reactions involving ATP, CheY, and three domains of CheA: P1 (phosphoryl-accept-

ing), P2 (CheY-binding), and P3P4P5 (dimerization, catalytic and receptor-coupling, respec-

tively) [15, 16]. These components define chemical states connected by bi-directional (forward

and backward) reactions, forming a reaction network.

The P3P4P5 unit plays a central role in the network, as the enzyme that catalyzes phospho-

ryl transfer between ATP and P1. For enzymatic reactions with one enzyme [E]tot and one

varied substrate [S], experimentally measured reaction rates are typically fit to the Michaelis-

Menten equation,

v ¼
kScat½E�tot½S�
KS

m þ ½S�
: ð1Þ
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For chemotaxis phosphoryl transfer, this straightforward analysis has been used to determine

how different receptor states regulate the Michaelis-Menten constant KS
m and the catalytic rate

constant kScat [17]. However, such analysis cannot reveal underlying regulatory mechanisms

[18].

To determine which steps of the reaction network are regulated and how they are regulated

is essential to understand the signaling mechanism. However, it is also an extremely challeng-

ing task because it is difficult, if not impossible, to probe experimentally each individual reac-

tion in the network separately. In this paper, we investigate the regulatory mechanism of

kinase CheA by modeling the kinetics of the entire enzymatic reaction network using different

hypotheses of regulation. Models were fit to an entire set of experimental data with the aim of

determining which hypotheses were consistent with the data. The best-fitting models sug-

gested experiments to distinguish among them. This systematic approach, demonstrated here

for CheA regulation, should be applicable to investigations of other complex biochemical

networks.

Models and methods

Our modeling utilized primary data generated by experiments described in Pan et al. [17].

Those studies characterized kinase activity of functional chemotaxis signaling complexes

formed by the P3P4P5 units of CheA, chemoreceptor Tar and the adaptor protein CheW.

The experiments consisted of changing the concentration of one of the two substrates (ATP

or the isolated CheA phosphoryl-accepting domain P1) while holding constant the concentra-

tion of the other substrate, for different signaling states of the chemotaxis signaling complex.

These states were generated by the extent of receptor modification at the four methyl-accept-

ing sites, which changes receptor signaling state from all-glutamyl (Tar-4E) kinase-off to all-

glutaminyl (Tar-4Q) kinase-on, or by increasing the concentration of the attractant ligand

aspartate, which shifts the signaling state toward kinase-off. Chemoreceptors were rendered

functional by insertion into native E. coli phospholipid bilayers provided by nanodiscs or

native E. coli membrane vesicles. From the phosphorylated P1 (P1P) concentration accumu-

lated at time Δt, shortly after the reaction was initiated, the average kinase activity (�v = average

reaction velocity) and the average kinase activity per enzyme molecule (�k = the reaction veloc-

ity per enzyme molecule, i.e. the apparent catalytic rate constant) were computed as

�v ¼
½P1P�

Dt
; �k ¼

�v
½P3P4P5�

: ð2Þ

The experiments generated 20 “input-output” curves of �k versus [P1] or [ATP] (two

response curves for each of the 10 receptor states). The Michaelis-Menten equation was used

in [17] to describe each experimental curve separately. Each curve required a pair of parame-

ters kScat and KS
m, and thus 40 parameters were used to fit all the data without any necessary con-

nections among these 40 phenomenological parameters. While CheA kinetics with isolated

subunits have been studied before [15, 16, 19], the recent studies [17] were specially suitable

for investigating possible receptor regulation mechanisms using our modeling approach

because of the large number of receptor states investigated.

A network model for CheA enzymatic reaction dynamics

To explain this full set of data within a coherent framework, we developed a simple enzymatic

network model to describe dynamics of the enzyme in all possible states in combination with

its two substrates/products (ATP/ADP, P1/P1P). The enzyme has two binding sites, one for
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ATP or ADP and other for P1 or P1P. Each binding site can be in three states: empty, occupied

by substrate or by product. The combination of these occupancy states results in 3 × 3 = 9

enzyme configurations shown in Fig 1. The transitions from one state to another form the

enzymatic reaction network.

The association/dissociation dynamics of substrate S(= ATP, P1) to the enzyme are

described by the dissociation rate constant, kS
off , and by the equilibrium dissociation constant,

KS
d , which identify the equilibrium properties of the binding process. For convenience, we

defined the on rate as

oS ¼ kS
off

½S�
KS

d
: ð3Þ

The experimental design in which the reactions proceeded for only a brief time before sam-

pling allowed us to assume that [ATP] and [P1] were constant and that [ADP]� [P1P]� 0.

This latter assumption leads to ωADP� ωP1P� 0, represented by gray colored arrows in Fig 1.

The phosphoryl group transfer rate constant for transfer from ATP to P1 is kPf . The reverse

rate constant kPr describes the opposite transition. The ratio between these two rate constants

GP ¼
kPr
kPf
¼
½ATP �E� P1�

½ADP�E�P1P�
jIsol: eq: ð4Þ

defines the isolated equilibrium between the two states ([ATP � E � P1] and [ADP � E � P1P]).

The equilibrium properties depend only on the difference of free energy between the two

enzyme configurations, which is given by kBT ln GP with kBT the thermal energy unit.

Details of the mathematical formulation of the enzymatic dynamics illustrated in Fig 1 are

given in the S1 Appendix.

Modeling enzyme regulations in the network

Besides defining the chemical reaction network that connects different states of the enzyme,

another important ingredient of the model was to specify which reactions (links in the net-

work) are regulated by the receptor and how they are regulated. Let us characterize the

strength of the receptor’s regulatory activity by 0� σ� 1, σ = 0, 1 correspond to the minimum

and the maximum activities respectively.

In our network model of the enzyme kinetics, there are three possible steps that the receptor

activity (σ) could affect: association/dissociation of ATP/ADP, association/dissociation of P1/

P1P, and the phosphoryl transfer between ATP and P1. Regulations of different reactions are

labeled by different colors of the reaction arrows in Fig 1. In this paper, we consider all three

possibilities and their combinations to identify what are the minimal sets of regulations needed

to explain all the experimental data [17].

The exact nature of the regulation determines how σ affects the reaction rate kn for the nth

reaction. Here, we consider the simple case in which the enzyme has two conformations

(active and inactive) and the receptor controls the fraction of time the enzyme spends in each

conformation. We further assume switching between the two enzyme conformations happens

at a timescale much faster than other chemical reactions. As a result, the total reaction rates are

weighted averages of the “bare” rates in each enzyme state and can be expressed as simple

functions of σ depending on the nature of the regulation. Specifically, σ dependence is linear if

the receptor only affects the kinetic rate constants without changing equilibrium properties of

the enzyme, but it is a linear rational function if the receptor also changes the equilibrium

properties of the enzyme such as the binding energies (see S2 Appendix). We used our model

together with the input-output data to determine the nature of the regulation.

A dual regulation mechanism of CheA revealed by modeling
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The error function and the biochemical meanings of the fitting parameters

For each specific model using a specific hypothesis Hi, we find the values of the biochemical

parameters~p and the receptor activities~s that minimize the mean error function χ2 over all

experiments defined as:

w2ðHiÞ ¼ min
~p;~s

1

N

X10

j¼1

Njw
2

j ð~p; sjjHiÞ; ð5Þ

where j 2 [1, 10] labeled all the 10 individual receptor states characterized by the membrane

preparation (“v” for vesicle, “d” for nanodisc), receptor methylation level (EEEE, QEQE,

QQQQ), and the ligand (aspartate) concentration (in μM). The total number of data points

was N ¼
P10

j¼1
Nj, where Nj was the number of experimental points in each state (between 12–

14 data points). The error (loss) function w2
j for experiment j was defined as

w2

j �
1

maxjðyÞ

X

i in
state j

ðyi � f ð~xiÞÞ
2

yi
; ð6Þ

where the difference (residue) between the data value and the model fit, ðyi � f ð~xiÞÞ, was

scaled by the geometric mean of the experimental value yi and the maximum value maxj(y) of

the entire experiment j. We used this definition of error function to avoid giving too much

weights to data points with large measured values.

All model parameters fell into two categories. The first category of parameters~p included

three kinetic rate constants (kATP
off , kP1

off , k
P
f ) and three equilibrium constants (KATP

d , KP1
d , GP),

which described the basic chemical reactions: association/dissociation of P1 and ATP to the

Fig 1. The enzymatic reaction network. The enzyme P3P4P5, denoted by E, catalyzes the phosphoryl transfer between its two

substrates ATP/ADP and P1/P1P. There are nine states related to the binding of ADP, ATP, P1 or P1P to the enzyme (the empty state

is drawn twice). Each pair of vertical or horizontal arrows indicates the association and dissociation of one substrate to the enzyme.

The diagonal arrows in the middle indicate the phosphoryl transfer reactions. For each substrate S(= ATP, P1), kS
off is the dissociation

rate constant and ωS is described by Eq 3 and is proportional to the association rate constant. The gray arrows and rate constants

indicate reactions that are negligible because of the low levels of ADP and P1P in the experiments. Reactions that belong to the same

regulated mechanism are drawn with the same color, blue for ATP/ADP association/dissociation, orange for P1/P1P association/

dissociation, and green for phosphoryl transfer. The unit of all rates constants is s−1.

https://doi.org/10.1371/journal.pcbi.1006305.g001
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enzyme and phosphoryl transfer between bound P1 and ATP. These “bare” biochemical

parameters are the same in all experiments. The second category of parameters was the experi-

ment-specific receptor activities σj, which could modulate the biochemical rates for each differ-

ent receptor state j(2[1, 10]). We set the activity of the most active receptor to be unity (σ10 =

1) to set the scale of the receptor activities, and the number of activity parameters was reduced

to 9. Thus there are 15 parameters in our model, which is used to fit all the 20 experimental

response curves simultaneously. We used a non-linear solver (Levenberg-Marquardt algo-

rithm of the function curve_fit from the package SciPy [20]) to find the set of parameters~p�

and~s� that minimizes the mean error χ2 defined by Eq 5.

The parameter sensitivity analysis

For statistics based data fitting where the underlying mechanism is unknown, the balance

between improvement in the fitting and the number of parameters may be assessed by infor-

mation criteria such as the Bayesian [21] or Akaike [22] methods. Here, the structure of our

model and the model parameters were all based on known underlying biochemical processes.

Therefore, the number of parameters Ntotal in our models does not vary widely as shown in

Table 1 and Ntotal can not be used effectively to differentiate different models/hypotheses.

Instead, by following the approach used in the Global Kinetic Explorer [23], we studied the sen-

sitivity of the error function χ2 with respect to changes in each model parameter and the corre-

lations between different parameters.

The error function landscape in the parameter space was investigated by fixing a particular

parameter pi to a value around its optimal value pi ¼ xip�i and minimizing χ2 by varying all

other parameters pk, k 6¼ i and all activities~s:

~w2ðxiÞ ¼ min
pk;k6¼i;~s

1

N

X10

j¼1

Njw
2

j ðpiÞ: ð7Þ

The dependence of ~w2ðxiÞ on all individual parameters xi in model 6 were shown in Fig 2(a),

where all the curves have the same minimum at xi = 1. The larger the curvature at the mini-

mum, the more sensitive is the fitting to the change of that parameter. From the second order

Table 1. Descriptions of different models based on different regulation hypotheses. Each numbered row corresponds to a particular model (hypothesis). The second

column shows the parameters that are regulated by the signal σ. The fitted parameters shown in the third column are the parameters varied to minimize the mean error χ2,

Eq (5), whose values are given in the last column. The Kp/D parameter is present when a different dissociation constant is used for nanodiscs from that used for the vesicles.

The koff/0 is the residue activity level of the “inactive” state. The fourth column shows the fixed large rate constants for the fast reactions in the corresponding model (see

text for explanation). Ntotal is the total number of fitting parameters; it is the sum of the number of parameters in the second column plus the 12 parameters common to all

models shown in the bottom row. The definitions of the symbols used in this table can be found in Table A of the S1 Appendix.

Models (Hypotheses) Parameters

Regulated Fitted Fixed Ntotal χ2

H1 kP1
off kATP

off ; kP1
off ; kPf 15 0.138

H2 kPf kP1
off ; k

P
f kATP

off ¼ 100 s� 1 14 0.129

H3 kATP
off kATP

off ; kP1
off kPf ¼ 100 s� 1 14 0.106

H4 kATP
off ; kPf kATP

off ; kPf kP1
off ¼ 100 s� 1 14 0.092

H5 kATP
off ; kP1

off kATP
off ; kP1

off ; kPf 15 0.089

H6 kATP
off ; k

P
f KP1

d=D; k
ATP
off ; k

P
f kP1

off ¼ 100 s� 1 15 0.086

H7 kATP
off ; k

P1
off KP1

d=D; k
ATP
off ; k

P
f ; k

P1
off 16 0.083

H8 kATP
off ; kP1

off KP1
d=D; kATP

off ; kATP
off=0

; kPf ; kP1
off 17 0.082

Included in all: GP;KATP
d ;KP1

d ; s1; � � � ;s9 σ10 = 1

https://doi.org/10.1371/journal.pcbi.1006305.t001
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derivative at the minimum, we can determine a range for the fitted parameter as given in

Tables 2 and 3.

The sensitivity analysis was essential in identifying underconstrained parameters. In partic-

ular, when there is a fast reaction with a timescale that is much shorter than the experiment

time and the other relevant timescales in the system, the exact value of the rate constant for

this ultra fast reaction can not be determined uniquely, only a lower bound can be established.

For example, in our model H6 (see Table 1), if kP1
off were (unknowingly) treated as a fitting

parameter, the sensitivity analysis showed only a weak dependence on kP1
off as long as it is bigger

Fig 2. Sensitivity analysis and parameter correlations. (a) Using model 6 (see Table 1), for a given value xi ¼ pi=p�i of the parameter

in the legend, the mean error χ2 is minimized with respect to all other parameters. The resulting minimum ~w2ðxiÞ versus xi for all

individual parameters shown in the legend. (b) Same as (a) except kP1
off is included as an additional fitting parameter. The dependence of

error function on kP1
off is weak as long as kP1

off is large enough. This underconstrained problem, which causes the irregularities visible in

some curves, is resolved by fixing kP1
off ¼ 100s� 1 in model 6. (c) When we minimize χ2 with the parameter kPf fixed at the value shown in

the horizontal axis, the other parameters assume values that depend on kPf as shown here. The absolute value of the slope of the

dependence, Sji, between the fitted parameter j and the fixed parameter i characterizes the correlation between the two parameters. (d)

Sji (see (c)) for all pairs of parameters in model 6 are shown in the correlation matrix with the fixed parameters in the columns and the

fitted parameters in the rows. The slopes in (c) are represented as the last row in (d).

https://doi.org/10.1371/journal.pcbi.1006305.g002
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than a certain value as shown in Fig 2(b). This excessive degree of freedom also impairs the fit-

ting algorithm, which generates the irregularities seen in Fig 2(b). To avoid fitting an under-

constrained parameter, we fixed kP1
off to be a large rate constant kP1

off ¼ 100s� 1 in model H6.

The parameters used in our models came from the underlying biochemical reactions and

they were not orthogonal in the error function landscape. As shown in Fig 2(c), when we

changed kPf from its optimal value and allowed the other parameters to vary to minimize χ2, the

optimal values of kATP
off and kP1

off also changed roughly proportionally to kPf while other parameters

only showed weak dependence on kPf . The correlation between two parameters can be charac-

terized by the linear proportionality constant between the two parameters. In Fig 2(d), we show

all the pair-wise linear correlation constant in a matrix. These correlations can be understood

intuitively. Since kPf and kATP
off are slow reactions in model H6 (see Table A in S4 Appendix), they

must change together to preserve the qualitative behavior. An increase in the forward phospho-

ryl transfer reaction rate constant kPf can be partially compensated by an increase in GP, which

enhances the reverse phosphorus transfer reaction. These partial compensation mechanisms

also explained the lower precision in these parameters as seen in Fig 2(a) as compared with the

parameters KATP
d , KP1

d , an KP1
d=D that have exclusive control of certain parts of the network.

Additional parameters were added to the model based on realistic biological considerations,

e.g., the values of Kd could be different for nanodiscs and vesicles; or possible regulation

hypothesis, e.g., there could be a residual kinase activity in the inactive state. When additional

parameters allowed a better fitting to the data, a well defined minimum of χ2 emerged in the

error function analysis. This was the case when we considered different values of Kd for nano-

discs and vesicles (model H8 in Table 1) as shown in Fig. B in S6 Appendix. The number of

parameters and the value of χ2 obtained from a representative subset of models we studied are

shown at Table 1. Among the multitude of models we tried, these are the ones with roughly

the lowest χ2 for each number of parameters, with the exception of H1. It clearly demonstrates

that a model does not necessarily fit the data better just because it has more parameters.

Results

Possible regulation mechanisms (hypotheses), represented by Hi, specify how the receptor

activity σ affected different reactions in the network. For example, hypothesis H1 was that the

Table 2. Parameters in the ðkATPoff ; k
P1
offÞ dual regulation mechanism, model H7 of Table 1. The fitting is shown in Fig

4. Between brackets are intervals of the reaction rate constants for a 1% increase in χ2.

kP1
off 318 [156, 1340] s−1�σ KP1

d 195 [175, 219] μM

kATP
off 20 [11.8, 90] s−1�σ KP1

d=D 310 [270, 359] μM

kPf 7.7 [5.8, 11.2] s−1 KATP
d 291 [269, 317] μM

GP 9.4 [6.5, 17.0]

https://doi.org/10.1371/journal.pcbi.1006305.t002

Table 3. Receptor’s activity, σ, of model H7 of Table 1. The first letter of the label indicates the membrane preparation: nanodisc or vesicle. The following four letters

show the receptor’s methylation level.

State [Asp] σ State [Asp] σ

dQEQE 1 20 μM 0.0033 vQEQE 6 100 μM 0.0059

2 5 μM 0.066 7 5 μM 0.035

3 0 μM 0.31 8 0 μM 0.18

vEEEE 4 10 μM 0.00012 vQQQQ 9 1000 μM 0.0089

5 0 μM 0.00081 10 0 μM 1

https://doi.org/10.1371/journal.pcbi.1006305.t003
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receptor activity only affected only P1 binding. For a given hypothesis Hi, the total error func-

tion was minimized with respect to all parameters and the resulting minimum error χ2(Hi)

served as the error of the hypothesis Hi.

This approach enabled us to look for the regulation mechanism by searching the hypothesis

space systematically. Starting from the simplest regulation rules, we looked for significant

improvement upon adding new regulatory mechanisms and search for the minimal model(s)

that fits all the experimental data. In Fig 3(a), we show the results from some of the tested regu-

lation hypotheses arranged in the legend from the simplest (the top row) to the most complex

(the bottom row), see Table 1 for a detailed description of the models. Decomposition of the

total error χ2 into errors for each individual experiments (Fig 3(a)) revealed which experiment

(s) invalidated a particular hypothesis and also possible directions for improvement. We

describe our main findings below.

The dual regulation mechanism

As shown in Fig 3(a), none of the three single regulation hypotheses (H1, H2, and H3), i.e., reg-

ulating the ATP or P1 binding or the phosphoryl transfer rate constants fit all the experimental

data. To our surprise, the single regulation of kATP
off (H3) was much better than the other two sin-

gle regulation mechanisms. The worst performing single regulation hypothesis was regulating

P1 dissociation kP1
off (model H1), where the errors from several experiments such as VEEEE10,

vQEQE5, vQEQE100, and vQQQQ0 were large. For the model with single regulation of the

phosphotransfer rate kPf (model H2), the fitting of vQQQQ0 improved. However, the error for

the vEEEE10 experiment was still large. The reason for the large fitting errors for receptor

states like vEEEE10 is due to their lower activities than others. It is the extreme low activity

receptor state that shows the largest difference between models with and without certain regu-

lation by receptor activity. The detailed reason for this misfit can be understood by comparing

the model results with experimental data directly. As shown in Fig 3(b), the maximum kinase

rate and the half-maximum [ATP] concentration for vEEEE10 are both higher in the experi-

ment than in the model. Thus an improvement in fitting this curve seems to suggest an addi-

tional regulation of kATP
off .

Based on results from all single regulation models, we next tried to combine the different

regulations. We found that there was a general reduction of errors across most experiments by

having kATP
off regulation combined with a regulation of either kPf (from H2 to H4) or kP1

off (from

H1 to H5) without introducing any additional parameters in our model. The decomposed fit-

ting errors for these two successful dual regulation mechanisms are shown in Fig 3(a) (models

H4 and H5 in the second row of the upper legend). However, the dual regulation of kPf and kP1
off

did not improve the fitting and resulted in a larger error χ2 = 0.132.

Receptors mainly regulate the kinetic rate constants not the equilibrium

constants

For a given reversible chemical reaction between two states, the receptor activity (σ) can

change the energy barrier between the two states and thus change the kinetic rate constants by

the same factor (linearly proportional to σ) without changing their ratio, i.e., the equilibrium

constants KATP
d , KP1

d , and GP. This was the situation we considered in most of our study. How-

ever, we also considered the more general cases in which the receptor activity changed the free

energy difference between the two states leading to different dissociation constants for the

active (σ = 1) and inactive (σ = 0) receptors and a more complicated (linear rational function)

dependence of the forward and backward rate constants on σ (see S2 Appendix). With this
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Fig 3. Fitting models to experimental data. (a) Decomposed fitting errors, w2
j , are shown for all 10 experiments.

Different color lines (symbols) correspond to models with different hypotheses of regulation, which are described in

details in Table 1. The experiments are labeled in the x-axis with the letter ‘d’ for nanodiscs or ‘v’ for vesicles, four

letters for the methylation state, and the concentration of aspartate, in μM. The experiments are arranged in the order

of ascending receptor activity (σ). The lines connecting the points are only guides to the eyes. (b) The inadequate fit of

an unsuccessful model (model H2 of Table 1) to the data for the least active receptor EEEE in the presence of aspartate

that reduces activity to an even lower level. The corresponding error is highlighted by the black circle in (a). The legend

shows the concentrations of the enzyme P3P4P5 ([E]tot), aspartate ([Asp]), and substrate ([ATP] or [P1]), in μM; and
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new degree of freedom, only slightly improved fittings were achieved as shown in Fig 3(a) (the

fourth row in the legend) for a model H8 with residual activity in P1 binding. We also allowed

this new degree of freedom in the single regulation cases, but the fittings did not seem to

improve much if at all (see Fig. A in S2 Appendix). Our results suggest that receptors mainly

regulate the kinetic rates by controlling the energy barrier between two states without chang-

ing their free energy difference.

Differences between nanodisc- and vesicle- inserted receptors plus other

findings

In both dual-regulation mechanisms, our model indicated that for cases with the same recep-

tor modification state (QEQE) and the same aspartate concentrations (0, 5μM), the receptor

activities were larger in nanodiscs than in vesicles by *60–90% (see Table 3 and Table A in

S4 Appendix). The differences could reflect higher activity of receptors removed from the

heterogeneous native membrane or a difference between activity of the small clusters of sig-

naling complexes that form when participating receptors are native membrane vesicles [24]

and individual core complexes are constructed using receptors inserted in nanodiscs [25].

We also considered the possibilities that there were different values of kP1
off , K

P1
d , KATP

d , or kATP
off

for vesicles and nanodiscs. We found that a modest improvement in fitting could be achieved

by having different values of KP1
d for nanodisc and vesicles. These hypotheses (H6 and H7)

are shown in the third row in the legend of Fig 3(a), details of these models can be found in

Table 1. Table 2 and Table A in S4 Appendix show the parameters of the two dual-regulation

models. In both models (H6 and H7), our study suggested a higher value of KP1
d for nanodiscs

than that for vesicles by about 50%. The actual fitting of this model (H7) to the experimental

data is given in Fig 4.

We also explored the possibility of the binding of one substrate depending on the presence

of the other substrate as investigated in [26, 27] and the possibility of KS
d and kS

off being different

for for P1 and P1P or for ATP and ADP as proposed in [28]. However, including these possi-

bilities did not improve the fitting of the available data. Further experiments are needed to

explore these more detailed hypotheses.

Discussion

In this paper, we developed a simple network model to study the regulatory mechanism of the

multi-domain histidine kinase CheA based on an extensive body of kinetic measurements.

Our best-fit models identified two possible mechanisms for regulation by receptors. In one,

regulatory signal from the receptor controls ATP and ADP association/dissociation rate con-

stants and either P1 association/dissociation rate constants or the phosphoryl transfer rate

constants. Previous experimental [27, 28] and numerical studies have already suggested that

ATP binding was controlled by receptor activity. However, the dual regulation mechanism

identified is new to the best of our knowledge. Furthermore, our study showed that receptors

modulate forward and backward rate constants equally by controlling the barrier between the

active and inactive states of the enzyme. The two dual regulation mechanisms are illustrated in

Fig 5. They are consistent with recent molecular dynamics simulations that identified the exis-

tence of two states with one of them blocking access of substrate to its binding site [29, 30].

the measurement time in seconds. The dashed line is obtained by fitting the data by the Michaelis-Menten equation.

This failed model (H2) in which receptors regulate only the phosphoryl transfer rate kPf generates a lower maximum

kinase rate constant and a lower half-maximum ATP concentration in comparison with the data (symbols).

https://doi.org/10.1371/journal.pcbi.1006305.g003
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The full network model of the enzymatic reactions can be simplified by exploiting the sepa-

ration of time scales in the reactions, detailed in S3 Appendix. These simplifications help us

gain more insights into the dynamics of the CheA kinase activity, which will be integrated with

the downstream elements (methylesterase CheB, response regulator CheY, and its phosphatase

CheZ) to help us understand the entire pattern of chemotaxis signaling dynamics. They also

lead to predictions for future experiments to discriminate further among the remaining regu-

lation hypotheses. We describe some of these insights and predictions below.

Fig 4. Fits to experimental data. The symbols show apparent enzymatic phosphorylation rate constants from the

experiments described in [17]. The data shown in the left panels are from experiments in which [ATP] was kept

constant and [P1] varied, and vice versa in the right panels. (a)&(b) show results for receptors in QEQE states in

nanodiscs. (c-h) show results for receptors in states EEEE, QEQE, and QQQQ, respectively,in membrane vesicles (v).

The legend in each panel shows the concentrations of the enzyme P3P4P5 ([E]tot), aspartate ([Asp]), and of the

constant substrate ([ATP] or [P1]), in μM; and the measurement time in seconds. Dashed lines are fitting each

experimental curve independently by the Michaelis-Menten equation. Solid lines are a global fit of all data by our

model H7 with parameters given in Tables 2 and 3.

https://doi.org/10.1371/journal.pcbi.1006305.g004
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Multiple timescales in the CheA enzymatic reaction network

Dynamics of the enzymatic network are determined by the transition rate constants between

different states in the network. These different rate constants give rise to different time scales,

which can be regulated by receptor activity. To demonstrate the importance of time scales, in

Fig 6 we plot the apparent phosphoryl transfer rate constant as a function of time for the least

active receptor EEEE. We followed the same procedure as in the experiments that generated

the data we have analyzed, i.e. pre-mixing P1 with the enzyme and then adding ATP at time

t = 0. Depending on details of regulation by receptors, the apparent phosphorylation rate con-

stant could either decrease after an initial fast surge (the blue lines) or increase from zero grad-

ually before converging to its steady state value (the orange lines).

The convergence to the steady state is characterized by the relaxation time, τ. Precise calcu-

lation of the relaxation time is presented in the SM, but it can be estimated as the inverse of the

lowest reaction rate constant. From the inverse of kATP
off from Tables 2 and 3, the longest relaxa-

tion times were observed for kinase control by EEEE receptors, estimated as 54 s for [Asp] = 0

and 362 s for [Asp] = 10 μM. This means that the average phosphorylation rates determined in

the experiments with Δt = 15 s, 60 s are not steady state rates. We have taken this time-depen-

dent effect into account explicitly in all our model fittings.

Since Michaelis-Menten (MM) analysis of enzyme kinetic data assumes a steady state in

which the concentration of enzyme-substrate complex is constant and thus substrate binding

to the enzyme is equilibrated, if this condition is not met the MM parameters obtained from

the analysis will be incorrect. This can be a problem for analysis of very low activity receptors

which generate very low kinase catalytic rate constants (kcat). However, the effective (phenom-

enological) MM fitting parameters provide useful information by identifying maximum reac-

tion rates and thus rate constants, as well as the substrate concentration, Km, at which the

reaction rate is half maximum. We determined the values of these effective MM parameters

for curves obtained from our model and compared them with those obtained from direct fit-

ting of the experimental data with the MM equation. There was good agreement between MM

parameters obtained in the two ways. However, our analysis also illustrated the potential errors

in determining in MM parameters in conditions in which reaction rate constants are very low

and thus care must be taken to insure that experimental samples are taken after sufficient time

Fig 5. Illustration of the two possible dual regulation mechanisms. The enzyme (P3P4P5) has two states: active and

inactive. The receptor activity controls the probability of the enzyme being active. In both mechanisms, the ATP

binding site is open in the active state and closed in the inactive state. In addition to regulating ATP binding, the

receptor activity also regulates either the P1 binding as shown in (a) or the phosphoryl transfer between ATP and P1 as

shown in (b).

https://doi.org/10.1371/journal.pcbi.1006305.g005
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for the MM steady-state assumption to be valid (Fig 7). Specifically, long relaxation times for

low values of kScat lead to effective Km values that depend on the measurement time Δt (see Fig

7), because the MM requirement for a steady state is not met.

Transient dynamics and testable predictions

The rich dynamics of the enzymatic reaction network before it reaches its steady state suggest

future experiments that can be used to distinguish the remaining hypotheses. By using our

model, we can determine the experimental conditions in which the different hypotheses lead

to different dynamic behaviors. The difference in dynamic behaviors is most prominent for

the less active receptors (EEEE) where the relaxation times are long.

Fig 6 illustrates how two of the best fitting models (H6 and H7), both of which explain the

existing experimental data at a particular time Δt = 60s, lead to distinctive phosphorylation

time courses due to their different rate limiting steps. Model H8 is slightly better than H7, but

has an extra parameter that does not significantly alter the dynamics. For the sake of simplicity

Fig 6. The predicted kinetics. The time dependence of the apparent phosphoryl transfer rate constants for the two

different dual-regulation mechanisms (H6 and H7) are represented by the two different colors (blue for regulating kATP
off

and kP1
off (H7) and orange for regulating kATP

off and kPf (H6)). The system studied here contains the least active receptors

(EEEE) in membrane vesicles with [Asp] = 10 μM, [ATP] = 104 μM, and [P1] = 400 μM, which reproduces the

conditions of the rightmost point of the lower curve in Fig 4(d). The solid and the dashed lines correspond to the

instantaneous (k) and the average (�k) phosphorylation rate constants respectively. The black circle is the experimental

data point from [17].

https://doi.org/10.1371/journal.pcbi.1006305.g006
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we will use H7. In the dual regulation model (H7) of ATP and P1 binding, both P1 and ATP

bindings are the rate limiting steps for low receptor activity states such as the EEEE receptor

with a aspartate concentration [Asp] = 10 μM. In the experiments that generated the data we

analyzed, P1 was mixed with the enzyme prior to initiation of the reaction by addition of ATP

thus bypassing this limiting step, the other limiting step is lifted by a large ATP concentration

[ATP] = 10 mM. As a result, the phosphorylation rate rises quickly to its maximum before

decreasing to its steady state value as shown in Fig 6 (blue lines). In the other dual regulation

model (H6) of ATP binding and phosphoryl transfer, a much slower initial increase in the

phosphorylation rate is predicted (orange lines in Fig 6) because the rate limiting phosphoryl

transfer reaction can not be bypassed. The full time-dependent phosphorylation rates shown

in Fig 6 represent quantitative predictions that can be tested in future experiments to verify

our model and to distinguish the different dual regulation mechanisms (H6 versus H7).

Our model also shows that the transient phosphorylation kinetics depend on the initial incuba-

tion process (premixing P1 or ATP with the enzyme), which can also be tested by future

Fig 7. The phenomenological Michaelis-Menten (MM) parameters depend on the receptor activity and

measurement time. The pair of the MM parameters (Kj
m,kjcat) for a given experiment j 2 [1, 10] is given by the circle

with the experiment number j, which is defined the same way as in Fig 3(a). The dashed lines represent the MM

parameter pairs obtained from fitting the corresponding model results with different receptor activities σ and at the

experimental measurement times (15s or 60s). It is evident that the effective MM parameters depend on the receptor

activity and the measurement time Δt. As Δt!1 (ploted as a solid line), the effective Km approaches a constant

independent of σ. Details on construction of these curves can be found in the Supplementary Material, S5 Appendix.

https://doi.org/10.1371/journal.pcbi.1006305.g007
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experiments. In particular, the phosphoryl transfer rates can be measured continuously (at

least at multiple times) in the time window of 0–100 s. If the time dependence follows that of

the blue (red) line shown in Fig 6, it would indicate that the underlying mechanism is H7 (H6).

See S6 Appendix for details.

In general, understanding microscopic mechanisms in biological systems is challenging

given the complexity of the underlying processes and the difficulty in measuring individual

reactions. Here, we show that combining modeling of the dynamics of the whole reaction net-

work with quantitative system level “input-output” measurements provides a powerful tool to

address this challenge, as demonstrated here in the case of kinase CheA regulation. This sys-

tems-biology approach, which includes the development of a mechanistic network model

based on key underlying biochemical reactions and searching the hypothesis space by fitting a

large body of input-output data to the model, should be generally applicable to the study of

other biological regulatory systems.
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