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As of 23 April 2021, the outbreak of COVID-19 claimed around 150 million confirmed cases with over
3 million deaths worldwide. Yet, an even more serious but silent pandemic, that of antimicrobial resis-
tance (AMR), is likely complicating the outcome of COVID-19 patients. This study discusses the current
knowledge on the emergence of the SARS-CoV-2 and highlights the likely contribution of the COVID-19
pandemic on the escalation of AMR. COVID-19 engenders extensive antibiotic overuse and misuse, and
will undoubtedly and substantially increase AMR rates worldwide. Amid the expanding COVID-19 pan-
demic, policymakers should consider the hidden threat of AMR much more, which may well be enhanced
through improper use of antibiotics to treat patients with severe COVID-19 infection.

Lay abstract: Antimicrobial resistance (AMR) is a natural phenomenon that allows microorganisms to re-
sist to the action of antimicrobial medicines that were previously active against them and cured the infec-
tion. AMR is caused by the appropriate and inappropriate use of antimicrobial medicines. The occurrence
of the COVID-19 pandemic engenders extensive antimicrobial use that is likely to aggravated the AMR
pandemic. This paper discusses the current knowledge on the SARS-CoV-2, and underscores the contribu-
tion of the COVID-19 pandemic on the escalation of AMR. Beyond the expanding COVID-19 pandemic,
the hidden threat of AMR should also be considered by the decision-makers.
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An outbreak of COVID-19 caused by SARS-CoV-2 was initially reported in Wuhan, China, in December 2019 [1].
COVID-19 causes principally mild flu-like symptoms such as fever, dry cough and sore throat, with favorable
outcomes in the vast majority of cases [2]. Nevertheless, for some 5–10% of the patients, the disease may lead
to life-threatening complications such as severe pneumonia, acute respiratory distress syndrome (ARDS), sepsis,
septic shock and organ failure [3]. In approximately 50% of cases, such complications lead to death [4]. The
multidimensional impacts of COVID-19 prompted the WHO to declare it as a global pandemic on 11 March
2020.
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The unprecedented pandemic the world is facing is veiling another even greater and silent pandemic, which
is prematurely killing hundreds of thousands of people worldwide and is likely complicating the outcome for
COVID-19 patients. This silent pandemic is antimicrobial resistance (AMR), which is further exacerbated by the
void in the development of new therapeutic antimicrobial drugs [5,6]. AMR kills, increases the healthcare costs,
hampers the control of infectious diseases and has the potential to threaten health security, and weaken trade and
economies [7].

People with immune-compromised status together with those already suffering from respiratory tract infections
including tuberculosis, influenza, severe acute respiratory syndrome (SARS), and currently COVID-19, are at
higher risk of developing secondary infections [8]. In fact, a virus can weaken the immune system and thereby,
facilitate secondary difficult-to-treat bacterial or fungal infections that are potentially resistant [9]. The 2009 H1N1
influenza pandemic claimed, for instance, 284,000 deaths worldwide, with over 30% of those being essentially
related to a bacterial (co) secondary infection [10]. The spread of SARS-CoV-2 is thus of great concern and could be
more severe in low- and middle-income countries (LMICs), where the high burden of infectious diseases coupled
with multiple challenges could lead to devastating situations in the already overburdened healthcare systems. The
unregulated over-the-counter supplies of antimicrobials in these countries lead to a further increase in AMR. In these
resource-constrained countries, the limited availability of diagnostic tools for COVID-19 and weak preparedness
to respond to outbreaks of emerging pathogens could further lead to extensive and random antibiotic consumption
and even further increase the burden of AMR that is already a major public health threat.

Nevertheless, data on the impact of COVID-19 on AMR are so far limited, a situation that could seriously
impede strategies and interventions for AMR containment. Therefore, the purpose of this study was, with what little
evidence is presently available, to summarize information regarding the collateral damage of COVID-19 pandemic
on AMR containment. By summarizing the available data, our objectives are to: discuss the current knowledge on
the emergence of the SARS-CoV-2 and COVID-19, highlight the likely contribution of the COVID-19 pandemic
on the further development and spreading of AMR, and delineate prevention and containment strategies for coping
with COVID-19 while preserving antimicrobials for future generations.

Emergence of the SARS-CoV-2 & COVID-19
SARS-CoV-2 reservoir & transmission pattern
Coronaviruses (CoV) are a group of viruses responsible for up to 30% of flu-like symptoms in humans [11]. The
newly emerged SARS-CoV-2 is an enveloped, nonsegmented, single-stranded, positive-sense RNA virus of which
the genome has been found to be most closely related with 96.2% identity to a virus detected in bats known as
CoV RaTG13, whereas it shares 79.5% identity to SARS-CoV [12]. This suggests that bats are the primary host of
the virus, and that the SARS-CoV-2 entered the human population from a spill over event either directly from a
bat or through an unknown intermediate host as with the SARS-CoV in 2003 [13].

All human coronaviruses appear to have respiratory transmission, meaning they are pathogens with intrinsically
high pandemic potential. The SARS-CoV-2 exhibits a higher degree of transmissibility, and pandemic risk than
that of SARS-CoV [14], although the lethality level is lower than that of this virus [12]. Given the pace at which
the COVID-19 outbreak has developed, sustained transmission of the SARS-CoV-2 occurs either directly through
droplets or person-to-person contact [1], and air [15], or indirectly through fomites [15], and potentially also via the
fecal–oral route [16].

Droplet transmission may occur following immediate exposure to respiratory droplets produced during cough
or sneezing of a SARS-CoV-2-infected person [14]. Airborne transmission of the SARS-CoV-2 is also plausible [15].
In fact, in analyzing the aerosols (<5 μm) and surface stability of the SARS-CoV-2 and in estimating its decay
rates, van Doremalen et al. revealed that the SARS-CoV-2 remains viable in aerosols for 1–3 h. Furthermore, the
study also shows that the SARS-CoV-2 is stable on plastic, and stainless steel for up to 3 days. The authors thus
suggested that aerosols and fomites can be other plausible sources of SARS-CoV-2 transmission [15]. In this instance,
a healthy individual might be exposed indirectly via bioaerosols present in the air (i.e., after the infected person
has left their proximity), and via contact with contaminated fomites (objects, clothes or surfaces), where the virus
could subsequently enter in the body via mucosal surfaces that include mouth, nose or eyes [14]. Although no case
of SARS-CoV-2 transmission via the fecal–oral route has yet been intriguingly evidenced, Wu et al. demonstrated
a 55% prevalence of SARS-CoV-2 RNA in fecal samples of COVID-19-confirmed patients. The authors then
surmise that fecal–oral transmission of SARS-CoV-2 should be considered, especially in community settings [16].
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Current status of the COVID-19 pandemic
Since the first reports of cases from China in late 2019, around 150 million confirmed COVID-19 cases and over
3 million deaths were reported worldwide, as of 23 April 2021 [10]. Despite an assortment of systems for pandemic
preparedness against emerging and re-emerging pathogens including the WHO International Health Regulations
(2005), the high level of COVID-19 confirmed cases so far (as of 23 April 2021) is currently primarily being
reported in high-income countries. In the USA, for instance, the world’s most prepared country to deal with a
pandemic/epidemic according to the Global Health Security Index [17], around 32 million laboratory confirmed
COVID-19 cases were detected as of 23 April 2021, placing the country as most affected globally, ahead of India
and Brazil with 16.61 and 14.24 million cases, respectively [10]. The USA further reported the highest number
of deaths related to COVID-19 with over 570,000 deaths, ahead of Brazil (386,416 deaths) and India (189,544
deaths) [10]. This suggests that the COVID-19 pandemic threatens all countries regardless of geographic borders
and socioeconomic levels.

There is, therefore, an increasing concern about the potential impact of COVID-19 in LMICs, particularly in
sub-Saharan African countries, which are still far behind high-resource settings in terms of pandemic preparedness
and are thus among the least prepared countries with significant gaps to address [10]. LMICs have so far reported
relatively lower confirmed COVID-19 cases and deaths compared with high-income countries [10]. While it is
unclear whether the low reports of COVID-19 cases and deaths in these countries are due to a lack of testing,
related to an earlier stage of the epidemic or due to other factors, cases are however escalating in several LMICs and
emerging economies [10].

Of serious concern, the WHO warned that more cases of COVID-19 are likely to be reported in resource-
constrained countries, and that widespread transmission of SARS-CoV-2 will happen in the upcoming months,
including extensive community spread [17]. SARS-CoV-2 should spread significantly in LMICs where 69% of
the global population aged of ≥60 live, the impact of COVID-19 could be devastating given the already low-
resourced health systems and other challenges such as cramped living conditions, poor access to clean drinking
water, suboptimal hygiene and sanitation, malnutrition, current pandemic (including tuberculosis and HIV/AIDS),
endemic (malaria) and epidemic infectious diseases (cholera, measles and Ebola, etc.) [18].

A widespread outbreak of SARS-CoV-2 in LMICs will not only impact their health systems and populations,
but would likely have significant societal and economic impacts worldwide. The COVID-19 pandemic has led
to large numbers of people in need of medical care at the same time, resulting to overloaded public and private
healthcare settings and overwhelmed healthcare workforce facing elevated rates of hospitalizations and deaths [19].
Additionally, the world economic uncertainty engendered by the COVID-19 pandemic, will cost up to $2 trillion
in 2020 alone globally [19]. Global strategies and interventions to monitor the SARS-CoV-2 in order to inspect
and lessen its public health and socioeconomic impacts are thus urgently needed as the COVID-19 pandemic will
considerably affect the world, especially LMICs [18].

Emergence of SARS-CoV-2 variants & COVID-19 vaccines
SARS-CoV-2 variants
As with other viruses, SARS-CoV-2 naturally undergoes mutations during their evolution. Several variants of
SARS-CoV-2 have been detected across the world. These have been classified as variants of interest (VOI), variants
of concern (VOC) and variants of high consequence (VOHC) by the CDC (Table 1) [20]. Notwithstanding, three
new variants including B.1.1.7 (also known as VOC-202012/01), 501Y.V2 (B.1.351) and P.1 (B.1.1.28.1) have
rapidly spread to become predominant within their countries and across the world [21].

The B.1.1.7 variant with its 23 mutations leading to 17 amino acid changes was first described in the UK on
14 December 2020 [22]. Similarly, the 501Y.V2 (B.1.351) variant displaying 23 mutations with 17 amino acid
changes was initially detected in South Africa on 18 December 2020 [23], while the P.1 variant exhibiting around
35 mutations with 17 amino acid changes was reported in Brazil on 12 January 2021 [24]. These three variants
share the N501Y mutation while two additional receptor-binding-domain mutations, K417N/T and E484K were
detected in the 501Y.V2 and P.1 variants. These mutations increase the binding affinity of the ACE2 receptor [21].
As such, the 501Y.V2 variant has been showed to be 50% more transmissible than previous variants in South
Africa [25], while B.1.1.7 transmissibility is estimated to range from 43 to 82% compared with that of variants
preexisting in the UK [26]. Two other SARS-CoV-2 variants, B.1.427 and B.1.429, recently detected in California
and classified as VOC, have been reported to be 20% more transmissible than preexisting variants [21]. Hence,
four important concerns arising from the emerging SARS-CoV-2 variants are their effects on: viral transmissibility,
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Table 1. List of COVID-19 vaccines currently approved for emergency use in at least one country.
N Primary developers Origin Vaccine name Vaccine type Phase Status

1 Pfizer, BioNTech, Fosun
Pharma

Multinational Comirnaty (BNT162b2) mRNA-based vaccine II, III Approved in several countries and
by the WHO. Emergency use in the
USA, EU, other countries

2 Moderna, BARDA, NIAID USA Moderna COVID-19 Vaccine
(mRNA-1273)

mRNA-based vaccine III Approved in Switzerland. Emergency
use in the USA, EU, other countries

3 BARDA, OWS UK COVID-19 vaccine
AstraZeneca (AZD1222) also
known as Vaxzevria and
Covishield

Adenovirus vaccine II, III Approved in Brazil. Stopped use in
Denmark. Emergency use in UK, EU,
other countries

4 Gamaleya Research Institute,
Acellena Contract Drug
Research and Development

Russia Sputnik V Recombinant adenovirus
vaccine (rAd26 and rAd25)

III Early use in Russia. Emergency use in
other countries

5 Janssen Vaccines (Johnson &
Johnson)

The
Netherlands,
USA

COVID-19 vaccine Janssen
(JNJ-78436735;
Ad26.COV2.S)

Nonreplicating viral vector III Emergency use in the USA, EU, other
countries. Paused in some states and
countries

6 Beijing Institute of Biological
Products; China National
Pharmaceutical Group
(Sinopharm)

China BBIBP-CorV Inactivated vaccine III Approved in China, UAE, Bahrain.
Emergency use in other countries

7 Sinovac Biotech Co., Ltd. China CoronaVac Inactivated vaccine
(formalin with alum
adjuvant)

III Approved in China. Emergency use
in other countries

8 Federal Budgetary Research
Institution State Research
Center of Virology and
Biotechnology

Russia EpiVacCorona Peptide vaccine III Approved in Russia. Emergency use
in other countries

9 CanSino Biologics China Convidicea (Ad5-nCoV) Recombinant vaccine
(adenovirus type 5 vector)

III Approved in China. Emergency use
in other countries

10 Bharat Biotech, ICMR India Covaxin (BBV152) Inactivated vaccine III Emergency use in India, other
countries

11 Wuhan institute of Biological
Products, China National
Pharmaceutical Group
(Sinopharm)

China WIBP-CorV Inactivated vaccine III Approved in China. Limited use in
UAE

12 Novavax USA NVX-CoV2373 Protein III Approved in several countries and
by the WHO

reinfection rates (i.e., escape from natural immunity), disease severity and vaccine effectiveness (i.e., escape from
vaccine-induced immunity). These concerns lead to three main questions: how will existing COVID-19 vaccines
and vaccine candidates cope with emerging SARS-CoV-2 variants? Will vaccination modification be needed to
respond to new variants? How well will the vaccines perform against COVID-19 infections including mild and
moderate cases?

COVID-19 vaccines
The pace in the development of a vaccine against the COVID-19 has been so fast that within less than 12 months
after the beginning of the COVID-19 pandemic, several research teams rose to the challenge and developed
vaccines that effectively protect against SARS-CoV-2. Two vaccines namely BNT162b2 from PfiZer-BioNTech
and Moderna COVID-19 Vaccine (mRNA-1273) from Moderna, both using mRNA-based vaccine platform
achieved regulatory authorization for emergency use from the US FDA in December 2020 [27,28].

As of today, up to 12 COVID-19 vaccines (Table 1) received emergency regulatory authorization from the FDA
or approval from at least one country with seven being actively rolled out throughout the world as part of the
COVAX initiative that aims to provide global equitable access to COVID-19 vaccines at low cost [29]. Most of
these COVID-19 vaccines appear to be effective and safe albeit more research is needed to investigate not only the
long-term efficacy and safety of these vaccines but more so, the influence on the containment of AMR. For instance,
the BNT162b2 vaccine displays a 95% of vaccine efficacy [30]. A recent study with real-world data from Israel
further confirmed that this vaccine is highly effective in preventing COVID-19 [31]. However, there is currently a
lack of data on how well this vaccine and other will work at preventing COVID-19 with SARS-CoV-2 variants,
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especially the B.1.1.7 SARS-CoV-2. While it is suggested that the majority of COVID-19 vaccines might contend
reasonably well against B.1.1.7, the B.1.351 variant is a cause of considerable concern for which the vaccine efficacy
seems to be lower.

All these vaccine strategies are directed toward the viral spike protein, but mutation occurring in the S gene
of SARS-CoV-2 variants threatens their continued efficacy. The term vaccine resistance has been used by some
scientist to describe the reduced efficacy of COVID-19 vaccines against some variants. A recent study from
Hacisuleyman et al. reported two cases of breakthrough infection in a cohort of 417 persons having received
their second dose of mRNA-1273 (Moderna, MA, USA) or BNT162b2 (Pfizer–BioNTech) vaccine at least 2
weeks earlier [32]. Notwithstanding proof of vaccine efficacy, both patients developed symptoms of COVID-19
and were tested positive for SARS-CoV-2 by PCR. Genome sequencing revealed mutations of potential clinical
importance including E484K in one and three mutations (T95I, del142–144 and D614G) in both patients [32].
These observations reveal a likely risk of symptomatic COVID-19 upon successful vaccination and ensuing infection
with SARS-CoV-2 variants. They further provide evidences for continuous efforts to prevent and diagnose infection
as well as to characterize SARS-CoV-2 variants in vaccinated persons [32].

The contribution of COVID-19 to the development & escalation of AMR
Evidence of antibiotic misuse & overuse in the current COVID-19 pandemic
Antibiotic resistance, as part of the broader AMR, is the ability of bacteria to grow in the presence of antibiotics
that are normally active against them. Antibiotic use is the key factor in the development of antibiotic resistance,
with community and hospital settings being the equal ecological niches of its emergence in human health [5,6]. In
fact, the selective pressure exerted whenever an antibiotic is used, either rationally or irrationally, contributes to
the selection of resistant bacteria. Upon their selection, resistant bacteria can survive in an organism for at least a
year [33] and can spread directly from person-to-person or indirectly via the food chain and the environment [5,6].

The COVID-19 pandemic severely challenges all aspects of healthcare including both the diagnosis and treatment
of bacterial infections and effective delivery of antibiotics. Given that patients with viral pneumonia such as COVID-
19 are typically at increased risk of developing severe secondary bacterial infections, it is indubitable that, especially
in the often-hectic conditions, antibiotics are being empirically prescribed in many COVID-19 patients. This
assertion has been confirmed in a handful of published reported, although mainly from Chinese hospitals, which
revealed that antibiotics are being extensively administered in COVID-19 patients. In fact, a recent study revealed
that antivirals and antibiotics were used in 93 and 100% of ICU and non-ICU patients, respectively [34]. The
study further showed that only four (10%) out of 41 patients had a secondary infection, suggesting thereby a 90%
rate of antibiotic misuse. Similarly, in a retrospective cohort study, Zhou et al. showed that 95, 98 and 93% of all
patients, nonsurvivors and survivors, respectively, received antibiotics. In staggering contrast, antiviral treatment
was given only to 21% of patients, with 22 and 21% being given to nonsurvivors and survivors, respectively [4]. The
authors further revealed that 50% of nonsurvivor patients experienced secondary (bacterial) infections [4]. Similar
findings were evidenced by Chen et al., who showed that 71% of patients received an antibiotic treatment, with
45% of these being treated with a combination therapy as a prevention against common pathogens. Bacteria were
laboratory confirmed in merely 1% of patients with Klebsiella pneumoniae, Acinetobacter baumannii and Aspergillus
flavus being isolated in one patient [35]. The study further showed that this A. baumannii displayed high resistance
to antibiotics [35]. The antibiotic inefficacy may thus be related to resistant bacteria although it is plausible that
initiation and duration of antibiotic treatment in each patient has significantly affected the outcomes, as would
have their co-morbidities. Likewise, in a meta-analysis, Clancy et al. revealed that bacterial lung superinfections
were the cause of deaths in 32% of COVID-19-positive cases globally [36]. The authors further showed that 79%
of patients were treated with antibacterial agents and the leading etiologic agents were A. baumannii, P. aeruginosa,
K. pneumoniae, E. coli and S. aureus [36].

These studies reveal at sufficiency the highly undesirable apparent inappropriate antibiotic treatment in patients
with COVID-19. Considering that COVID-19 is caused by a virus that leads to a self-limiting infection in the
majority of cases, antibiotic treatment implemented in COVID-19 patients, especially when secondary bacterial
infections are not laboratory confirmed, are indicative of a well-recognized global pattern of antibiotic misuse that
has contributed to AMR emergence and spread [6]. Although it is currently uncertain whether COVID-19 or the
ICU treatments it requires contribute to secondary bacterial infections, it is urgent that secondary infections such
as bacterial pneumoniae in particular, be carefully ascertained before antibiotic administration. This is particularly
important to reduce the misuse and overuse of antibiotics, and the subsequent emergence and escalation of AMR,
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across countries or regions while taking care of COVID-19 patients. This calls for a much wider use of bacterial
identification and antibiotic susceptibility testing prior to antibiotic prescription.

Promising therapeutic medications are increasingly being approved for large-scale experimental studies. Con-
sequently, several pharmaceutical products have been suggested as potential investigational therapies. Results
generated through several preliminary in vitro and in vivo clinical studies revealed, for instance, that chloroquine,
an old and well-described antimalarial drug, and especially hydroxychloroquine, one of its derived forms, could
be effective in the control of SARS-CoV-2 as monotherapy or in combination with azithromycin [37,38]. However,
the studies of Gautret et al. in particular, where, for instance, patient numbers were initially very small and an
untreated study arm is still blatantly missing are currently highly controversial. Yet given the current absence of
any COVID-19-specific therapeutics, the combination of hydroxychloroquine and azithromycin has since been
extensively used compassionately in Italy, for instance, albeit without any firm evidence of clinical efficacy.

This bears the risk that azithromycin, a broad-spectrum macrolide antibiotic, which is primarily used in the
treatment of respiratory, enteric and sexually transmissible infections caused by an assortment of extra- and intra-
cellular pathogens such as Streptococcus pneumoniae, Haemophilus influenzae, Salmonella spp., Neisseria gonorrheae,
among others [39] will be massively administered for the COVID-19 management. The overuse of azithromycin,
first-line antibiotic in the management of pneumonia, in the treatment of the COVID-19 patients will likely
result in sustained selection of resistant bacteria coupled with increased resistance not only to this antibiotic but
also the macrolide family of drugs more broadly and, through coselection due to the fact that resistance genes are
often carried together on multidrug resistance plasmids, to other antibiotic families within the patients’ gut and
respiratory microbiomes, contributing thereby to exponential emergence and spread of AMR [40].

Furthermore, the chloroquine family of drugs is also used to treat other diseases such as lupus and the present
increased worldwide demand for these drugs is causing shortages for these chronically ill patients currently [41].
Overdosing is also causing any increase in prevalence of the known most dangerous side effects of these drugs,
such as cardiac arrhythmia [42]. Finally, and perhaps most worrisomely, chloroquine family of drugs is still widely
used worldwide to treat malaria [43]. This means that if the combination hydroxychloroquine and azithromycin is
used to treat COVID-19 patients in tropical areas of the planet where Plasmodium species are also still prevalent,
in particular without prior testing for coinfection, there is a serious risk of increasing also the already widespread
resistance of these deadly parasites to this family of drugs and related antimalarial drugs.

The concern of AMR will further be exacerbated in LMICs where over-the-counter supply of and counterfeit
antibiotics prevail, and AMR prevention and containment measures are limited or nonexistent [44]. It is thus
hypothesized that antibiotics will not only be extensively used in hospitals but also in community settings in
these resource-constrained countries. Consequently, further studies investigating the risk of AMR in relation to the
COVID-19 pandemic are urgently needed in order to strengthen knowledge about the multidimensional impacts of
this pandemic and improve patients’ outcomes while preserving the efficacy of antibiotics and achieving sustainable
development.

Collateral damage of COVID-19 on AMR emergence & spread
Human coronavirus including the SARS-CoV-2 is one of the main pathogens involved in respiratory tract infections.
There are significant similarities between the COVID-19 and AMR pandemics. Both are responsible for high
infection-related morbidity and mortality worldwide. The COVID-19 shares similar clinical and radiological
features to that of a bacterial respiratory tract infection, and diagnosis and treatment of people with secondary,
possibly resistant, bacterial infections and/or COVID-19 are likely to be compromised as all attention currently
focuses on the treatment of the COVID-19 [9,45]. We postulate that increased pressure exerted on health systems by
the COVID-19 pandemic, will impede people with resistant infections from access to rapid and accurate diagnostic
and treatment, resulting in adverse outcomes. Vulnerable populations including elderly, people with long-term use
of immunosuppressive agents, pregnant women and those with co-morbidities are at higher risk of developing
negative outcomes in both diseases. Adequate investigation of secondary bacterial infections in these patients is
thus imperative to improve their outcome because if resistant pathogens cause a secondary infection in COVID-19
patients, then the management of both infections becomes harder [45].

We hypothesize that AMR is therefore a greater threat hidden behind the COVID-19 pandemic that may not
only further complicate outcomes of many hospitalized COVID-19 patients but also has consequences that are
likely to be more severe and far-reaching than that of the COVID-19 pandemic (Figure 1). In fact, AMR is projected
to become the leading cause of mortality worldwide with 10 million deaths yearly and cost up to US$ 100 trillion
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Figure 1. Summary of COVID-19 impacts on antimicrobial resistance emergence and spread.
abx: antibiotics; AMR: Antimicrobial resistance; ARB: Antibiotic-resistant bacteria; ARG: Antibiotic resistance gene; ASP: Antimicrobial
stewardship program; IPC: Infection, prevention and control; NCD: Noncommunicable disease.

of the global economy loss if considerable efforts are not sustainably implemented by 2050 [5,46]. The World Bank
further confirmed these estimates, and showed that AMR will lead to a global increase in healthcare costs ranging
from $300 billion to more than $1 trillion by 2030 with LMICs being the most affected both in terms of mortality
rates and economic shortfalls and around 24 million of people forced into extreme poverty [47]. However, all these
speculations did not consider nor envision the unforeseen emergence of a virus that will cause a pandemic with
severe multidimensional implications.

It has also been predicted that AMR outcomes could be prevented with a moderate investment of $42 billion [5,46].
Specifically, it was estimated that US$16 billion were needed to revamp the antimicrobials research and development
pipeline using new market incentives. This cost was modeled on achieving at least four breakthrough products
targeting bacterial species of greatest concern within a decade [45]. Moreover, US$2 billion over 5 years are needed
to set up an AMR Global Innovation Fund, while US$3–4 billion a year are needed to take global action such as
improved water and sanitation as well as good general disease surveillance [45].

Given that the COVID-19 pandemic has the potential to engender extensive antibiotic overuse and misuse, it
will undoubtedly and substantially increase AMR rates worldwide. Furthermore, this increases risks being especially
rapid and deleterious in areas, often in LMICs such as India, South Africa but also in Italy and Spain, for instance,
where prevalence of multidrug resistance plasmids is already high [48,49]. Thereby, the COVID-19 pandemic may
allow AMR to reach future estimates earlier than that was predicted.

Challenges of COVID-19 pandemic in the containment of AMR
COVID-19 disrupts effectiveness of well-established antimicrobial stewardship (AMS) programs as well as AMR
surveillance research that have been deprioritized, delayed or halted with alteration of health system resources
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as part of the pandemic response [50]. In fact, resources, personnel and attention were redirected from AMR
containment strategies to COVID-19 response including diagnosis, contact tracking and tracing [50] despite the
fact that AMR surveillance data are essential to help researchers and physicians to better monitor evolution of
resistance patterns and impact of antibiotic use linked to COVID-19 and secondary infections and coinfections.
This emphasizes failures in AMR containment and mitigation strategies that necessitate urgent attention from
scientific and clinical communities. These include assessment of the global incidence of secondary infections and
coinfections in COVID-19 patients to identify patients most in need of antibiotic treatment as well as when the
treatment can be safely discontinued, de-escalated or withheld [50].

COVID-19 has further evidenced how vulnerable the world and especially the healthcare systems are. This is
even more visible and severe in LMICs that usually lack infrastructures and qualified personnel and are also not
well prepared to deal with pandemic situations [50]. Sustainable global surveillance of societal and clinical antibiotic
consumption and resistance trends is essential to anticipate subsequent changes in AMR epidemiology while
preventing antimicrobial shortages and ensuring continuous supply. These strategies make a case for implementation
research on AMR and represent implementation challenges in LMICs.

Conclusion
The COVID-19 pandemic is highly interrelated, multisectoral and there are no geographic or income boundaries
to contain it. Amid the expanding COVID-19 pandemic, governments and policymakers do have to consider the
hidden threat of AMR, which, at present, is jeopardizing health, societal and economic advancements globally, in
their endeavor to manage the current COVID-19 crisis. The targeted, rational treatment of secondary bacterial
infections should be an integral part of pandemic planning. Mobilization of substantial funding for research,
and better monitored antibiotic stewardship programs as well as limiting the utterly over-the-counter supply of
antibiotics are urgently needed to ensure containment of the COVID-19 and AMR.

Future perspective
Although existing weaknesses in the containment of AMR have been magnified by the COVID-19 pandemic, there
are several opportunities that can be seized from the current situation and could affect the effective containment
of AMR. This section briefly describes key recommendations and opportunities for a strong research agenda and
sustainable containment of AMR during and beyond this pandemic (Figure 2).

First, prospective studies must be standardized in term of data being collected, population investigated and micro-
biological sampling and analyses. Research on clinical predictors and biomarkers for bacterial secondary infections
and coinfections should be envisioned at hospital admission. Global surveillance of resistance must be strength-
ened in both COVID-19 and non-COVID-19 patients with foremost bacteria, antibiotic resistance genes and
mobile genetic elements being recorded along with adequate indicators on a regular basis [50]. Epidemiological data
originating from patients colonized or infected with high-risk bacteria should also be collected. High-risk patients
and wards (ICUs, hematological wards) must be actively monitored and continuously screened for colonization of
high-risk bacteria.

Second, assessing the correlation between changes in antibiotic consumption during the pandemic and escalation
of AMR must be implemented along with analysis of global AMR surveillance data, especially from LMICs, this
in order to understand likely emerging resistance patterns and the driver forces behind them.

Third, a multidisciplinary approach in line with the One Health, must be implemented in hospitals and
communities as it is the case in the management of COVID-19 pandemic. AMS programs should not only remain
active but more so be reinforced with activities also targeting noninfectious disease physicians.

Finally, as key component in the COVID-19 pandemic response, global awareness and political will on AMR
should also be heightened for an effective and sustainable containment of this silent threat. In fact, communication
between governments, the media, researchers, healthcare professionals and the public has been a key component
in the management of COVID-19 [51]. The AMR scientific community thus plays a key role and is at the heart of
this strategy favoring collaboration with policymakers and the media to raise AMR awareness to the general pop-
ulation and build on community awareness and engagement such as the observed social distancing, handwashing,
disinfections or wearing of mask measures [52]. The COVID-19 pandemic has evidenced the multidimensional
repercussions of an uncontrolled infectious disease, a situation that is comparable to what has already been predicted
for AMR. Assessing the effects of antibiotic use, disruption of AMS, while strengthening infection, prevention and
control measures, and global awareness and political will on AMR is critical for an effective AMR containment
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•  Overburdened hospitals
•  Deprioritization of global awareness on AMR
•  Disruption and non-compliance of AMS policies
•  Deceleration or disruption of AMR surveillance efforts
•  Break development efforts of new and rapid diagnostic tools
•  Break development of vaccines and alternative to antibiotics
•  Disruption and deceleration of AMR research
•  Reduction of laboratory capacity and human resources on AMR

•  Heightening of global awareness on AMR
•  Strengthening of AMS policies
•  Implementation and training of personnel on IPC measures
•  Incentives to promote investments for new drugs and improving existing drugs
•  Research on clinical predictors and biomarkers for bacterial secondary 
   infections and coinfections
•  Rapid development of vaccines and alternative to antibiotics
•  Establishment a global innovation funds promoting early-stage research
•  Global One Health coalition for actions via UN, WHO and other supranational
    organizations

COVID-19 challenges for AMR containment

COVID-19 opportunities for AMR containment

Figure 2. Summary of COVID-19 challenges and opportunities for antimicrobial resistance containment.
AMR: Antimicrobial resistance; AMS: Antimicrobial surveillance; IPC: Infection, prevention and control; UN: United
Nations.

in the future and over a longer timescale. Multisectoral, coordinated and targeted research on AMR and in line
with the One Health approach is required for containment of the challenges arising from AMR in the context of
COVID-19 pandemic or upcoming threats.

Executive summary

• Since the first reports of cases from China in late 2019, around 150 million confirmed COVID-19 cases and over
3 million deaths were reported worldwide as of 23 April 2021.

• The unprecedented pandemic the world is facing is veiling another even greater and silent pandemic that is
already prematurely killing hundreds of thousands of people worldwide and is likely complicating the outcome
for COVID-19 patients, that of antimicrobial resistance (AMR).

• The COVID-19 pandemic is highly interrelated, multisectoral and there are no geographic or income boundaries
to contain it.

• This pandemic has evidenced the multidimensional repercussions of an uncontrolled infectious disease, a
situation that is comparable to what has already been predicted for AMR.

• The consequences of the AMR pandemic are likely to be even more severe, long-term and far-reaching than that
of the COVID-19 pandemic.

• Despite the gaps evidenced, data on the impact of COVID-19 on AMR are far limited, a situation that could
seriously impede strategies and interventions for AMR containment.

• Assessing the effects of antibiotic use, disruption of AMS, while strengthening infection, prevention and control
measures, and global awareness and political will on AMR is critical for an effective AMR containment in the
future and over a longer timescale.

• The current uptake of routine vaccination against SARS-CoV-2 although reducing the impact of this pandemic is
endangered with emerging variants.

• Although existing weaknesses in the containment of AMR have been magnified by the COVID-19 pandemic,
there are several opportunities that can be seized from the current situation and could affect the effective
containment of AMR.

future science group 10.2144/fsoa-2021-0012



Perspective Founou, Blocker, Noubom et al.

Author contributions

RC Founou and LL Founou co-conceptualized the study, researched the literature, extracted and collated data, and drafted the

manuscript. C Tsayem and AJ Blocker contributed to the research tof the literature and extraction of data. AJ Blocker, M Noubom,

SP Choukem and M van Dongen provided substantial revision of the manuscript. All the authors read and approved the final

manuscript.

Acknowledgments

The authors express our sincere appreciations to the board members of the Global AMR Insights Ambassador Network, especially

S Essack, for the support in preparing and reviewing of the manuscript.

Declaration

AMR Insights Ambassador Network: the first, second, sixth and seventh authors are members of the Global AMR Insights Am-

bassador Network. The AMR Insights Ambassador Network consisting of an integrated cross-professional and global community

discussing, advising and leading actions to combat AMR. The network aims to inspire, connect and empower the ambassadors to

take individual and collective actions to curb AMR. For more information about the network: https://www.amrinsights.eu/about

-us/ambassadors.

Financial & competing interests disclosure

AJ Blocker reports being a salaried employee of Evotec ID LYON, of which the main business is focused outside of the submitted

work, and a member of the board of the AMR Insights Ambassador Network, which is a branch of AMR Insights, of which

the company details are: AMR Insights, Keizersgracht 482, 1017 EG Amsterdam, The Netherlands; registered at The Netherlands

Chamber of Commerce and Trade under number 5796317, VAT ID number: NL001114537B10. The authors have no other relevant

affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject

matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Open access

This work is licensed under the Creative Commons Attribution 4.0 License. To view a copy of this license, visit http://creativecomm

ons.org/licenses/by/4.0/

References
1. World Health Organization (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). WHO, Geneva,

Switzerland (2020).

2. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 12(2), 135 (2020).

3. Wang J, Du G. COVID-19 may transmit through aerosol. Irish J. Med. Sci. 189(4), 1143–1144 (2020).

4. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet 395(10229), 1054–1062 (2020).

5. O’Neill J. Antimicrobial resistance: tackling a global health crisis: initial steps. Rev. Antimicrob. Resist. (2015).

6. Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front. Microbiol. 7(1881),
(2016).

7. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus
disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55(3), 105924 (2020).

8. Gerberding JL. Antibiotic resistance: the hidden threat lurking behind Covid-19. In: STAT. Globe Media, MA, USA (2020).
https://www.statnews.com/2020/03/23/antibiotic-resistance-hidden-threat-lurking-behind-covid-19/

9. Morris DE, Cleary DW, Clarke SC. Secondary bacterial infections associated with influenza pandemics. Front. Microbiol. 8, 1041–1041
(2017).

10. Roser M, Ritchie H, Ortiz-Ospina E. Coronavirus pandemic (COVID-19). https://ourworldindata.org/coronavirus

11. Weston S, Frieman MB. COVID-19: knowns, unknowns, and questions. mSphere 5(2), e00203–00220 (2020).

12. Guo Y-R, Cao Q-D, Hong Z-S et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak
– an update on the status. Military Med. Res. 7(1), 11 (2020).

13. Adhikari SP, Meng S, Wu Y-J et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus
disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty 9(1), 29 (2020).

10.2144/fsoa-2021-0012 Future Sci. OA (2021) FSO736 future science group

https://www.amrinsights.eu/about-us/ambassadors
http://creativecommons.org/licenses/by/4.0/
https://www.statnews.com/2020/03/23/antibiotic-resistance-hidden-threat-lurking-behind-covid-19/
https://ourworldindata.org/coronavirus


The COVID-19 pandemic: a threat to antimicrobial resistance containment Perspective

14. van Doremalen N, Bushmaker T, Morris DH et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New
Engl. J. Med. 382, 1564–1567 (2020).

15. Wu Y, Guo C, Tang L et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 5(5),
434–435 (2020).

16. Nuclear Threat Initiative, The Johns Hopkins Center for Health Security, The Economist Intelligence Unit. Global Health Security
Index: Building Collective Action and Accountability. (2019). https://www.ghsindex.org/

17. Lloyd-Sherlock P, Ebrahim S, Geffen L, McKee M. Bearing the brunt of COVID-19: older people in low and middle income countries.
BMJ 368, m1052 (2020).

18. Essack SY, Bell J, Burgoyne DS, Duerden M, Ther D, Shephard A. Topical (local) antibiotics for respiratory infections with sore throat:
an antibiotic stewardship perspective. J. Clin. Pharm. Ther. 44(6), 829–837 (2019).

19. United Nations Conference on Trade and Development (UNCTAD). The Coronavirus Shock: A Story of Another Global Crisis Foretold
and What Policymakers Should be Doing About It. UNCTAD, NY, USA (2020).

20. Center for Disease Control and Prevention (CDC). SARS-CoV-2 variant classifications and definitions. (2021). https://www.cdc.gov/

21. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants – clinical, public health, and vaccine implications. New Engl. J. Med.
384,1866–1868 (2021).

22. Public Health England. Investigation of novel SARS-COV-2 variant: variant of concern 202012/01.
(2020). https://www.gov.uk/government/organisations/public-health-england

23. Tegally H, Wilkinson E, Giovanetti M et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592(7854),
438–443 (2021).

24. Voloch CM, da Silva Francisco R Jr, de Almeida LGP et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de
Janeiro, Brazil. J. Virol. 1,JVI.00119–21 (2021).

25. Pearson CAB, Russell TW, Davies N et al. Estimates of severity and transmissibility of novel SARS-CoV-2 variant 501Y.V2 in South
Africa. Centre for the Mathematical Modelling of Infectious Diseases (CMMID) Repository (2021).

26. Davies NG, Abbott S, Barnard RC et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science
372(6538), eabg3055 (2021).

27. Moderna I. U.S. FDA Authorizes mRNA Vaccine Against COVID-19 for Emergency Use. Moderna, Cambridge, UK (2020).

28. Pfizer-BioNTech. Vaccines and Related Biological Products Advisory Committee meeting December 10, 2020. FDA Briefing Document
Pfizer-BioNTech COVID-19 Vaccine. (2020). https://www.fda.gov

29. World Health Organization (WHO). What is the Access to COVID-19 Tools (ACT) accelerator, how is it structured and how does it
work? WHO, Geneva, Switzerland (2021).

30. Polack FP, Thomas SJ, Kitchin N et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New Engl. J. Med. 383(27),
2603–2615 (2020).

31. Dagan N, Barda N, Kepten E et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. New Engl. J. Med.
384(15), 1412–1423 (2021).

32. Hacisuleyman E, Hale C, Saito Y et al. Vaccine breakthrough infections with SARS-CoV-2 variants. New Engl. J. Med. (2021).

33. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223),
497–506 (2020).

34. Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: a descriptive study. Lancet 395(10223), 507–513 (2020).

35. Gautret P, Lagier J-C, Parola P et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label
non-randomized clinical trial. Int. J. Antimicrob. Agents 56(1), 105949 (2020).

36. Clancy CJ, Schwartz IS, Kula B, Nguyen MH. Bacterial superinfections among persons with coronavirus disease 2019: a comprehensive
review of data from postmortem studies. Open Forum Infect. Dis. 8(3), (2021). https://doi.org/10.1093/of id/ofab065

37. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P. In vitro antiviral activity and projection of optimized dosing design of
hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71(15),
732–739 (2020).

38. McMullan BJ, Mostaghim M. Prescribing azithromycin. Aust. Prescr. 38(3), 87–89 (2015).

39. Mack I, Sharland M, Berkley JA, Klein N, Malhotra-Kumar S, Bielicki J. Antimicrobial resistance following azithromycin mass drug
administration: potential surveillance strategies to assess public health impact. Clin. Infect. Dis. 70(7), 1501–1508 (2020).

40. Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and
chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23(5),
231–269 (2015).

future science group 10.2144/fsoa-2021-0012

https://www.ghsindex.org/
https://www.cdc.gov/
https://www.gov.uk/government/organisations/public-health-england
https://www.fda.gov
https://www.doi.org/10.1093/ofid/ofab065


Perspective Founou, Blocker, Noubom et al.

41. Saussine A, Loriot MA, Picard C et al. Chloroquine cardiotoxicity in long-term lupus therapy in two patients. Ann. Dermatol. Venereol.
136(6–7), 530–535 (2009).

42. Mwanza S, Joshi S, Nambozi M et al. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia. Malar. J. 15(1),
584 (2016).

43. Ndihokubwayo JB, Yahaya AA, Desta AT et al. Antimicrobial resistance in the African region: issues, challenges and actions proposed.
Afr. Health Monitor. (16), (2013).

44. Seaton RA. Antibiotic prescribing in the context of COVID-19 pandemic. British Society for Antimicrobial Chemotherapy,
Birmingham, UK (2020).

45. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Rev. Antimicrob. Resist. (2016).

46. World Bank. Drug-resistant infections: a threat to our economic future (discussion draft). World Bank, Washington, DC, USA (2016).

47. Mbelle NM, Feldman C, Sekyere JO, Maningi NE, Modipane L, Essack SY. Pathogenomics and evolutionary epidemiology of
multi-drug resistant clinical Klebsiella Pneumoniae isolated from Pretoria, South Africa. Sci. Rep. 10(1), 1232 (2020).

48. Nithya N, Remitha R, Jayasree PR, Faisal M, Manish Kumar PR. Analysis of beta-lactamases, bla(NDM-1) phylogeny & plasmid
replicons in multidrug-resistant Klebsiella spp. from a tertiary care centre in south India. Indian J. Med. Res. 146(Suppl.), S38–S45 (2017).

49. Oliva M, Monno R, D’Addabbo P et al. A novel group of IncQ1 plasmids conferring multidrug resistance. Plasmid 89, 22–26 (2017).
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